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Metric Space: 

Open sets: Let (X,d) be a metric space . A subset G of X is said to be d-open  

                   iff to each x G there exist r >o such that S(x,r) G. 

Def
n
: Let (X,d) be a metric space, and let xо X if rR

+ 
then the set     

          {xX; d(x,xо)< r} is called an open sphere (or open ball).the point xо is  

           called the center and r the radius of the sphere. and we denoted by  

           S(xо,r) or by B(xо,r): i.e. S(xо,r)={ xоX; d(x,xо)< r} 

            Closed set is define and denoted by S[xо,r]={ xоX; d(x,xо)≤ r}. 

Ex: Let xR then a subset N of R is U nbd of x iff there exist a u-open set G   

       such that NGx  , but G is U-open and xG implies that there exist an  

        >0 such that (x-,x+)  G. Thus N is a U-nbd of x if N contains an  

         open interval (x-,x+) for some >0. In particular every open interval    

          containing x is a nbd of x. 

Ex: Consider  the set R of all real numbers with usual metric space 

      d(x,y)  = yx   and find whether or not the following sets are open. 

        A= (0,1) ,B=[0,1), C= (0,1] ,D=[0,1], E= (0,1) (2,3)   , F={1},   

        G={1,2,3} . 

Sol
n
 : A is open set Let x be appoint in A, we take r=min{x-0,1-x}, then it is  

         evident that (x-r, x+r)  A 

         For example consider 
4
1 (0,1), then r=min{

4
1 -0,1-

4
1 }=min{

4
1 ,

4
3 }=

4
1  

         (
4
1 -

4
1 ,

4
1 +

4
1 ) =(0, 

2
1 ) (0,1)=A. 

         B is no open set, since however small we choose a positive number r,  

          the open interval (0-r,0+r) = (-r,r) is not contained in B. Thus there  

          exists no open ball with 0 as centre and contained in B  . 
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Theorem 1: In a metric space the intersection of a finite number of open sets  

                      is open. 

        Proof: Let (X,d) be a metric space and let {Gi ;i=1,2,3,…,n } be a finite  

                    collection of open subsets of X, to show that     

                   H=∩{Gi;i=1,2,3,…n} is also open. let x Gi for every  

                i=1,2,3,…n, since each Gi is open there exist ri>0 such that  

               S(x,ri)Gi   i=1,2,3,…n . let r=min {r1,r2,r3,…,rn}, then                              

                S(x,r) S(x,ri)  for all i=1,2,3,…n, it follows that 

                 S(x,r) Gi , for all i=1,2,3,…,n, this implies that 

                  S(x,r) ∩{Gi, i=1,2,3,….,n}=H, thus it is shown that to each x in        

                   H there exist r>0, such that S(x,r)   H. Hence H is open. 

Theorem 2:   In a metric space the union of an arbitrary collection of open set  

                     is open. 

Proof: let (X,d) be a metric space and let { }; G  be an arbitrary collection  

            of open subset of X, to show that }:{  GG   is open, let xG ,   

           then by def
n
 of union xGλ for some  λ∆, since Gλ is open there    

           exists r>0 such that GrxShenceGGbutGrxS  ),(,,),(    , thus we have  

            shown that to each xG , there exists a positive numbers r such that  

           GrxS ),( ,hence G is open 

Theorem 3: A subset of a metric space is open iff it is the union of family of  

                 open ball. 

Proof: Let (X,d) be a metric space and AX, let A be open ,if A= , then it is 

            The union of empty family of ball , now let A  , and xA, since A is  
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            open, there exist an open ball B(x,r), r>0 such that B(x,r) A, it      

             follows that A{B(x,r), x in A}A. Hence  A= }),,({ AxrxB     

           So A is the union of a family of open ball. 

 Conversely if A is the union of a family of open ball then A is open by 

Theorem 2. 

Ex: Show that in a discrete metric space every set is open. 

Sol
n
: Let A be a subset of discrete metric space if A= , then A is open, if  

        A  , let xA, since S(x,
2
1 )={x}, we have S(x,

2
1 ) A. Hence A is open. 

Ex: Show that in a metric space, the complement of every singleton set is 

Open . More generally the complement of a finite set is open. 

Sol
n
: H.W 

Ex: Give an example to show that the intersection of an infinite number of  

        open sets is not open. 

Sol
n
: Consider the collection {(- ), 11

nn
, Nn } of open intervals in R with  usual 

metric d(x,y)= yx  , then∩{(- ), 11
nn

, Nn }={0}, which is not open since there 

exist not r>0 such that (-r,r) {0}. 

Closed sets: 

Def
n
: Let (X,d) be a metric space , a subset A of X is said to be closed iff the 

complement of A is open. 

Ex: Show that every singleton set in R is closed for the usual metric d for R. 

Sol
n
: Let aR, to show that {a} is closed. Now R-{a}=(-∞,a) (a,∞), but       

(-∞,a) and (a,∞) are open sets, hence their union is also open. 

Theorem 4: Let (X,d) be a metric space and let };{ H  be an arbitrary  
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collection of closed subsets of X. then ∩ };{ H  is also a closed set. In 

other words, the intersection of an arbitrary family of closed sets is closed. 

Proof:  ,closedisH , 

           then X-  ,openisH , 

           then  {X-  ,H  }is open by theorem      

           then  X-∩{  ,H  } is open De-Morgan 

           then ∩{  ,H } is closed. 

Topologies: 

 Def
n
: Let X be anon empty set and let π be a collection of subsets of X  

          satisfying the following three condition: 

      T1:   X, . 

       T2: if   2121 GGthenGandG  . 

       T3 : };{    GthensetarbitraryiswhereeveryforGIf   

  Then π is called a topology for X, the members of π are called π-open sets 

and the pair (X,π) is called a topological space. 

Ex: Show that the union of empty collection of sets is empty i.e. 

  },{A  and the intersection of empty collection of subsets of X is X 

itself  i.e.  XA  },{   

Ex: Let X={a,b,c}, and consider the following collections of the subset of X: 

        },{1 1 X   

          }},,{},{,{2 2 Xcba   

          }},{},{,{3 3 Xba   

           }},{,{4 4 Xa   
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           }},{},{},{,{5 5 Xbaba   

            }},,{},{{6 6 Xcab  

            }},,{},,{,{7 7 Xcbba   

             }},,{},{,{8 8 Xcbb   

        Let we verify these axioms for π8, 

          

8

8

82

881

},{},{

}{}{},{}{

},{}{:

,:

















baXba

bXbbab

XbabT

XT







 

           
XXbabbaXba

bababXXbababbT









},{}{},{},{

},{},{}{},{},{,}{}{:3 
 } All are in π8 . 

            So π8  is a topology on X. 

Theorem 5: Every metric space is a topological space, but the converse is not  

                true . 

Proof: Let (X,d) be any metric space to prove that X,  is open set. 

           openisXsoXxBthatsuchxBthenXxLet rr  )()(  

            openisxBthatsuchxBxIf rr   )()(  

           Let A,B be an open sets, to prove that A∩B is open, 

            
openisBAsoBAxBxBxB

sosriLetBxBandAxBxandAxBAxLet

sri

sr









)()()(

),min{)()(B
 

       

.

)()(

);{

setopenisA

AAxBAxBAxthatsuchIithenAxLet

openisAthatprovetosetopenoffaimlyabeIiALet

Ii

i

Ii

iiriri

Ii

i

Ii

ii

ii



















 

          But the converse is not true for example let X={a,b,c} and  

      ={,{a},X}, suppose hat d is a metric of X , =d(a,b) but B(b)={b}  
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           Which is not open. 

Ex: Let X be any set. Then the collection I= { ,X) consisting of empty set   

       and the whole space. Is always a topology for X called the indiscrete or  

       (trivial) topology, the pair (X,I) is called an indiscrete topological space. 

Ex: Let D be the collection of all subsets of X, then D is a topology for X   

       called the discrete topology. 

Sol
n
: Since DXandDhaveweXXX  ,,,  so that T1 satisfied. 

          T2 : Also holds since the intersection of two subset of X is a gain a  

           subset of X. 

         T3: Is satisfied since the union of any collection of subset of X is again 

            a subset of X.  

Ex : Let R be the set of all real numbers and let S consist of subsets of R  

         defined as follows: 

       i- S  ii- A non-empty subset G of R belong to S iff to each  ,Gp a 

right  half open interval [a,b) where a,b are in R, a<b such that Gbap  ),[  

show hat S is a topology for R called the lower limit topology or in  short 

RHO topology for R. 

Sol
n 
; T1: SRalsoS  since to each pR there exists aright half-open 

interval  [p,p+  ), Rpppthatsuch  ),[,0   

 T2: Let 212121 ,,, GpandGpthenGGpLetandSGG   so there exists a right half-

open intervals H1 and H2 such that 2211 GHpandGHp  , it follows that 

 212121 sin, HHceGGHHp   so its clear that  21 HH  is a right half-open 

intervals, thus to each 21 GGp  , there exist a right half-open interval 

212121 , GGHHpthatsuchHH    ,  hence SGG 21  . 
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 T3: Let   ,SG  where ∆ is an arbitrary set, let };{  Gp  .  Then 

there exist 
pp

GceGpthatsuchp  sin. is S-open, there is a right half-open 

intervals H such that .
p

GHp   it follows that   };{  GHp  . 

Hence SG  };{  . Thus S is a topology for R. 

       Similarly the upper limit topology for R consist of  and all those subset 

G of R having the property that to each Gp  there exist a left half- open      

interval (a,b] such that Gbap  ],( . 

Ex: let π be the collection of subsets of N consisting of empty set  and all   

subset of N of the form  Gm ={m,m+1,m+2, …}, m in N show that π is a          

topology for N, what are the open sets containing 5. 

Sol
n
 :   NAandT ,...}3,2,1{; 11  

    








  nm

m

n

nmnm GGhence
mnasG

nmasG
GGthenNnmGandGLetT ,,,:2  

     GT :3  where ∆ is arbitrary subset of N, since N is a well ordered                

Set (prove that) ∆ contains a smallest positive integer m0 so that                 

 
0

,...}2,1,{}:{ 000 mGmmmG , hence π is a topology for N.  

G1 =N ={1,2,3,…},  G2={2,3,4,…}, G3 ={3,4,5,6,…}   G4={4,5,6,…}  

G5={5,6,7,8,…} 

Note: A partially ordered set X is said to be well ordered if every subset of X 

contains a first element. 

Partial ordered set the pair(x,) is called p.o. set if xy for x,y in X If Xa be 

such that Xofelementfirstaisathenxxa , . 

Ex: List all possible topologies for the set X={a,b,c}. 
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Ex: Let U consist of  and all those subsets G of R having the property that to  

each Gx  there exist Gxxthatsuch  ),(0   to show that U is a topology 

for R called the usual topology. 

Sol
n
 :  T1 - 0,)1,1(sin,   anyforfactInRxxRxeachtoceURalsodefinitionbyU  

                   Rxx  ),(   

      T2 : Let G1,G2 U , if 21 GG  there is nothing to prove if 21 GG  ,let   

                21 GGx   then 12121 ),(,, GxxthatsuchoohenceGxandGx    

      .,),(0},,min{),( 2121212 UGGhenceGGxxandthentakeGxx    

      T3: Let };{ G  be an arbitrary collection of members of U an let  

        GxxthatsuchUGcesomeforGxthenGx  ),(0sin,},;{  

       But ),(   xx }:{  G ,therefore UG  };{  , so U is a topology for R. 

Comparison of topology: 

Def
n
 : Let π1 and π2  be two topologies for a set X , we say that π1 is weaker or   

           (smaller) than π2 or that π2  is stronger or (Larger) than π1 iff 21      

            that is iff ev ery π1 –open is π2-open, if either 1221   or  we say    

            that the topologies π1  and π2 are comparable. If 21    and 12    , 

           then we say that π1 and π2 are not comparable. 

 For any set X , (X.I) is weaker topology and (X,D) is stronger topology. 

Ex : Find three mutually non comparable topologies for the set X={a,b,c} 

 Sol
n
 :  Let  }},{,{1 Xa    }},{,{2 Xb   ,  }},{,{3 Xc    Also from the following 

topology }}..{{1 Xa  , }},,{},,{},{,{2 Xcabaa  ,  }},,{},{,{3 Xcbb  , we see that 

π1 and π3 are not comparable since  1331   and  but π1 and π2 are 

comparable. 

Intersection and union of topologies: 
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       The union of two topology need not be a topology for example Let    

X={a,b,c}, consider two topology defined on X as follows   }},{,{1 Xa   , 

}},{,{2 Xb  , then  which is not topology for X 

Theorem 6: Let };{    where λ is an arbitrary set be a collection of      

 topologies for X then the intersection };{    is also a topology  for X. 

Proof: Let }:{   be a collection of topologies for X, we have to show that  

  }:{    is also a topology for X , if  , then }:{   =P(X). Thus in 

this case the intersection of topologies is the discrete topology.  Now let  , 

T1 : since   : is a topology, it follows that    ;, X  , but  

        },{,, ,    then  and };{    XthenX  

T2 : Let };{, 21   GG  then    XforytopoaisceGG logsin,;, 21  

       It follows that    ;,21 GG  , hence };{21   GG . 

 T3: Let    ,};{G  where ∆ is an arbitrary set, then  

       andG ,; , since for each   is a topology for X, it follows  

 that    ;};{G . Hence };{};{};{     thusG  is a 

topology for X. 

Closed sets:  

Def
n
 : Let (X, π ) be a topological space, a subset F of X is said to be π-closed 

         Iff its complement F
c
 is open. 

Ex: Let X={a,b,c}, and let π={,{a},{b,c},X} since {a}
c
 ={b,c}, {b,c}

c
 ={a}      

        It follows that the closed sets are , {a},{b,c}, and X. 

Def
n
 : A topological space (X,π) is  said  to be a door space iff every subset  

 of X is either open or closed. For example let X={a,b,c} and 
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 π={,{b},{a,b},{b,c},X} then the closed sets are X,{a,c},{c},{a},.  

   Hence all the subsets of X are either open or closed and consequently (X,π) 

is a door space. 

Ex: If Ra  show that {a} is closed set in the usual topology for R. 

 Sol
n
 : ),(),(}{  aaa c   but (-∞,a) and (a,∞) are open sets hence their union   

  is also open, it follows that {a}
c
 is open , therefore {a} is closed. 

Intersection and union of closed sets: 

Theorem7 : If };{ F  is any collection of closed subsets of a topological 

                   space X, then };{ F  is closed set. 

Proof : }:{   
cc FthenopenisFthenclosedisF   is open By T3 

              .};{

}];{[

setclosedofDefbyclosedisFthen

LawMorganDeopenisF

n

c

















                

Theorem 8: if F1 and F2 b any two closed subsets of a topological space X  

                  Then 21 FF    is a closed set . 

Proof : ncccc
DefofTbyopenisFFopenareFFclosedareFF 2212121 ,,   

             
.)( 2121 closedisFFlawMorganByDeopenisFF c  
 

Note: F1,F2,F3,…Fn be a finite number of closed subsets of X, then their   

           union will also be a closed subset of X. 

 Ex : Give an example to show that the union of an infinite collection of  

        closed sets in a topological space is not necessarily closed.   

Sol
n
 : Let (R,U) be the usual topological space. And let Fn=[1/n,1], Nn . So 

that Fn is closed interval on R, then }1,{]1,[ 11  xorxRx
n

c

n  = ),1(),( 1  
n

 

which is open hence [1/n,1]=Fn is closed set, Now      



11 

 

 11 

]1,0(...]1,[]1,[}1{},{
3
1

2
1   NnFn  since (0,1] is not closed it follows that the 

union of an infinite collection of closed sets is not necessarily closed. 

Characterization of a topological space in terms of closed sets: 

Theorem 9: Let X be anon-empty set FFFFFF  2121,        

                  FFFFF  };{:3     

Then there exist a unique topology on X such that the π-closed subsets of X 

are precisely the members of F. 

Proof: Let π consist of the complements of the members of F, then π is a  

            topology for X. 

         T1:     XFandXFX cc   

         

n

c

cc

cc

DefbyFGG

MorganDebyFGG

FbyFGG

FGGGGT









21

21

221

21212

)(

,

,,:







 

           































}:{

}];{[

};{

:

3

3

Gso

MorganDeFG

FbyFG

FG

GT

c

c

c





  

        Hence π is a topology for X. 

   further a subset F for X is closed iff  cF , that is iff .FF    to show the 

uniqueness of topology, let π and π
-
 be two topologies have the same system 

of closed sets. 
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













henceG

openisG

setsclosedofsystemsamethehaveandceclosedisG

closedisG

openisGGthen

c

c

][sin   

  Neighbourhoods:  

Def
n
 : Let (X,π) be a topological space and let Xx . A subset N of X is said  

to be a π-neighbourhood of x iff there exist a π-open set G such that NGx  .   

Similarly N is called a π-nbd of A subset of X iff there exist an open set G 

such that .NGA   The collection of al nbd of  in X is called the 

neighbourhood system at x  and denoted by N(x). 

EX : Let X={1,2,3,4,5} and let π={,{1},{1,2},{1,2,5},{1,3,4},{1,2,3,4}X}    

         then π-nbd of 1 are     

{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},   

{1,2,3,4},{1,2,4,5},{1,3,4,5},{1,2,3,5},and X 

  Not that {1,3} is not  an open set but it is a π-nbd of 1 since is a π-open  set 

such that }3,1{}1{1   

  Ex: Which of the following subsets of R are nbd of 1? 

       (0,2),(0,2][1,2], [0,2]-1.5 ,   R 

Theorem 10: A subset of a topological space are open iff it’s a nbd of each its    

               points. 

Proof: Let a subset G of a topological space be open. Then for every xG,   

GGx    and therefore G is a nbd of each its points. 

 Conversely let G be a nbd of its point, if G=, then there is nothing to prove, 

if x≠, then to each xG there exist an open set Gx such that   GGx x  . It 
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follows that },{ GxGG x   , hence G is open. 

Ex: Let X be a t.s. If F is closed subset of X, and x A
c
, prove that there is a    

       nbd N of x such that FN   . 

Sol
n
: Since F is closed then F

c
 is open and so by above theorem F

c
 contains   

a nbd of each its points. Hence there exist a nbd N of x such that         

 FNeiFN c ..  

Theorem 11: Let X be a topological space, and for any xX , Let N(x) be the    

               collection of all nbds of x then:  

1-  )(, xNXx , i.e. Every point x has at least one nbd. 

2- )()( xNxthenxNN  , i.e. Every nbd of x contains x. 

3- )(),( xNMthenMNxNN   i.e. Every set containing a nbd of x is a nbd of 

x. 

4- ),()(,)( xNMNthenxNMxNN   i.e. the intersection of two nbd of x is 

nbd of x. 

5- ).()()( yNMandNMthatsuchxNMexisttherethenxNN  i.e. If N is a nbd of 

x, then there exist a nbd M of x which is a subset of N such that M is a 

nbd of each of its points. 

Proof:1-Since X is an open set it is a nbd of  every xX. Hence there exist 

at least one nbd (namely X)for each x X. Hence N(x) ≠  for all xX. 

  2-If NN(x),then N is a nbd of x, so by Def
n
 of nbd xX. 

 3- If N N(x) , there exist an open set G such that  ,NGx  since  

 GxMN , M , and so M is a nbd of x, hence )(xNM  . 

4- Let NN(x) and  M N(x), the by Def
n
 of nbd , there exist an open sets G1 

and G2 such that  MGxandNGx  21  hence MNGGx   21 , since 
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21 GG  , is an open set, it follows from (1)  that  MN   is a nbd of x, hence 

)(xNMN   . 

5-If NN(x), then there exist an open set M such that MNx  . Since M is 

open set it is a nbd of each of its point therefore    .)( MyyNM    

 Base for the neighbouhood system of a point ; Base for a topology 

Local Base at a point. 

Def
n
: Let (X,π) be a topological space, a non-empty collection B(x)  

          of π-neighborhoods of x is called a base for π-nbd system of x iff 

           for every π-nbd N of x there is B B (x) such that B  N, we say  

           that B (x) is a local base at x or a fundamental system of nbds of x. 

           If B(x) is local base at x, then the members of B(x) are called   

            basic  π-nbds of x. 

Ex: Let X= {a,b,c,d,e} and let }},,,,{},,,{},,,{},,{},{,{ Xdcbadcaebabaa                   

       Then the local base at each point a,b,c,d,e is given by B(a)={{a}},    

            B(b)={{a,b}}, B(c)={{a,c,d}}, B(d)={{a,,c,d}},B(e)={{a,b,e}}. 

Ex : Let (X,π) be any topological space, and let x X , show that the collection   

       Β(x) of all π-open subset of X containing x is a local base. 

 Sol
n
 : Let N be any nbd of x. then there exist an open set G such that  

           NGx   . since G is an open set containing x, )(xG  , this show that 

            )(x  is a local base at x. 

        Properties of local base: 

   Theorem 12: Let X be a topological space and let  (x) be a local base at  

                          any point x of X, then  (x) has the following properties. 

     B0:  (x)    for every x in X. 
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     B1: If BxthenxB  )(  

     B2: If BACthatsuchxCasthenxBandxA  )()()(   

     B3: If 
BCsatisfyingyCsetas

ByeveryforthatsuchandABxthatsuchBsetasthenxA





)(

,,)(



 
 

 Proof: B0- Since X is open , it is a nbd of its points, since  (x) is a local base  

           at any point x of X, and X is a nbd of X, it follows that there must  

            exist a )(xB   such that XB   . Hence  )(x .Xx . 

           B1: If )(xB  , then B is a nbd of x, so by Def
n
 of nbd Bx . 

           B2:If )(xA   then A is a nbd of x, similarly B is a nbd of x it follows  

                that BA  is a nbd of x, since )(x is a local base at x, it follow that 

                there exist BACthatsuchxC  )( . 

           B3: Since )(xA  , A is a nbd of x, hence there exist an open set B  

                  Such that ABx  , since B is an open set it’s a nbd of every By   

                 Again since )(y  is a local base at y and B is a nbd of every  By  

                It follows that for every By  BCthatsuchyCs  )(,  .    

        Ex : Consider the usual topology U for R and any point xR. then the  

        collection }0;),{()( Rxxx    constitutes a base for the U-nebd  

        system for x, to prove this, let N be any nbd of x, then there exist  

        U-nbd set G such that NGx   , since G is U-open there exist 0  

         such that NGxx  ),(  , thus to each nbd N of x, there exist a   

          member )(),( xxx     such that Nxx  ),(   

H.W/ Also show that },),{()( 11 Nnxxx
nn

  is anther local base for U-nbd 

First countable space: 

   Def
n
 : A topological space (x,π) is said to satisfy the first axiom of count-      
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             ability if each points of X possesses a countable locale base, such a    

              topology is said to be a first countable space.  

Ex: A discrete space (X,D) is a first countable, for in a discrete space every 

       subset of X is open, in particular each singleton {x}, x X is open and so  

        is a nbd of x. Also every nbd N (i.e. open set containing x in this case)  

        of x must be a superset of {x}. 

       hence the collection {{x}} consisting of the single nebd {x} of x,     

       constitutes member is countable. Hence there exists a countable base at  

       each point of X. 

 Ex : Show that the topological space (R,U) is first countable. 

  Sol
n
 : Let Rx  then the collection });,{( 11 Nnxx

nn
  is a countable base 

            at x and so (R,U) is first countable. 

Base for a topology: 

   Def
n
: Let (X,π)  be a topological space, a collection β of subsets of X is said  

             to form a base for π iff: 

            NBxthatsuchBsomexofNnebdeachandXxPoeachFor   int21  

Ex : Let X={a,b,c,d} and let }},,,{},,,{},,}{,{},{},{,{ Xdcbdcabadcba  , then the  

        collection }},{},{},{{ dcba  is a base for π since βπ and for each nbd  

        of a contains {a} which is a member of β containing a. Similarly each   

         nbd of b contains {b}β, and each of c or d contains {c,d} β. 

Ex : Consider the discrete space (X,D), then the collection β={{x}, xX} 

        Consisting of all singleton subset of X is abase for D, since  each  

        singleton set is D-open so that DB  , also for each Xx  and each nbd  

         N of x, ,}{ x  is such that Nxx  }{  
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Def
n
 : Let (X,π) be a topological space the space X is said to be second  

          countable (or to satisfy the second axiom of count-ability) if there exist  

           a countable base for π. 

Ex: The space (R.U) is second countable since the set of all open intervals          

          (r,s) where r,s are rational numbers forms a countable base for U. This  

           Follows from the fact that between any two real numbers there exists   

           infinitely many rational numbers. thus to each point x in R and each  

             nbd N of x   ),(, srxthatsuchQsr N 

Theorem 13:Let (x,π) be a topological space, a collection β of π is abase for π                      

iff every π-open set can be expressed as the union of members of β. 

Proof: Let β be a base for π and let Gπ, since G is π-open, it is a π-nbd of    

each of its point, hence by def
n
 of base to each xG there exist a member 

GBxthatsuchB   it follows that };{ GBandBBG   . 

           Conversely, Let    and every open set G be the union of members  

          of β , we have to show that β is abase for π, we have 

          i- given   

           NGxthatsuchGsetopenansthenxofnebdanybeNletandXxLeti  ,  

              But G is the union of members of β, hence there exists  

               forbaseaisthusNGBxthatsuchB , . 

Ex: Let π and π
* 
be topologies for X, which have a common base β then π=π

*
. 

 Sol
n
; Let G, and xG, since G is -open, it is -nbd of x ,, and since β is   

          a base for , there exists Bβ such that GBz  β. Since β is a base  

          for
*
 and Bβ, it follows that B

*
. Hence G is 

*
-nbd of x, since x  

           is arbitrary G
* 
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    provecanwesimilarlyThus , , hence    

Properties of a base for a topology: 

   Theorem14: let (X,) be a topological space and let β be a base for , then    

                       Β has the following properties: 

     [B
*
1] For every xX there exists a Bβ such that xβ, i.e. };{  BBX  . 

     [B
*
2] For every B1β, B2β and a point xB1∩ B2 there exists a Bβ such  

  That ,21 BBBx  that is the intersection of any two members of β is a 

union of members of β . 

  Proof: [B
*
1] since X is a π-open set it is a nbd of each of its points hence by 

def
n
 of base, for every xX, there exists some Bβ such  that 

},{,  BBXwordsotherinXBx    

 [B
*
2] If B1β and B2β , then B1 and B2 are -open, hence their intersection 

B1∩B2 is also -open, and therefore B1∩B2 is a nbd of each of its points and 

so by def
n
 of base to each xB1∩B2 there exists Bβ such that 21 BBBx  , 

that is B1∩B2 is the union of members of β. 

 Limit points :  

Def: Let (X, ) be a topological space , and let A be a subset of X  , a point       

         xX is called a limit point (or a cluster point or an accumulation 

         point) of A iff every nbd of x contains a point of A other than x. 

          i.e. x will be a limit point of A iff every nbd of x meets A in a point      

         different from x , that is  N\{x} A for all N is and of x or we say     

         that x is a limit point of A iff every open set G containing x , 

         G\{x} A, also we say that x will not be a limit point of A if there    

         exists a nbd N of x Such that N A=  or N A={x}. 
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Def: Let A be a subset of a topological space X, and let xX, the x is called    

         an adherent point ( or  contact point ) of A iff every nbd of x contains a   

         point of A and denoted by d(A). 

         The set of all limit point of A is called derived set and denoted by D(A). 

Def: A point x is said to be an isolated point of a subset A of a topological    

        space X , if xX but x is not a limit point of A . A closed set which has   

         no isolated point is said to be perfect. 

Ex: let (X.D) be descried topological space, and let A be any subset of X 

       Is A has a limit point? 

Sol: let xX, if G\{x} A N\{x} Afor every open set G containing x   

 But we have {x}\{x} A= , therefore x is not a limit point of A . Hence A 

has not a limit point in a descried topology.  

Ex: let X={a,b,c} and let {,X,{a},{b}{a,b}} find all limit point of the set   

       A ={a,c}. 

Sol: we have three points in X  

      1- aX, the open set which contain a are {a}, {a,b} X so since 

          {a,b}{a}\{a}= , a is not a limit point of A. 

      2- bX , the open set which contain b are {b},{a,b}, X and  

            {a,c}{b}\{b}= b is not a limit point of A. 

        3- cX, and the open set which contain c is X only, and 

               X\{c}A={c}, so c is a limit point of A, the isolated point of A        

               is a, since a is in A and not a limit point , and D(A)={c} 

Ex: let X={a,b,c,d,e} and let ={,X,{b},{d,e},{b,d,e},{a,c,d,e}} then is a   

        topology on X. Consider the subset A={b,c,d} ,the point c is a limit    



20 

 

 20 

        point of A since the -open nbds of c are {a,c,d,e}, X each contains a   

        point of A other than c. But b is not a limit point of A since {b} is nbd of  

        b which contains no point of A other than b similarly a,e are limit point  

        of A so D(A)={a,c,e}. The isolated points of A are b and d since b,d are  

        belong to A but are not limit points of A. then an adherent point of A are    

        a,b,c,d,e. 

Theorem 15: Let X be a topological space, and let A be a subset of X then A  

                    is closed iff D(A)A. 

Proof: Let A be closed, then A
c
 is open and so to each xA

c
 there exist a nbd   

           N of x such that N A
c
. Since AA

c
 =, the nbd N contains no point  

           of A and so x is not a limit point of A. Thus no point of A can be a  

            limit point of A ,that is A contains all its limit  points. Hence D(A)A.   

            Conversely let D(A)A and let xA
c
, then xA. since D(A)A,  

            xD(A) hence there exist a nbd of x such that NA=so that NA
c
,  

            thus A
c
 contains a nbd of each of its points and so A

c
 is open, that is A  

             is closed. 

Closure: 

Def: Let X be a topological Space and let A X. the intersection of all -    

        closed supersets of A is called the closure of A and denoted by A or c(A)  

         or ClA. When confusion is possible as to what space the closure is to be  

          take in, we shall Cl (A). 

Theorem 16: Let A be a subset of a topological space , then  

               1- ClA is the smallest closed set containing A. 

                2- A is closed iff ClA=A 
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Proof: 1- this follows from definition. 

            2- If A closed, then A itself is the smallest closed set containing A and   

                 hence ClA=A. Conversely if ClA=A by 1 ClA is closed and so A is    

                 also closed. 

Theorem 17: prove that ClA =A D(A). 

Proof: We first prove that AD(A) is closed i.e.[A  D(A)]
c
 = A

c
 D(A)

c
  is  

           open , let x A
c
 D(A)

c
 , then xA

c
 and xD(A)

c
 so that xA  and   

            xD(A) . This means that x is not a limit point of A, and hence there  

            exist an open nbd N of x which contains no point of A, it follows that    

            N A
c
. Now no point yN can be a limit point of A, since N is a nbd  

            of y which contains no point of A. hence ND(A)
c
. since NA

c
 and   

            ND(A)
c
, So NA

c
D(A)

c
. thus A

c
D(A)

c
 contains a nbd of each of  

            its point and consequently A
c
D(A)

c
 is open. We now show that  

            ClA= AD(A) ,since AD(A) is closed set containing A and ClA is   

            the smallest closed set containing A, we have ClAAD(A). Again  

             since ClA is closed, it contains all its limit points, and thus in  

              particular, all limit points of A, so that D(A)ClA also AClA.   

              Hence AD(A)ClA, it follows that ClA=AD(A). 

Corollary: Prove that ClA=adh(A)={x; each nbd of x intersect A} 

  Proof: xadh(A) iff every nbd of x intersects A 

                         Iff xA or every nbd of x contains a point of A other than x 

                          Iff xA or xD(A) 

                          Iff xAD(A) 
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                          Iff xClA . 

              An adherent point is also some times called a closure point. 

Ex: Let X={a,b,c,d} and let ={,X,{a},{b,c},{a,d},{a,b,c}} 

       Closed subsets are X, {b,c,d}, {a,d},{b,c},{d},then Cl{b}={b,c}, ,    

       since {b,c} is the intersection of all closed subsets of X which contain b .   

        Again Cl{a,b}=X, since X is the only closed set containing {a,b}.  

        similarly we have Cl{b,c,d}={b,c,d}. 

Ex: Let X={a,b,c} and let      },,,,,,{ cabaaX   .Find the limit point of the sets 

        A={b,c.}  , B={a,c} 

Properties of closure: ”Kuratiwski theorem ” 

         Let X be a topological space, and let A,B be any subset of X, then 

          iiCli ,  - ClBClAthenBAifiiiClAA  ,  

          ClAClAClviClBClABAClvClBClABACliv  )()()(   

Proof: i-Since   is closed, we have  Cl . 

            ii- By theorem ClA is the smallest closed set containing A, so  ClAA  

            iii- By (ii) BAceClBB  sin, we have ClBA ,but ClB is a closed set.     

                Thus ClB is closed set containing A. Since ClA is the smallest    

                closed set containing A, we have ClBClA .                                  

               
)1(..........)(

)()(,

BAClClBClAhaveweiiiby

BAClClBandBAClClAhaveweBABandBAASinceiv








 

                Since ClA and ClB are closed sets, then ClBClA is also closed, also 

                  ClBBandClAA  implies that ClBClAthusClBClABA   is closed    

               set containing BA ,since )( BACl  is the smallest closed set     

               Containing 2.......)( ClBClABACl   , from 1and 2 we get    



23 

 

 23 

                ClBClABACl  )( . 

             v- ClBBAClthenABAandClBBAClthenBBA  )()(  . Hence 

                 ClBClABACl  )(  

            vi-Since ClA is closed, we have Cl(Cl(A)). 

Theorem 18: Let X be a topological space, and let A be a subset of X then the   

                 following statements are equivalent: 

       i- A is closed              ii- ClA=A          iii-A contains all its limit point. 

Ex: Consider the usual topological space and find the closure of the following  

           subsets of R. 

          i-A={ },
1

Nn
n

      ii- B=The set of all integer numbers ,  

          iii-C= The set of all rational number,  iv- D= ,...},,,2{
4
5

3
4

2
3   

Interior point and interior set: 

Def
n
 : Let X be a topological space and let XA   , a point x in X  is said to be   

           an interior point of A iff A is a nbd of X, that is iff there exists an open     

            set G such that AGx  , the set of all interior point of A is called the  

             interior of A and is denoted by A
0 
or IntA 

 

Theorem 19: },:{ AGopenisGGA   

Proof: 

     

},;{

},;{

AGopenGisGAHence

AGopenGisGxiff

AGxthatsuhGsetopenanexsittheriff

xofanbdisAiffAx
















 

Theorem 20: Let X be a topological space. And let A be a subset of X, then 

i- IntA is an open set. 
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ii- IntA is the largest open set contained in A. 

iii- A is open if IntA=A. 

  Proof: i- Let x be an arbitrary point of IntA, Then x is an interior point of A  

  Hence by Def
n
 , A is a nebd of x, then there exist an open set G such that 

.AGx   Since G is open, it is a nbd of each of its points and so A is also a               

nbd of each of G. It follows that every pint of G is an interior point  of A so 

that IntAG   , thus it is shown that to each point IntAx  there exist an open set 

G such that IntAGx  , hence IntA is a nbd of each of its points and 

consequently IntA is open. 

 ii-Let G be any open subset of A and let AGxthatsoGx  , since G is open, 

A is a nbd of x and consequently x is an interior point of A, hence IntAx  , 

thus we have shown that AIntAGsoandIntAxGx  , . Hence IntA contains 

every open subset of A and it is therefore the largest open subset of A.          

iii-Let A=IntA By(i)  IntA is an open set and therefore A is also open. 

Consequently let A be open. Then A is usually identical with the largest open 

subset of A. but by (ii) IntA is the largest open subset of A. Hence A=IntA   

 Ex: Let (X,D) be s discrete topological space and let A be any subset of X.  

         Since A is open, we have IntA=A, thus in a discrete space every subset  

          of X coincides with its interior. 

 Theorem 21: Let X be a topological space and let A be a subset of X. Then  

            IntA equals the set all those points of A which are not limit pints of A
c
  

 Proof: Let x be a point of A, which is not a limit point of A
c. 

Then there  

            exists a nbd N of x which contains no point of A
c
 , and so AN     

             this implies that A is also a nbd of x and so IntAx . Conversely let 
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             IntAx , since IntA is open, it is a nbd of x, also IntA contains no  

             point of A
c
 , it follows that x is not a limit point of A

c
 , thus no point  

             of IntA is a limit point of A
c
 , hence IntA consists of precisely those  

             point of A which are not limit point of A
c
. 

Theorem 22 : Let X be a topological space, and let A,B be any subset of X,  

                     then: 

 
                  

IntAIntAIntviBAIntIntBIntAvIntBIntABAIntiv

IntBIntABAiiiAIntAiiIntXIntXi





)()()(

,




 

 Proof : i- Since X and  are open set, we have by iii Theorem  IntX =X,  

              Int= . 

          ii- IntAAhenceAxxofnebdaisAAofpoerioranisxIntAx  ,intint   

          iii-Let IntAx ,then x is an interior point of A, and so A is a nbd of x,   

                 since BA  , B is also a nbd of x, this implies that IntBx  thus we  

                 shown that IntBIntAIntBxIntAx  ,   

         iv-Since IntBBAIntandIntABAIntiiibyhaveweBBAandABA  )()(   

              this implies that IntBIntABAInt  )(   ……….(1) 

              a gain let IntBxandIntAxThenIntBIntAx  . , hence x is an interior  

               point of each of the sets A and B, it follows that A and B era nebds 

              of x so that their intersection BA  is also a nebd of x, hence  

              )( BAIntx   thus )( BAIntxIntBIntAx    so 

               )( BAIntIntBIntA   …….(2) 

               From 1 and 2 we get  IntBIntABAInt  )(  

           

)(

)(

)()(

BAIntIntBIntAhence

BAIntIntBBAB

BAIntIntABAAiiiByv












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              Not that in general )( BAIntIntBIntA    

             For example Let A=[0,1) and [1,2) then IntA=(0,1) and IntB=(1,2) 

            }1{\)2,0()2,1()1,0(   IntBIntA  also A B=[0,1)  [1,2)=[1,2] 

             So Int(A B)=(1,2) 

              Thus in this case IntA IntB is a proper subset of Int(A B), and 

                IntA IntB Int(A B) 

            vi-Now by i of Theorem 20  IntA is an open set, hence by iii of the  

                same theorem Int(IntA)=IntA 

Exterior point and the exterior of a set: 

 Def
n
 : Let A be a subset of a topological space X, A point x X  is said to be 

  an exterior point of A iff it is an interior point of A
c
, that is there exist an 

open set G such that cAGx    or equivalently  AGandGx  . The set of all 

exterior points of A is called the exterior of A and is denoted by extA or 

e(A).  thus extA=Int(A
c
), it follows that 00][)( AAAext

cccc      also we have 

      extAA  , that is no point of A can be exterior point of A. 

Remark: Since extA is the interior of A
c
, it follows from Theorem 20 that  

             extA is open  and is the largest open set contained in A
c
 . 

 Theorem 23: Let (X,π) be a topological space and let A be a subset of X then 

                    },{ cAGGextA    

 Proof: By Def
n
 , extA=Int(A

c
), but by Theorem 19  

             };{};{ ccc AGGextAhenceAGGIntA     

Theorem 24: Let A be a subset of a topological space X, then a point x in X 

is an exterior point of A iff x is not an adherent point of A, that is iff cClAx . 

 Proof : let x b an exterior point of A, then x is an interior point of A
c
, so  A

c
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is a nbd of x containing no point of A, it follows that x is not an adherent 

point of A, that is cClAx . 

      Conversely, suppose that x is not an adherent point of A, then there  exist 

a nbd N of x which contains no points of A. This implies that  cANx   . It 

follows that A
c
 is a nbd of x and consequently x is an interior point of A

c
, that 

is x is an exterior point of A. 

Theorem 25: Let X be a topological space and let A and B be subsets of X.    

                   Then: 

    XexrextXi  ,   extAextBBAivextAextextAiiiAextAii cc  ])[(     

     extBextABAextivextAextIntAv   )()(     

 Proof: XIntXIntextIntIntXextXi cc    

             4ITheoremiibyAIntAextAii cc   

            

extA

IntAIntAIntbyIntA

AAbyIntAInt

IntAIntIntAextIntAextAextextiii

c

cc

cccccccc

c









})({

}{)(

}]{[)(][)]([

 

                extAextBIntBIntAABBAiv cccc   

 

                
)(

,)(

extAextIntAhence

extAIntAButextAextextAgivesivthenAextAhaveweiiByv ccc




 

              

                 

extBextA

ITheoremivyIntBIntA

lawDemorganByBAInt

BAIntBAextvi

cc

cc

c

















4

)(

])[()(

B
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Frontier point and the frontier of a set. 

 Def
n
 :A point x of a topological space is said to be a frontier point                                                

         ( or boundary point) of a subset A of X iff it is neither an interior nor an  

          exterior point of A. the set of all frontier points of A is called the  

          frontier of A and shall be denoted by FrA. 

       FrA=[IntA  extA]
c
  

Theorem 26: Lt X be a topological space and let A be a subset of X. then a   

                   Point x in X is a frontier point of A iff every nbd of x  

                   intersections both A and A
c
 . 

      

c

c

c

c

AandAbothtserxofnebdevery

whyAinorAincontaindbecanxofnebdno

xofnebdaisAnorAneither

IntAextAxandIntAxFrAxhaveWeoof

secint

?

:Pr









 

 Corollary: FrA=FrA
c
 . for we have 

                          

AAceFrAx

AandAbothtserxofnebdevery

AandAbothtserxofnebdeveryFrAx

c

c

cc

cc

c







sin

secint

secint

 

Theorem 27 : LetA be any subset of a topological space X. then IntA, extA      

 and FrA are disjoint and FrAextAIntAX   Further FrA is a  closed set. 

Proof: By Def
n
 extA=IntA

c
 , also thatfollowsitAAceAIntAandAIntA ccc ,sin,    

             cIntAIntAextAIntA   a gain by Def
n
 of frontier, we have 

             

 

FrAextAIntAXandextAFrAandIntAFrAthatfollowsIt

extAIntAFrAThus

extAIntAx

extAIntAx

extAxandIntAxFrAx

c

c





















1...........][

][

}{

  

             Since IntA and extA are open, we see from 1 that FrA is closed. 
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Dense and non-dense sets: 

  Def
n
 : Let X be a topological space and let A,B be subset of X. then 

i- A is said to be dense in B iff BClA 

ii- A is said to be dense in X or every where dense iff ClA=X it 

follows that A is every where dense iff every point of X is an 

adherent point of A, 

iii- A is said to be nowhere dense or non-dense in X iff Int(ClA)=, 

that is, iff interior of the closure of A is empty. 

iv- A is said to be dense in itself iff AD(A). 

It follows from Def
n
 ( a closed set which has no isolated points is said 

to be perfect) and iv of a above definition that a set A is perfect iff A 

is dense in itself and closed. This implies that A is perfect iff A=D(A) 

      For A is perfect iff A is closed and A has no isolated points 

                                 iff A is closed and every point of A is a limit              

                                                                                          point of A    

                                              iff D(A)A and AD(A) 

                                              iff A=D(A). 

Separable space: 

  Def
n
: A topological space is said to be separable iff X contains a countable  

           Dense subset, that is, iff there exist a countable subset A of X such   

            That ClA=X. 

       For example the usual topological space (R,U) is separable since the set  

       Q of all rational numbers is countable dense subset of R. 

Ex: Let X={a,b.c.d,e} and let π={,{b},{c,d},{b,c,d},{a,c,d},{a,b,c,d},X}. 
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        Find interior, exterior and frontier of the following subset of X. 

       A={c}    B={a,b}    C={a,c,d}   D={b,c,d} 

Sol
n
 :1- i- since A is not a nebd of c, so IntAc  , hence IntA= 

       ii- Now A
c
 ={a,b,d,e} it is easy to see that b is an interior point of A

c
 ,  

         since A
c
 is a nebd of b , but a,d,e are not interior points of A

c
 , hence  

          extA =b  

     iii- Since IntA= and extA=b it follows that FrA={a,c,d,e}. 

2- i-Here b is an interior point of B , but a is not. IntB={b}. 

     ii- Now B
c
 ={c,d,e}, since c,d cBdc  },{ , it follows that B

c
 is a nbd of c,d  

        hence c,d are interior points of B
c
. that is c,d are exterior points of B. 

        that is extB={c,d}  

      iii-Since IntB={b}, and extB= {c,d} then FrB={a,e} 

 3- here C is open then IntC=C={a,c,d}, and extC= IntC
c
=Int{b,e}={b} also 

      FrC={e}. 

4- Also D is open set so that  it is a nbd of each of its points and    

    consequently every point of D is its interior point, hence IntD=D={b,c,d},   

    D
c
 ={a,e}. Since thee exists no open set G such that cDGa   , D

c
 is not a  

    nbd of a hence cIntDa  , similarly cIntDe . therefore  extD=IntD
c
=  

    also FrD={a,e}. 

   Ex: If A is open and closed then FrA= 

  Sol
n
: Since A is open then IntA=A and also since A is closed A

c
 is open and  

          Ext A = IntA
c
=A

c
 but  cccc XAAextAIntAFrA }{}{   

Ex: consider the usual topology U on R and find interior, exterior and frontier 

        Of the following subset of R. A=(0,1) B=[0.1) C=[0,1] D= };{1 Nn
n

 ,N , Q 
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Sol
n
:1- Since A is open, it is a nbd of each of its points and so every point of  

           A is its interior point. Hence IntA=(0.1) 

           Now A
c
= ),1(),(  o , here A

c
 is a nebd of each of its point except 0  

          and 1, hence extA =IntA
c
= ),1(),(  o . 

          Also }1,0{}{  cextAIntAFrA  . 

       2- proceeding as in 1 we have IntB=(0,1) ),1()0,(  cIntBextB  and  

             }1,0{}{  cextBIntBFrB  . 

        4- Here D cannot be a nbd of any points of its points 1/n , n=1,2,3,... 

           Since there exists no Dthatsuch
nn

 ),(0 11  , hence no point of D  

           can be its interior point so that IntD= . 

               It is easy to see that D
c
 is a nbd of each of its points except 0,  

          hence extD=IntD
c
 [D {0}]

c
  

         }]0{[][  DextDIntDFrA c   

Theorem 28 : Let X be a topological space and let A be a subset of X    

                  FrAIntAClA   

  Proof: By Def
n
 of ClA, we have };{ FAclosedisFFClA   ,  

         then by De-Morgan law extAAFandopenisFFClA cccc  };{][   , taking   

          complements, we get FrAIntAClAthatsoFrAIntAextAClA ccc   ][])[(  

Corollary: FrAAClA   

    )1........(:Pr ClAFrAAthatsoClAFrAandClAASinceoof     

           
FrAAClAgetweandfrom

FrAAClAthatfollowsitFrAIntAClA

andAIntAceagainextAIntAextAIntAFrAAlso ccc













21

)2(..........

sin][][][
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Subspace: 

 Def
n
 : Let X be a topological space and let XY  . The π-relative topology for  

            Y is the collection Y given by };{   GYGY   . 
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               The topological space (Y, Y ) is called a subspace of (X,π), the  

                topology Y  on Y is said to be induced by π. 

Theorem29: Let (X,π) be a topological space and let XY  , then the  

            collection Y };{  GYG   is a topology on Y. 

  Proof : T1:   XceandXYceYXYgainaYandSince Y sinsin ,  

                     we have  YY  . 

               T2: Let   21221121 ,,, GGsameforYGHandYGHThenHH Y  .  

                     Now   21212121 ,[)( GGSinceYGGYGYGHH Y ]. 

               T3: Let    YGHthatsuchGsetopenthenH Y ,; , now 

                        },{sin};{};{};{ GceYGYGH Y     

                      Hence Y is a topology for Y. 

 Ex: Let X={a,b,c,d,e}, π={,{a},{b},{a,b},{a,c},{a,b,c},{a,b,e}{a,b,d,e},X} 

              Y={b,c,e} then  

            }},{},,{},{},{,{ ebcbcbY    

Def
n
 : Hereditarily property : 

   A property of a topological space is said to be hereditary if every subspace  

    of the space has that property. 

  Ex: Consider the usual topology U of R and the subset [0,1] of R, then the     

set [0,1/2) is open in the U-relative topology of [0,1], since  

     ),1(]1,0[),1(),0[
2
1

2
1

2
1  and is  U-open, similarly (3/4,1] is open in the U-

relative  Topology for [0,1], since ),(]1,0[),(]1,(
2
3

4
3

2
3

4
3

4
3 and  is U-open. 

Ex; Let U be the usual topology for R describe the relativization of U to the  

        Set N of natural numbers. 

  Theorem 30: Let (Y,πY) be a sub-space of (X,π); then: 

                i- A subset A of Y is closed in Y iff there exists a set F closed in   
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                    X such that A=F  Y. 

                ii- For every YA , YAclAcl XY  . 

                iii- A subset M of Y is Y -nbd of  a point YNMiffYy   for   

                    some π-nbd N of Y. 

                iv- A point y in Y is πY- limit  point of YA  iff y is a π -limit    

                     point of A , further DY (A)= D(A)  Y. 

                 v- For every AIntAIntYA XY  ,  

                  vi-  For every A in Y FrY(A)  FrX(A). 

Proof:  i- A closed in Y iff  Y/A is open in Y. 

                                     If f  Y/A=G  Y for some open set G of X. 

                                      If f  A=Y/(G Y)=(Y/G) (Y/Y) 

 If f   A=Y/G    [since Y/Y=] De-Morgan law 

                                       If f   A=Y G
c
      “The complement of G in X” 

                                        If f  A=Y F   where F=G
c
 is closed in X. 

         ii- By def
n
   },;{ KAandYinclosedisKKAClY     

                  

YACl

YFAandclosedisFF

FAandclosedisFYF

YFAandXinclosedisFYFACl

X

Y









)(

}];{[

};{

:{









 

iii- Let M be a Y-nbd  of y, then there exists a Y-open set H such that 

      MYGHythatsuchGsetopenaMHy   . Let GMN  . 

  Then N is a -nbd of y since G is a -open set such that NGy  . 

    
MYGceM

YMSinceYGMYGYMYGMYNFurther









sin

)()()()(
 

    Conversely Let M=N  Y for some -nbd N of y, then there exists  
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             A -open set G such that MYNYGythatimplieswhichNGy  ,        

           since GY is Y –open set , M is Y-nbd of y, 

vi- y is a Y-limit point of A  if f  [M/{y} A] ≠ for all πY –nbds M of y.                    

                                               if f [N Y/{y} A ≠  for all- nbds N of y    

                                                if f  [N/{y} A] ≠ for all nbds N of y 

                                                 if f  y is a π-limit point of A. 

 

.

[sin

intint

AIntAIntHence

AIntx

AYAYAcexofnbdaisA

xofnbdisYA

xofnbdaisAAofpoeriorxIntAxv

YX

Y

Y

Y





















  

.

secint

/secint

secint

/int

AFrAFrHence

AFry

AofFrontierisy

AXandAbothtioneryofNnbdevery

yofNnbdAYandAbothtionerYN

AYtsbothAandernbdofyevery

AYandAofpofronierisyAFryiv

XY

X

Y

YY



























 

Theorem 31: let (Y,πY ) be a subspace of a topological space of (X,π) and let    

                  Β be a base for π, then };{   BYy   is a base for Y 

 Proof: Let H be a Y open subset of Y and let x in H , then there exists a  

             - open subset G of X such that  H=G Y. since β is a base for the 

topology 

          HYGYBxandYxthatfollowsitYHceGBxthatsuchBs  ,sin,  

           
};{

,,

.,

HYBandYBYBHisthat

HYxthatsuchBofYmemberaexiststhereHxeachtoThus

HYBxSuchthatYBsetashence

y

Y

Y

















BB  

            Hence Yy forbaseais  . 
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Ex: X={a,b,c.d,e} and Y={a,c,e} }},,,{},,,,{},,,{},,{},{,{ XebadcbadcabaaX    

        }{},{},{}},,{},,{},{,{ aAIntandeaAIntYeaAletYeacaa XYY    

Separated Set 

Definition: Let (X,  ) be a t.s. two non-empty subset A & B of X are said to be  -

separated iff  A∩ B = Ø  and  A ∩B= Ø . 

Or equivalent we say (A∩ B ) ( A  ∩B)= Ø . 

Note : Every separated set are disjoint but the converse not true in general  

Example: Let A= (-∞,0) and B=[0,∞) of R .  A & B are disjoint which is not separated .  

A =(-∞,0] and A ∩B=(-∞,0] ∩[0,∞)={0}≠Ø  

Theorem(1) : Let (Y, Y ) be a subspace pf a t.s. (X,  ) and Let A , B be two subset of Y , 

then A , B are   –separated iff  Y-separated . 

Proof: since CLY A =CLXA∩Y and  CLYB=CLx B∩Y 

Now (CLYA∩B) U (CLYB∩A)=  

= (CLXA∩Y) ∩B] U [(CLXB∩Y) ∩A]  

=(CLXA∩B) U (CLXB∩A)   [since A,BY ] 

Hence [ (CLY A∩B)  U (CLYB∩A)= Ø iff   (CLXA∩B)  U (CLXB∩A)= Ø  ] . 

It follows that A,B are   –separated iff   Y-separated 

Theorem(2) : Two closed (open)subset A,B of a t.s (X,  ) are separated iff subset are 

disjoint  

Proof: Since any two separated sets are disjoint , we need only to prove that two disjoint 

closed (open) sets are separated if A& B are both disjoint and closed , than A∩B=Ø 

A= A  and B= B  so that  

A ∩B=A∩ B = Ø and A∩B= A ∩B= Ø 

Showing that A&B are separated  

If A and B are both disjoint and open then cc BandA  are both closed so that  

cccc BclBandAclA  . Also 
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.separatedBareandA

AclBandBclA

AclAclBandBclBclA

ABandBABA

cccc

cc

















 

 

Connected and disconnected sets 

Definition: Let (X,  ) be t.s A subset A of X is said to be  -disconnected iff it is the 

union of two non-empty  -separated sets iff there exist two non-empty sets C and D 

.such that C∩D= and C∩D= , A=C U D , A is  - connected if is not  -disconnected . 

 

Note: two points a and b of a t.s X are said to be connected iff they are contained in a 

connected subsets of X. 

Theorem(3): At.s X is disconnected iff s a non empty proper subset which is both open 

and closed. 

Proof: let A be a non empty proper subset we have to prove that X is disconnected  

Let B=A
c
 , then B is a non empty set moreover  X=A B and A B=  

Since A is both open and closed  , hence A =A and  B =B , it follows that A B =   and  

A  B=  , thus X can be expressed as the union of two non-empty separated sets so X is 

disconnected  

Conversely: let X be a disconnected set thens  a non empty subset A and B of X such 

that A B =   , A  B=  , and X=A B. 

Since A A  , A  B=  A B=    , hence A=B
c
 and B is non –empty  

A is proper subset of X  

Now A B =X    ,[ A B=X and B B , so A B  X  and A B X] always  

Also  A B =  A=( B )
c
  and simillery B=( A ) 

c
   

Since A and B  are closed so A&B are open , since A= B
c 
therefore A is closed thus A is a 

non-empty proper subset of X  

Which both open and closed     
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Continuity in a topological space 

Let (X, ) and (Y, ) be a topological space . A function f(X, )→(Y, ) is said to be 

continuous iff for every  -nbd M of f(x) s a  -nbd N of x s.t f(N)3M. 

Also f is said to be continuous or ( -  continuous ) iff it is continuous at each point of 

X. 

It follows that from the definition that f is continuous at x0 iff for every  -open set H 

containing f(x0) s an  -open set G containing x0 s.t f(G)H.  

 

Ex: X={a,b,c,d} and Y={1,2,3,4} ι={ ,X,{a},{b,a},{a,b,c}}  ={ ,Y,{1,2,3},{1,2}} 

And f :X→Y defined by f(a)=4 , f(d)=1,f(b)=2 , f(c0=3 . discuss the continuity X. 

Solution : since aX and f(a)=4 f(a)=4Y  , HY is  -open . {a}=G   , f({a})={4}Y      

f(G)H  

  f is continuous at a .  

Since bX f(b)=2   

The  -open set containing 2 are {1,2},{1,2,3} and Y. 

The  -open set containing b are {a,b},{a,b,c],X . 

F(b)=2{1,2}     b{a,b}     f({a,b})={2,4}{1,2}    b{a,b,c}  

F({a,b,c})={2,4,3{1,2}           f is not continuous at b .    

cX ,f(c)=3    the  -open set containing f(c)=3 are {1,2,3} and Y . 

The  -open set containing c are {a,b,c}and X.      

F({a,b,c})={1,2,3}{1,2,3}    ,  f(X)=Y{1,2,3} f is not  -  continuous.  

f is not continuous at c . f is not continuous at X . 

A , f(d)=1 ,  -open set ={1,2},{1,2,3},Y      f :Y→X ,  -open set = X .  

 F(X)=Y{1,2}      f is not continuous at d . 

 

Theorem(4) : let X and Y be a topological space A function f :X→Y is continuous iff the 

inverse image under f of every open set in Y is open in x.  
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Proof : let f be continuous , and let H be an  -open set.  

We have to prove that f
-1

(H) is open .   

 if f
-1

(H)=  there is nothing to prove  

if f
-1

(H)≠  and let xf
-1

(H) so that f(x)H. 

by continuity of f ,   an open set G  containing  x in X and f(G) H that is xG  f
-

1
(H), f

-1
(H) is an open . 

conversely : suppose that v is an open set for every open set H in Y  

we shall show that f is continuous  

let H be an open set Y containing  f(x) , xf
-1

(H)  but  f
-1

(H)  is an open set by 

hypothesis .  

there for f
-1

(H)  is an open set in X containing x.  

put G = f
-1

(H)→f(G)=f( f
-1

(H))H  

 f(G) H , f is continuous ( by def) . 

 

Theorem(5) : let X and Y be a topological space  A function f :X→Y is continuous iff the 

inverse image under f of every closed set Y is closed in X . 

Proof : let f be a function and FY is closed . f
-1

(F)  is closed  

Since F is closed in Y then Y\F is open in Y  

By theorem f
-1

(Y\F)=X\ f
-1

(F)  is open in X  

 f
-1

(F)  is closed in X  

Conversely : to show that f is continuous  , let f
-1

(F)  be any closed subset in X for every 

FY is closed .  let G be any open set in Y ……….  

Theorem(6): let X and Y be any t.s then a function f :X→Y is continuous iff the inverse 

image of every sub base for Y is open in X .  

Proof : suppose f is continuous , and B* be a sub base for Y , since each member of B* 

is open in Y it follows from ((theorem 1)) that f
-1

(D)  is open in X for every DB*   

Conversely : let f
-1

(D) be an open set in X for every DB* to show that f is continuous , 

let H be any open set for Y . let B , so that B is abase for Y , 
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If  BB then   D1,D2,D3, . . . ,Dn (n finite) in B* s.t B=D1 D2 … Dn   

f
-1

(D)= f
-1

{D1 D2 … Dn}= f
-1

(D1) f
-1

(D2) f
-1

(D3) …  f
-1

(Dn) by hypothesis 

each of f
-1

(Di) i=1,2,…,n are open set in X , and there for f
-1

(B)  is an open set in X . 

since B is abase for Y , H  {B;BGB} , f
-1

(H)   f
-1

( {B;BB}=99{ f
-1

(B);BB} 

 f
-1

(H1)  is an open set in X , so by (theorem 1. ) f is continuous.  

Theorem(7):let X and Y be an t .s and f :X→Y is continuous iff the inverse image of 

every member base for Y is an open set in X . 

 

Theorem(8):A function f from a space X in the another space Y is continuous iff 

f(clA) clfA), 00X. 

Proof: let f be a continuous function and let AX , )(Af is closed set in Y  

 f
-1

(clf(A)) is closed in X . by theorem 2 , and there for clf
-1

(clf(A))=f
-1

(clf(A))---(*) 

Now f(A)  clf(A)[ A A ]  

A f
-1

(f(A))  f
-1

(clf(A)) 

clA f
-1

(clf(A)) 

A f
-1

(clf(A)) 

clA  f
-1

(clf(A)) 

F(clA) f(f
-1

(clf(A)) clf(A)  

 f(clA) clf(A). 

Conversely : suppose that f(clA) clf(A) 00AX , to show that f is continuous  

Let F be any closed subset of Y , that is clF=F . 

f
-1

(F) subset X so that by hypotheses    f
-1

(clf(F)) cl f f
-1

(F) clF=F  

there for fclf
-1

(F)F . 

clf
-1

(F) f
-1

(F)----(1)  

but f
-1

(F) clf
-1

(F)----(2) always by [A clA] 

from  1 and 2 we get f
-1

(F=cl f
-1

(F) , it follows that f
-1

(F) is closed subset of X  

hence f is continuous by theorem 2   
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theorem(9):A function f from a space X in the another space Y is continuous iff  cl f
-

1
(B) f

-1
(clB) BY. 

proof: let f be a continuous function and let BY , since clB is a closed subset of Y , 

then f
-1

(clB) is a closed subset in X (bythe2) cl f
-1

(clB)= f
-1

(clB)---(1) 

now B clB→ f
-1

(B) f
-1

(clB)  

 cl f
-1

(B) cl f
-1

(clB)= f
-1

(clB). 

cl f
-1

(B) f
-1

(clB)  

conversely : let the condition hold let F be any closed subset in Y . so that clF=F . by 

hypothesis  cl f
-1

(F) f
-1

(clF)= f
-1

(F) 

f
-1

(F) cl f
-1

(F) always  

 f
-1

(F)= cl f
-1

(F)  

 f
-1

(F) is closed in X . 

 

Ex: let  and   be two topology for R . find whether the function f: R →R , define by 

f(x)=1   xR  is  -  continuous  

Solution : let H be any  -open set , if 1H then  f
-1

(H)=R and  if 1H then f
-1

(H)=Ф  

Since each of R and Ф, are open set in  , so f is continuous  

Example: let f and g be a function from R to R defined as follows: 

 (a) f(x)=x
2
 , xR               (b) g(x)= x  , xR 

Find whether each of these function is : 

i- -   continuous .                       ii-S-  continuous  

iii-I -   continuous                        iv- D-  continuous  

solution : since the set of all interval (a,b) with a<b form a base for   it is enough to see 

whether f
-1

((a,b)) , g
-1

(a,b) are open w.r.t the given topology for R  

   

                  b 
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  - b         a          b              

 

  f
-1

(G)= (- b , b )         

                     Φ                                           if    a<b≤0 

f
-1

(G)=        (- b , b )                                 if    a<0<b   

 (- b ,- a )U( a , b )               if     0< a < b  

i- as show above the inverse image of every interval (a,b) is  -open . 

    f is  -   continuous .  

ii- since S is finer then   [ that is every  -open is S-open ] so that f is S-U-continuous  

iii- If we take (a,b)=(1,2)   then f
-1

(1,2)= (- 2 ,-1) (1, 2 )  which is not I-open   

      so f is not I-U continuous . 

iv- since the inverse image of every open interval is D-open hence the space is D-U                             

continuous . 

Q1: let f be a function of R into R defined as f(x)= x  , x R . find whether f is   

      I-U continuous          U-U  continuous        D-U continuous       S-U continuous  

Example: let f be a function of R in to R defined by  

                                  1/x          x≠0 

                     F(x)=            

0 x=0   

    find whether f is U-U , I-U , S-U  and D-U continuous .  

solution :consider the open interval (-1,1) where  f
-1

(-1,1)= f
-1

{(-1,0)  {0} (0,1)} 

                                                                               = f
-1

(-1,0)  f
-1

{0}  f
-1

 (-1,0) 

                                                              =( 1, )  {0} (1, ) 
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Homomorphism 

Definition : let (X, ) and (Y, ) be two topological spaces and let f be a function from 

X in to Y .. then   

i-f is open function(interior function) iff f(G) is  -open for every  -open set G.  

ii- f is closed function iff f(F) is  -closed for every  -closed set F. 

iii- f is bicontinuous iff f is continuous and open function .  

       iff [ f and f
-1

 is continuous ]  

iv- f is homomorphism iff                    

1- f is bijective  [ 1-1 and onto ]  

2-f is continuous  

     3- f is open [or f is closed or f
-1

 is continuous ]  

Definition : A space X is said to be homomorphism to another space Y if    a 

homomorphism from X in to Y . and Y is said to be homeomorphic image of X we 

write (X, )  (Y,  ) .  

Definition : A property of a topological space  X is said to be a topological property 

if each  homeomorphism of  X has that property whenever X has that property . 

[ The image of every open set is open ]  

[The image of every closed set is closed ]  

Example: consider  ={ ,{a},{a,b},X} , X={a,b,c} , Y={r,p,q}, 

 ={ ,{r},{p,q},Y} 

F(a)=f(b)=f(c)=r , find whether f is  continuous , open , closed , continuous              

and homomorphism . 

Solution : since f
-1

 ( )=     , f
-1

({x})=X    , f
-1

({p,q})=     , f
-1

(Y)=X    

Are -open hence f is continuous also since f( ) , f({a})={r} , f({a,b})={r}   , 

f(x)={r}  

Which  –open so f is open .  

Since every  -open (and  –open) sets are  -closed and  –closed function . 
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F is continuous  and open so f is continuous . 

F is bijective    so f  isn't  homomorphism . 

Example : show that the function f:R→R defined by   

 

                                            X        where  x<1 

                            F(x)=       1         where  x[1,2] 

 X
2
/4     where x>2  

Discuses the continuity and opens of   f .               (a,b)       if   a<b<1 

 Solution : let (a,b) be any open interval then f
-1

[(a,b])=    (a,2 b )  if  a<1<b  

                                                                                             (2 a ,2 b )    if  1<a<b  

Since the inverse image of every  -open set is  –open  hence the function f is 

continuous.  

 open:let G be any open set containing x , let G=(1.5,1.9) , f(G)={1} which is not open  

theorem(10):let (X, ) and (Y, ) be two t.s the mapping f:X→Y is open iff 

f(IntA) Int(f(A), 

proof : let f be an open function and let AX , IntA is an open set in X , f(IntA) is  -

open since f is open  , since IntAA " always" 

f(IntA) f(A) ,  

again since f(IntA) is  -open there for f is an open function , then Int f(IntA)=f(IntA)---

1 

also  f(IntA) f(A)   , Int f(IntA)=f(IntA) Int f(A)    

 hence f(IntA) Int f(A)   . 

conversely: 

 suppose that the hypothesis hold , to show that f is open , let G be an  -open set  so Int 

G=G  

f(G)=f(IntG) Intf(G) by hypothesis  

 f(G) Int f(G)   , but  Int f(G) f(G) always  
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 Int f(G)=f(G) which implies that f(G) is open . 

Definition : A property of a topological space is said to be hereditary if every subspace 

of the space has that property . 

Separation Axioms 

T0-space (KOLOMOGORV) 

Def: the space (X, ) is said to be a T0-space iff for every two distinct point of X   an 

open set G which contain one of them but not other . 

Ex: the (X,I) is not T0-space , (X,D) is T0-space . 

Theorem(11) : A t.s (X, ) is T0-space iff for all x,yX , x≠y then { x }≠{ y }.  

Proof : suppose that (X, ) is T0-space and , Let , x≠y we wont to show that{ x }≠{ y }  

(X, ) is a T0-space , then   x≠y, an open set G containing x but not y . i.e xG but 

yG. 

yG
c
 , then { y }G

c
  

Since xG  , xG
c 
, that x{ y } , but x{ x } , hence { x }≠{ y }. 

Conversely :Let x≠y and { x }≠{ y }, we have to show that (X, )  is T0-space  

Since { x }≠{ y },   an element zX  s.t z{ y } but z{ x }. 

Suppose that x{ y }then{ x } { y }= { y }which implies that z{ y }which is 

contradiction 

 x{ y } (x{ y })
c
 =X\{ y }  

{ y }
c
 is open set containing x but not containing y since y { y } 

(X, )  is T0. 

Theorem(12):. Every subspace of a T0-space is a T0-space. And hence the property is 

hereditary. 

Proof :.let(X, )  be a T0-space and let (y, y) be any subspace of (X, )  .we have td 

show that (y, y) is a T0-space. 
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let y1,y2 be any two distinct  point of Y , since YX, so y1,y2 are two distinct point in X . 

but (X, ) is a T0-space , so an open set G . s.t containing one of them (say) y1 but not y2 

then G Y is an open set in Y  

therefore  G Y is a y–open set containing y1 but not y2 it follows that (y, y) is a T0-

space. 

Theorem(13): the property of space being a T0-space is preserved under 1-1 , onto 

open function and hence is a topological property . 

Proof : let (X, ) a T0-space and let f be a 1-1 , onto open function from(X, )  to another 

topological space (Y,  ) we have to show that (Y,  )  is a T0-space  

Let y1,y2 be any two distinct point in Y .  

Since f is 1-1 , onto function , x1,x2X , s.t  f(x1)=y1 and f(x2)=y2 ,  x1≠x2 . 

Since (X, )is a T0-space,a -open set G containing one of them(say) x1 but not x2  

Since f is open function , so f(G)  is  -open set containing f(x1)=y1,but not f(x2)=y2 .  

Hence(y,  )is a T0-space.  

T1-space :"Frechet space " 

Definition :A t.s. (X, )is said to be aT1-space iff for every two distinct points x and y of 

x.  two open set. G and H s.t. xG but yG and yH  but xH. 

Note: T1  T0; that is every T1-space is a to- space but the converse may not be true in 

general . 

For example: let x be any set and ax , a is an arbitrary element : Z={ ,every subset 

containing a}                  

(X, )is a T0-space , but(X, )is not T1-space . 

Since every open set containing b contains a also :where a≠b . 

 Example : IS (R,U) is a T1- space . 

Solu: let x,ybe any two distinct real numbers . and let y >x , let y-x=k then  

G={(x-k/4,x=x+k/4)}and  H={(y-k/4,y+k/4)}are  –open , s.t.xG but xH and yH 

but yG . hence (R,u)is T1-space  

Theorem(14): the space (X, ) is T1-space iff every singleton on subset of x is closed .  
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Proof: suppose that every singleton subset of x is closed ,to show that(X, )is 

 aT1-space 

Let x, yX and x ≠ y ,{x}and {y}are closed set . 

y{x}then y{x}
c
 

{x}
c
is an open set containing y but not x. and {y}

c 
is an open

 
set containing x but not y 

(X, ) is a T1-space . 

Conversely: Let (X, ) be a T1-space and let x X ,we have two show that {x}is closed , 

Since (X, )is a T1- space  

yX , and x ≠ y.  

an open set G containing y but not x.  

xGy {x}   

{x}
c
 is the union of all open set containing y . { x}

c
 is open ,{x}is closed  

 

Theorem(15): the property of a space being  a T1- space preserved under 1-1 ,on to 

open function and hence is a topological property .  

Proof : let (X, ) be a T1-space and let f be 1-1 ,open function of (X, ) on to another t.s. 

(y,  )is we shall show that (y,  ) is a T1- space . 

Let y1,y2 be any two distinct points of y, since f is 1-1 and on to,a distances points x1, 

x2 X,  s.t. y1=f (x1)and y2=f (x2)  

since (X, ) is a T1-space , T1-open set G and H  s.t x1G,x1H and x2H but x2G  

since f is an open function . f(G)and f(H)are  -open subset in y .such that y1=f(x1)f(G) 

but y2=f(x2)f(G) . and  y1=f (x1)f(H) but y2 =f(x2)f(H).  

hence (y,  ) is a T1-space . 

EXersises: 

1- show that every finite T1-space is discreet . 

2- show that a t.s (X, ) is T1-space iff  –contains a co-finite topology on X  

3- show that every topology finer than T1-topology on any set X is a T1-topology .  

4- prove that for any set X ,s a unique smallest topology  –set (X,  ) is a T1-space  
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5- prove that a finite subset of a T1-space has no a accumulation points.  

T2-space : Hausdoff space 

 Definition : a t.s (X, ) is said to be a T2-space iff for every two disjoint points x1,x2 

,disjoint open set G1,G2 s.t , x1G1 and x2G2 , that is x1,x2X , x1≠x2 ,   two open 

set G1,G2 , G1 G2=  , and x1G1 , x2G2. 

Example: show that (R,U) and (R,S) are T2-space . 

Solution: let a,b be any tow distinct points in R , and a>b so ba  =ζ  then  

(a- ζ /4 , a+ζ /4)=G and (b-ζ  /4,b+ζ  /4) =H  are tow W-open set containing    a &b 

respectively and G H=  , so the space is T2-space . 

Example: Consider the co-finite topology on an infinite set X , show that it is not T2-

space . 

Solution: For this topology no two open set can be disjoint , suppose if possible that 

G,H are tow disjoint open subsets of X so that G H= . 

Then     (G H)
c
 =

 c
 

              G
 c
  H

 c
 =

 c
 = X   ( De Morgan )            

G
 c
  H

 c
= X  

But G
 c
 and H

 c 
are finite [by definition of co finite then G

 c
  H

 c
 is finite also which is 

contradiction . 

Theorem(16): let (X, ) be a t.s and let (Y, ) be a housdorff space , let f:XY be a 1-

1 , onto and continuous function then X is also housdorff . 

Proof: let x1,x2 be any tow distinct point of X , since f is 1-1 , and x1≠x2 then f(x1)≠f(x2). 

Let y1=f(x1) , y2=f(x2) so that x1=f
-1

(y1)  , x2=f
-1

(y2) . 

Then y1,y2Y s.t y1≠y2  

Since (Y,  ) is ahousdorff space ,  s a -open set G and H s.t y1G1 , y2G2 and 

G H=   , Since f is continuous , f
-1

 (G) and f
-1

 (H) are  –open set  

Now  f
-1

 (G)  f
-1

 (H)= f
-1

 (G H)= f
-1

( )=  

 And  y1G  f
-1

(y1) f
-1

(G)  x1 f
-1

(G) 
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           Y2H  f
-1

(y2) f
-1

(H)  x2 f
-1

(H)  

Hence the space is housdorff . 

Theorem(17): every subspace of T2-space is a T2-space .  

Proof: let (X, )  be a T2-space and let(Y,  )  be any subspace of X ,  

Let y1,y2 be any tow distinct points of y ,  

Since YX , then y1,y2 are tow distinct point in X but (X, ) is T2-space , so  tow open 

set H,G s.t y1G , y2H and G H=  

But by def , G Y and Y H are  y–open sets and  

(G Y) (H Y)= (G H) Y=  Y=  

Thus G Y, H Yare tow disjoint y–open sets , Hence the subspace (Y1, y)  is   T2-

space. 

Theorem(18): Each singleton subset of a T2-space is closed . 

Proof : Let X be a housdorff space , Let xX  

To show that {x} is closed , Let y be an arbitrary point of X distinct from x . Since the 

space is T2-space , an open set G containing y , xG it follows that y is not an 

accumulation points of {x} , so D({x})=  . 

Hence { x }={x} it follows that {x} is closed set . 

Theorem(19): Every T2-space is a T1-space but the converse is not true in general  

Proof: let(X, ) be a T2-space and let y1,y2 be any two distinct point of X , since the 

space X is a T2-space so , tow open set G , H s.t y1G , y2H and G H =  this implies 

that y1G but y1H and y2G but y2H . 

Hence the space is a T2-space . 

But the converse in above example of co-finite topology on an infinite set X , is not T2-

space , but it is T1-space  since for if x is an arbitrary  point of , then by Def of    X/{x} 

is open {be any the finite set } and consequently {x} is closed  

The every singleton subset of X is closed and hence the space is T1-space   .  
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Example: Let (X, )   be a t.s and Let(Y,  )  be a housdorff space . if f and g are 

continuous function from X in to Y , show that the set A={xX; f(x)=g(x)} is closed  

Solution: we shall  show that X\A is open set . 

Now X\A={xX; f(x)≠g(x)}------(1) , Let p be an arbitrary point of X\A .  

Put y1=f(p) and y2=g(p),we have y1≠y2 , thus y1,y2 are tow distinct point in a housdorff 

space, two -open sets G and H s.t y1=f(p)G,y2=g(p)H and G H=  

 

p f
-1

 (G), p g
-1

 (H), p  f
-1

 (G)  g
-1

 (H)=V ,  

since f , g are continuous function  

 f
-1

 (G) , g
-1

 (H) are open set,  Hence is open set We have to show that VX\A  

Let yV= f
-1

 (G)  g
-1

 then y f
-1

 (G)and  y g
-1

 (H)  

                  f(y) G and g(y)H , since G H=  it follows that f(y) ≠g(y) and by(1) 

yX\A , thus we shown that to each arbitrary point yV, also yX\A ,  

hence VX\A 

X\A is an open set  

There for A is closed   

Regular and T3-space 

Def:A t.s (X, ) is said to be a regular space iff for every closed set F and every point 

pF, Tow open sets G and H s.t pG,FG and G H=   

The regular space which is also T1-space is called a T3-space  

Example: Let X={a,b,c} , and Let  ={ ,{a},{b,c},X}  

                                          
c 
={,X{b,c},{a}, }  

Example: show that (R,U) is a T3-space . 

Solution: let F be a U-closed subset and let xR, s.t xF……. 

 

Theorem(20): A t.s X is regular iff for every point xX and every nbd N of x 9 a nbd 

M of x such that M  N  . 
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Proof :"The only if part" let N be any nbd of x .then an open set G such that xGN.  

Since G
c
 is closed and xG

c
, 

But the space is regular  two disjoint open set L&M such that G
c
L and xM . 

So that ML
c
 it follows that  

M  Lc =L
c
--------- (*) 

But G
c
L → L

c
 GN-----(**) 

From (*) and (**) we get M N . 

 The"  if part"  let the condition hold . 

 Let f be any closed subset of x .and xF, then xF
c
,  

Since F
c
 is an open set containing  , so by hypothesis an open set M such that xM  

and M F
c
 →F  ( M )

 c
 then ( M )

 c
 is an open set , containing F also 

M∩M
c
=Ø,M∩( M )

c
=Ø 

:. The space is regular  

 

Example: Every T3-space is a T3-space 

 Solu :let (X,  )be a T9-space , and let x,y be any two distinct point.  

Now by definition  of X , the space  is R T1 and so {x} is a closed set also y{x}.  

Since X is regular .  two open set G&H such that yG ,{x}H & G∩H=Ø ,but x{x} 

H, hence the space is T2. 

Theorem(21): Every compact housdorf space is a T3-space  

Proof //let (X, )be compact housdorff  space  

To show that (X, )is a T3-space   

since X is housdorff , so X is a T1-space ,  it  suffices to show that (X, )is a regular , let 

F be a closed subset of X and let pX such that pF  

so pX\F , since (X,  ) is a housdorff space so for every xF ,there must exist two open 

sets G(x)∩H(x) =Ø…(*) 

The collection C={H(x) ; xF } is open cover of F.  

Since F is a closed subset of a compact space X, so that F is compact (by theorem )  
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Hence s a finite numbers  of points  x1,x2,..,xn in F such that  F{H(xi),i=1,2,...,n},let 

H=U{H(xi),i=1,2,...,n} 

And G =∩{G(xi), i=1,...,n } 

Then pG , since pG(xi) for each xi also G∩H=Ø, 

[other wise G (xk)∩H (xk) ≠Ø for some xkF this contradict(*)]  

hence the space is regular  . 

Normal +T3 =T4   

Normal space and T4 –space  

Definition : At.s.(X,  ) is said  to be normal iff for every pair of disjoint -closed subset 

L and M of x , s  - open sets G and H such that LG , MH and G∩H=Ø.  

A normal space   which T1 –space is called a T4–space  

Example :lets X={a,b,c}, T={Ø,X,{a},{b,c}}since the only disjoint closed subsets are 

{a} ,{b,c} which is also are  -open sets. 

The space is normal. 

But   is not a T1-space . 

Since b≠c ,there does not exist an open set containing  one of them but not the other . 

 

Theorem(22);A t.s (X, ) is normal iff for any closed set F , and open set G
*
 

containing F,  an open set V such that FH
*
 and H

*
G

*
    

Proof // the "only if part "let X be a normal space , and let F be any closed set and G be 

an open set containing F. 

G is open G
c
 is closed , and F∩G

c
=Ø , since the space  is normal  two disjoint open 

set H
*
 and G

*
 such that  FH

*
, G

c
G

*
 and H

*
∩G

*
=Ø so that H

*
G

*
 

But H
*
G

*c
 *H   *cG  =G

*c
  ……. 1  

Also G
c
G

*
→G

*c
   G  ……… 2  

From 1 and 2 we get *H G  

 The "if part "suppose the hypothesis is hold and to show that the space (X,  ) is normal 

.  
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Let L and M be any two disjoint closed subset of X . that is L∩M=Ø then LM
c
 ,[L is 

closed , M
c
 is an open set containing  by hypothesis  an open set H

*
such that LH

*
 , 

and *H M
c
 which implies that also H

*
∩( *H )

c
=Ø thus the space is normal  

Theorem(23): normality is topological property  

Theorem(24): every closed subset of a normal space is normal space is normal . 

Proof :let(X, ) be a normal space , and  let (Y, y) be any closed subspace of X we 

have to show that (Y, y ) is normal  

Let L
*
, M

*
be any two disjoint closed subset of Y, then  a subset L,M of X such that 

L
*
=L∩Y,M

*
=M ∩Y since Y is closed it follows that L

*
and M

*
are  -closed subset in X.  

Since X is normal ,  two  -open set G and H such that L
* 
H ,  

M
*
G and H∩G= Ø .  

So L
*
H and L

*
 Y → L

*
 H∩Y

 
  

M
*
G and M

*
Y → M

*
G∩Y

 
  

And (H∩Y)∩(G∩Y)=(H∩G)∩Y=Ø∩Y=Ø 

L
*
 H∩Y

 
 , M

*
G∩Y

 
 and (H∩Y)∩(G∩Y)= Ø, hence the space is normal . 

Example: show that if the space is normal. 

Let L,M be any U-closed subset of R   s.t     L∩M=Ø  

Let rL then rM and so rR\M since R\M  is U – open ,  ζ >0 such that  

(r-ζ , r +ζ)R\M, therefore (r-ζ,r +ζ )∩M=Ø 

Let G=U{ (r –ζ /3, r+ζ /3) ; rL  then LG . similarly it can be shown that for each 

mM ,  s >0 such that  ( m-  ,m+ )∩L =Ø, and let H=U{(m- /3, m+ /3) ; mM} 

therefore mH,thus G,H  are two open set such that LG,MH  

we have two show that  G∩H=Ø. 

Suppose is possible that xG∩H so xG and xH . then x  (r-ζ /3 ,ζ/3)for some 

 rL and x(m-ζ/3 , m+ζ) for some mM  we then have /r-x/<ζ/3 and /m-x /<ζ/3 hence 

/ r-m /=/r-x+x-m/ ≤ /r-x/ +/m-x / <ζ/3 +ζ/3 if ζ<  then /r-m/ <ζ and so r  (m-ζ/3,m+ζ) 

which is C!  

if  <ζ then \r-m\ <ζ, and m  (r-ζ/3 , r+ζ/3 )which is contradiction  
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it follows that G∩H=Ø hence the space is normal  

Urysohn's lemma 

 let F1,F2 be any pair of disjoint closed set in a normal space X,a continuous function  

F:X→ [o,1] s.t f(x) =o for xF1, and f (x)=1 for xF2  

Completely regular space and tychonoff space . 

Def: A topological space X is said to be completely regular iff for every closed subset F 

of X and every point xX\F , a continuous function f of X in to the subspace [0,1] of 

R . s.t f(x)=0 and f(F)=1  

A tychonoff space (or T3-1/2space ) is completely  regular and T1-space .    

Theorem(25): A t.s(X, )is completely regular iff for every xX and every open set G 

containing x  s a continuous function f of X in to [0,1] such that f(x)=0 and f(y)=1   

  yX\G  

Proof: Let (Y, ) be a completely regular space and G be an open set containing x , such 

that xX\G then X\G is a closed set which dose not containing x . 

By definition of completely regular a continuous function f from (X, ) in to a subset 

[0,1] such that f(x)=0 , f(y)=1 for all yX\G . 

Conversely : Let the condition is hold  

Let F be any closed subset of X and x be a point of X such that xF . then xX\F and 

since F is closed so X\F is an open set containing x  

By hypothesis s a continuous function f from (X, ) into a subset [0,1] s.t f(x)=0 , f(y)= 

1 for all yX{X\F}=F  

Hence the space is C.R 

Theorem(26): Every completely regular space is regular . Hence every tychonoff 

space is a T3-space . 

Proof: Let X be a completely regular, Let F be a closed subset of X , and let x be a point 

of X such that xF since the space is completely regular .   a continuous function f 

from(X, ) into subset [0,1] such that f(x)=0, f(F)={1} .  

Also we can see that the space [0,1] with the relative usual topology  is a T2-space  
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Hence  open sets G and H of [0,1] s.t 0G and 1H  and G∩H=Ø since f is a 

continuous then f
-1

(G) and  f
-1

(H) are open set in (X, ) s.t   

f
-1

(G) ∩f
-1

(H)= f
-1

(G∩H)= f
-1

(Ø)=Ø  

Further f(x)=0G →xf
-1

(G) and f(F)={1}H→F f
-1

(H)  

Hence the space is regular  

Theorem(27): Every T4-space is a tychonoff space.  

Proof: Let (X, ) be a T4-space by definition T4=normal+T1 

To show that the space is tychonoff space it suffices to show that the space is C.R, 

So Let F be a closed subset of X , and let x be a point of X  s.t  xF ,  

since the space (X, )is a T1- so {x} is closed subset of X  ,  

thus {x} and F are two disjoint closed subset of a normal space  

So by ((Urshon's Lemma ))   a continuous function f from (X, ) in to the set [0,1] s.t 

f({x})=0 i.e f(x)=0 and f(F)={1} 

 it follows that the space is C.R .  

 

 

 

 


