Metric Space:

Open sets: Let (X,d) be a metric space . A subset G of X is said to be d-open iff to each $x \in G$ there exist r > 0 such that $S(x,r) \subset G$.

Defⁿ: Let (X,d) be a metric space, and let $x_o \in X$ if $r \in R^+$ then the set { $x \in X$; $d(x,x_o) < r$ } is called an open sphere (or open ball).the point x_o is called the center and r the radius of the sphere. and we denoted by $S(x_o,r)$ or by $B(x_o,r)$: i.e. $S(x_o,r)=\{x_o \in X; d(x,x_o) < r\}$ Closed set is define and denoted by $S[x_o,r]=\{x_o \in X; d(x,x_o) \le r\}$.

- Ex: Let $x \in R$ then a subset N of R is U nbd of x iff there exist a u-open set G such that $x \in G \subset N$, but G is U-open and $x \in G$ implies that there exist an $\delta > 0$ such that $(x-\delta,x+\delta) \subset G$. Thus N is a U-nbd of x if N contains an open interval $(x-\delta,x+\delta)$ for some $\delta > 0$. In particular every open interval containing x is a nbd of x.
- Ex: Consider the set R of all real numbers with usual metric space d(x,y) = |x-y| and find whether or not the following sets are open. $A=(0,1), B=[0,1), C=(0,1], D=[0,1], E=(0,1)\cup(2,3)$, $F=\{1\}, G=\{1,2,3\}$.
- Solⁿ: A is open set Let x be appoint in A, we take r=min{x-0,1-x}, then it is evident that $(x-r, x+r) \subset A$ For example consider $\frac{1}{4} \in (0,1)$, then r=min{ $\frac{1}{4} - 0, 1 - \frac{1}{4}$ }=min{ $\frac{1}{4}, \frac{3}{4}$ }= $\frac{1}{4}$ $(\frac{1}{4} - \frac{1}{4}, \frac{1}{4} + \frac{1}{4}) = (0, \frac{1}{2}) \subset (0,1) = A.$

B is no open set, since however small we choose a positive number r, the open interval (0-r,0+r) = (-r,r) is not contained in B. Thus there exists no open ball with 0 as centre and contained in B. Theorem 1: In a metric space the intersection of a finite number of open sets is open.

Proof: Let (X,d) be a metric space and let $\{G_i; i=1,2,3,...,n\}$ be a finite collection of open subsets of X, to show that $H=\cap\{G_i; i=1,2,3,...n\}$ is also open. let $x \in G_i$ for every i=1,2,3,...n, since each G_i is open there exist $r_i>0$ such that $S(x,r_i)\subset G_i$ i=1,2,3,...n. let $r=min \{r_1,r_2,r_3,...,r_n\}$, then $S(x,r) \subset S(x,r_i)$ for all i=1,2,3,...n, it follows that $S(x,r) \subset G_i$, for all i=1,2,3,...,n, this implies that $S(x,r) \subset \cap \{G_i, i=1,2,3,...,n\} = H$, thus it is shown that to each x in H there exist r>0, such that $S(x,r) \subset H$. Hence H is open.

Theorem 2: In a metric space the union of an arbitrary collection of open set is open.

Proof: let (X,d) be a metric space and let $\{G_{\lambda}; \lambda \in \Delta\}$ be an arbitrary collection of open subset of X, to show that $G = \bigcup \{G_{\lambda} : \lambda \in \Delta\}$ is open, let $x \in G$, then by defⁿ of union $x \in G_{\lambda}$ for some $\lambda \in \Delta$, since G_{λ} is open there exists r>0 such that $S(x,r) \subset G$, but $G_{\lambda} \subset G$, hence $S(x,r) \subset G$, thus we have shown that to each $x \in G$, there exists a positive numbers r such that $S(x,r) \subset G$, hence G is open

- Theorem 3: A subset of a metric space is open iff it is the union of family of open ball.
- **Proof**: Let (X,d) be a metric space and $A \subset X$, let A be open ,if $A = \phi$, then it is The union of empty family of ball , now let $A \neq \phi$, and $x \in A$, since A is

3

open, there exist an open ball B(x,r), r>0 such that $B(x,r) \subset A$, it

follows that $A \subset \{B(x,r), x \text{ in } A\} \subset A$. Hence $A = \bigcup \{B(x,r), x \in A\}$

So A is the union of a family of open ball.

Conversely if A is the union of a family of open ball then A is open by Theorem 2.

Ex: Show that in a discrete metric space every set is open.

Solⁿ: Let A be a subset of discrete metric space if $A = \phi$, then A is open, if

 $A \neq \phi$, let $x \in A$, since $S(x, \frac{1}{2}) = \{x\}$, we have $S(x, \frac{1}{2}) \subset A$. Hence A is open. Ex: Show that in a metric space, the complement of every singleton set is Open . More generally the complement of a finite set is open. Solⁿ: H.W

Ex: Give an example to show that the intersection of an infinite number of open sets is not open.

Solⁿ: Consider the collection $\{(-\frac{1}{n}, \frac{1}{n}), n \in N\}$ of open intervals in R with usual metric d(x,y) = |x-y|, then $\cap \{(-\frac{1}{n}, \frac{1}{n}), n \in N\} = \{0\}$, which is not open since there exist not r>0 such that $(-r,r) \subset \{0\}$.

Closed sets:

Defⁿ: Let (X,d) be a metric space, a subset A of X is said to be closed iff the complement of A is open.

Ex: Show that every singleton set in R is closed for the usual metric d for R. Solⁿ: Let $a \in R$, to show that {a} is closed. Now $R-\{a\}=(-\infty,a)\cup(a,\infty)$, but $(-\infty,a)$ and (a,∞) are open sets, hence their union is also open.

Theorem 4: Let (X,d) be a metric space and let $\{H_{\lambda}; \lambda \in \Delta\}$ be an arbitrary

collection of closed subsets of X. then $\bigcap \{H_{\lambda}; \lambda \in \Delta\}$ is also a closed set. In other words, the intersection of an arbitrary family of closed sets is closed.

Proof: H_{λ} is closed, $\forall \lambda \in \Delta$,

then X- H_{λ} is open, $\forall \lambda \in \Delta$,

then $\bigcup \{ X - H_{\lambda}, \forall \lambda \in \Delta \}$ is open by theorem

then X- \cap { H_{λ} , $\forall \lambda \in \Delta$ } is open De-Morgan

then $\cap \{ H_{\lambda} , \forall \lambda \in \Delta \}$ is closed.

Topologies:

- Defⁿ: Let X be anon empty set and let π be a collection of subsets of X satisfying the following three condition:
 - T₁: $\phi \in \pi$, $X \in \pi$. T₂: if $G_1 \in \pi$ and $G_2 \in \pi$ then $G_1 \cap G_2 \in \pi$.

 $T_3: \textit{If } G_{\lambda} \in \pi \quad \textit{for every } \lambda \in \Delta \textit{ where } \Delta \textit{ is arbitrary set then } \bigcup \{G_{\lambda}; \lambda \in \Delta\}$

Then π is called a topology for X, the members of π are called π -open sets and the pair (X, π) is called a topological space.

Ex: Show that the union of empty collection of sets is empty i.e. $\bigcup \{A_{\lambda}, \lambda \in \phi\} = \phi$ and the intersection of empty collection of subsets of X is X itself i.e. $\bigcap \{A_{\lambda}, \lambda \in \phi\} = X$

Ex: Let X={a,b,c}, and consider the following collections of the subset of X:

$$\begin{split} 1 - \pi_1 &= \{\phi, X\} \\ 2 - \pi_2 &= \{\phi, \{a\}, \{b, c\}, X\} \\ 3 - \pi_3 &= \{\phi, \{a\}, \{b\}, X\} \\ 4 - \pi_4 &= \{\phi, \{a\}, X\} \end{split}$$

$$5 - \pi_5 = \{\phi, \{a\}, \{b\}, \{a, b\}X\}$$

$$6 - \pi_6 = \{\{b\}, \{a, c\}, X\}$$

$$7 - \pi_7 = \{\phi, \{a, b\}, \{b, c\}, X\}$$

$$8 - \pi_8 = \{\phi, \{b\}, \{b, c\}, X\}$$

Let we verify these axioms for π_{8} ,

$$\begin{split} T_1 : \phi &\in \pi_8 \ , \ X \in \pi_8 \\ T_2 : \phi \cap \{b\} = \phi \cap \{a, b\} = \phi \cap X = \phi \in \pi_8 \\ \{b\} \cap \{a, b\} = \{b\} \cap X = \{b\} \in \pi_8 \\ \{a, b\} \cap X = \{a, b\} \in \pi_8 \end{split}$$

$$T_3 : \phi \cup \{b\} = \{b\}, \ \phi \cup \{a, b\} = \{a, b\}, \ \phi \cup X = X \ \{b\} \cup \{a, b\} = \{a, b\}, \ \{a, b\} \cup \{a, b\} \cup \{a, b\} \cup \{a, b\} \cup \{x = X\}, \ \{b\} \cup \{a, b\} \cup \{x = X\}, \ \{b\} \cup \{a, b\} \cup \{x = X\}, \ \{b\} \cup \{a, b\} \cup \{x = X\}, \ \{b\} \cup \{a, b\} \cup \{x = X\}, \ \{b\} \cup \{a, b\} \cup \{x = X\}, \ \{b\} \cup \{x = X\}, \$$

So π_8 is a topology on X.

Theorem 5: Every metric space is a topological space, but the converse is not true .

Proof: Let (X,d) be any metric space to prove that X, ϕ is open set.

Let $x \in X$ then $\exists B_r(x)$ such that $B_r(x) \subseteq X$ so X is open

If $x \in \phi \to \exists B_r(x)$ such that $B_r(x) \subset \phi \to \phi$ is open

Let A,B be an open sets, to prove that $A \cap B$ is open,

Let $x \in A \cap B \to x \in A$ and $x \in \mathbf{B} \to \exists B_r(x) \subset A$ and $B_s(x) \subset B$ Let $i = \min\{r, s\}$ so $B_i(x) \subset B_r(x) \cap B_s(x) \subset A \cap B$ so $A \cap B$ is open

Let
$$\{A_i : i \in I\}$$
 be a faimly of open set to prove that $\bigcup_{i \in I} A_i$ is open
Let $x \in \bigcup_{i \in I} A_i$ then $\exists i \in I$ such that $x \in A_i \to \exists B_{r_i}(x) \subset A_i \to B_{r_i}(x) \subset A_i \subset \bigcup_{i \in I} A_i$
 $\therefore \bigcup_{i \in I} A_i$ is open set.

But the converse is not true for example let $X = \{a,b,c\}$ and $\pi = \{\phi,\{a\},X\}$, suppose hat d is a metric of X, $\rho = d(a,b)$ but $B_{\rho}(b) = \{b\}$ Which is not open.

- Ex: Let X be any set. Then the collection $I = \{ \phi, X \}$ consisting of empty set and the whole space. Is always a topology for X called the indiscrete or (trivial) topology, the pair (X,I) is called an indiscrete topological space.
- Ex: Let D be the collection of all subsets of X, then D is a topology for X called the discrete topology.
- Solⁿ: Since $\phi \subset X, X \subset X$, we have $\phi \in D$, and $X \in D$ so that T_1 satisfied. T_2 : Also holds since the intersection of two subset of X is a gain a subset of X.
 - T₃: Is satisfied since the union of any collection of subset of X is again a subset of X.
- Ex : Let R be the set of all real numbers and let S consist of subsets of R defined as follows:

i- $\phi \in S$ ii- A non-empty subset G of R belong to S iff to each $p \in G, \exists a$ right half open interval [a,b) where a,b are in R, a<b such that $p \in [a,b] \subset G$ show hat S is a topology for R called the lower limit topology or in short RHO topology for R.

Solⁿ; T₁: $\phi \in S$ also $R \in S$ since to each $p \in R$ there exists aright half-open interval $[p,p+\varepsilon)$, $\varepsilon > 0$, such that $p \in [p, p+\varepsilon) \subset R$

T₂: Let $G_1, G_2 \in S$, and Let $p \in G_1 \cap G_2$, then $p \in G_1$ and $p \in G_2$ so there exists a right halfopen intervals H₁ and H₂ such that $p \in H_1 \subset G_1$ and $p \in H_2 \subset G_2$, it follows that $p \in H_1 \cap H_2 \in G_1 \cap G_2$, sin $ce H_1 \cap H_2 \neq \phi$ so its clear that $H_1 \cap H_2$ is a right half-open intervals, thus to each $p \in G_1 \cap G_2$, there exist a right half-open interval $H_1 \cap H_2$, such that $p \in H_1 \cap H_2 \subset G_1 \cap G_2$, hence $G_1 \cap G_2 \in S$. T₃: Let $G_{\lambda} \in S$, $\forall \lambda \in \Delta$ where Δ is an arbitrary set, let $p \in \bigcup \{G_{\lambda}; \lambda \in \Delta\}$. Then there exist $\lambda_p \in \Delta$ such that $p \in G_{\lambda_p}$. sin *ce* G_{λ_p} is S-open, there is a right half-open intervals H such that $p \in H \subset G_{\lambda_p}$. it follows that $p \in H \subset \bigcup \{G_{\lambda}; \lambda \in \Delta\}$. Hence $\bigcup \{G_{\lambda}; \lambda \in \Delta\} \in S$. Thus S is a topology for R.

Similarly the upper limit topology for R consist of ϕ and all those subset G of R having the property that to each $p \in G$ there exist a left half- open interval (a,b] such that $p \in (a,b] \subset G$.

Ex: let π be the collection of subsets of N consisting of empty set ϕ and all subset of N of the form $G_m = \{m, m+1, m+2, ...\}$, m in N show that π is a topology for N, what are the open sets containing 5.

Sol^{*n*} : $T_1; \phi \in \pi$ and $A_1 = \{1, 2, 3, ...\} = N \in \pi$

$$T_2: Let G_m \in \pi and G_n \in \pi, m, n \in N, then G_m \cap G_n = \begin{cases} G_n as m > n \\ G_m as n < m \end{cases} hence G_m \cap G_n \in \pi$$

 $T_3: G_{\lambda} \in \pi \,\forall \,\lambda \in \Delta$ where Δ is arbitrary subset of N, since N is a well ordered Set (prove that) Δ contains a smallest positive integer m₀ so that $\cup \{G_{\lambda} : \lambda \in \Delta\} = \{m_0, m_0 + 1, m_0 + 2, ...\} = G_{m_0} \in \pi$, hence π is a topology for N. $G_1 = N = \{1, 2, 3, ...\}, G_2 = \{2, 3, 4, ...\}, G_3 = \{3, 4, 5, 6, ...\} G_4 = \{4, 5, 6, ...\}$ $G_5 = \{5, 6, 7, 8, ...\}$

Note: A partially ordered set X is said to be well ordered if every subset of X contains a first element.

Partial ordered set the pair(x, \le) is called p.o. set if $x \le y$ for x, y in X If $a \in X$ be such that $a \le x \forall x \in$, *thenais a first element of* X.

Ex: List all possible topologies for the set $X = \{a, b, c\}$.

Ex: Let U consist of ϕ and all those subsets G of R having the property that to each $x \in G$ there exist $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subset G$ to show that U is a topology for R called the usual topology.

Solⁿ:
$$T_1 - \phi \subset U$$
 by definitionalso $R \in U$, sin ce to each $x \in R(x-1, x+1) \subset R$, In fact for any $\varepsilon > 0$
 $(x-\varepsilon, x+\varepsilon) \subset R$

T₂: Let $G_1, G_2 \in U$, if $G_1 \cap G_2 = \phi$ there is nothing to prove if $G_1 \cap G_2 \neq \phi$, let

 $x \in G_1 \cap G_2$ then $x \in G_1$ and $x \in G_2$, hence $\exists \varepsilon_1 > o, \varepsilon_2 > o$ such that $(x - \varepsilon, x + \varepsilon) \subset G_1$

 $(x-\varepsilon,x+\varepsilon) \subset G_2 \ take\varepsilon = \min\{\varepsilon_1,\varepsilon_2\}, then \varepsilon > 0 \ and \ (x-\varepsilon,x+\varepsilon) \subset G_1 \cap G_2, hence G_1 \cap G_2 \subset U.$

 T_3 : Let $\{G_{\lambda}; \lambda \in \Delta\}$ be an arbitrary collection of members of U an let

$$x \in \bigcup \{G_{\lambda}; \lambda \in \Delta\}, then \ x \in G_{\lambda} for some \ \lambda \in \Delta, sin \ ce \ G_{\lambda} \in U \ \exists \varepsilon > 0 \ such that \ (x - \varepsilon, x + \varepsilon) \subset G_{\lambda} \in U \ \exists \varepsilon > 0 \ such \ that \ (x - \varepsilon, x + \varepsilon) \subset G_{\lambda} \in U \ \exists \varepsilon > 0 \ such \ that \ (x - \varepsilon, x + \varepsilon) \subset G_{\lambda} \in U \ dv \ such \ that \ (x - \varepsilon, x + \varepsilon) \subset G_{\lambda} \in U \ dv \ such \ that \ such \ such$$

But $(x - \varepsilon, x + \varepsilon) \subset \bigcup \{G_{\lambda} : \lambda \in \Delta\}$, therefore $\bigcup \{G_{\lambda} : \lambda \in \Delta\} \in U$, so U is a topology for R.

Comparison of topology:

Defⁿ: Let π_1 and π_2 be two topologies for a set X, we say that π_1 is weaker or (smaller) than π_2 or that π_2 is stronger or (Larger) than π_1 iff $\pi_1 \subset \pi_2$ that is iff every π_1 –open is π_2 -open, if either $\pi_1 \subset \pi_2$ or $\pi_2 \subset \pi_1$ we say that the topologies π_1 and π_2 are comparable. If $\pi_1 \not\subset \pi_2$ and $\pi_2 \subseteq \pi_1$, then we say that π_1 and π_2 are not comparable.

For any set X, (X.I) is weaker topology and (X,D) is stronger topology. Ex : Find three mutually non comparable topologies for the set X={a,b,c} Solⁿ : Let $\pi_1 = \{\phi, \{a\}, X\}$ $\pi_2 = \{\phi, \{b\}, X\}$, $\pi_3 = \{\phi, \{c\}, X\}$ Also from the following topology $\pi_1 = \{\phi, \{a\}, X\}$, $\pi_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$, $\pi_3 = \{\phi, \{b\}, \{b, c\}, X\}$, we see that π_1 and π_3 are not comparable since $\pi_1 \not\subset \pi_3$ and $\pi_3 \not\subset \pi_1$ but π_1 and π_2 are comparable.

Intersection and union of topologies:

The union of two topology need not be a topology for example Let X={a,b,c}, consider two topology defined on X as follows $\pi_1 = \{\phi, \{a\}, X\}$, $\pi_2 = \{\phi, \{b\}, X\}$, then which is not topology for X

Theorem 6: Let $\{\pi_{\lambda}; \lambda \in \Delta\}$ where λ is an arbitrary set be a collection of topologies for X then the intersection $\cap \{\pi_{\lambda}; \lambda \in \Delta\}$ is also a topology for X.

Proof: Let $\{\pi_{\lambda} : \lambda \in \Delta\}$ be a collection of topologies for X, we have to show that

 $\cap \{\pi_{\lambda} : \lambda \in \Delta\}$ is also a topology for X, if $\Delta = \phi$, then $\cap \{\pi_{\lambda} : \lambda \in \Delta\} = P(X)$. Thus in this case the intersection of topologies is the discrete topology. Now let $\Delta \neq \phi$, T_1 : since $\pi_{\lambda} : \forall \lambda \in \Delta$ is a topology, it follows that $\phi, X \in \pi_{\lambda}; \forall \lambda \in \Delta$, but

 $\phi \in \pi_{\lambda}, \forall \lambda \in \Delta, then \ \phi \in \cap \{\pi_{\lambda}, \lambda \in \Delta\} \text{ and } X \in \pi_{\lambda} \ \forall \lambda \in \Delta then \ X \in \cap \{\pi_{\lambda}; \lambda \in \Delta\}$

 $\mathbf{T}_2: \text{Let } G_1, G_2 \in \bigcap \{\pi_{\lambda} ; \lambda \in \Delta \} \text{ then } G_1, G_2 \in \pi_{\lambda}; \forall \lambda \in \Delta, \sin ce \, \pi_{\lambda} \text{ is a topolog y for } X \, \forall \lambda \in \Delta \}$

It follows that $G_1 \cap G_2 \in \pi_{\lambda_1}$; $\forall \lambda \in \Delta$, hence $G_1 \cap G_2 \in \cap \{\pi_{\lambda_1}; \lambda \in \Delta\}$.

T₃: Let $G_{\alpha} \in \bigcap \{\pi_{\lambda}; \lambda \in \Delta\}$, $\forall \lambda \in \Delta$ where Δ is an arbitrary set, then

 $G_{\alpha} \in \pi_{\lambda}$; $\forall \lambda \in \Delta$, and $\forall \alpha \in \Delta$, since for each π_{λ} is a topology for X, it follows that $\bigcup \{G_{\alpha}; \alpha \in \Delta\} \in \pi_{\lambda}; \forall \lambda \Delta$. Hence $\bigcup \{G_{\alpha}; \alpha \in \Delta\} \in \bigcap \{\pi_{\lambda}; \lambda \in \Delta\}$ thus $\bigcap \{\pi_{\lambda}; \lambda \in \Delta\}$ is a topology for X.

Closed sets:

Defⁿ : Let (X, π) be a topological space, a subset F of X is said to be π -closed Iff its complement F^c is open.

Ex: Let X={a,b,c}, and let π ={ ϕ ,{a},{b,c},X} since {a}^c ={b,c}, {b,c}^c ={a}

It follows that the closed sets are ϕ , {a}, {b,c}, and X.

Defⁿ : A topological space (X,π) is said to be a door space iff every subset of X is either open or closed. For example let X={a,b,c} and

 $\pi = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$ then the closed sets are X, $\{a, c\}, \{c\}, \{a\}, \phi$.

Hence all the subsets of X are either open or closed and consequently (X,π) is a door space.

Ex: If $a \in R$ show that $\{a\}$ is closed set in the usual topology for R.

Solⁿ: $\{a\}^c = (-\infty, a) \cup (a, \infty)$ but $(-\infty, a)$ and (a, ∞) are open sets hence their union

is also open, it follows that $\{a\}^c$ is open, therefore $\{a\}$ is closed.

Intersection and union of closed sets:

Theorem7 : If $\{F_{\lambda}; \lambda \in \Delta\}$ is any collection of closed subsets of a topological space X, then $\cap \{F_{\lambda}; \lambda \in \Delta\}$ is closed set.

Proof: F_{λ} is closed $\forall \lambda \in \Delta$ then $F^{c}_{\lambda\lambda}$ is open $\forall \lambda \in \Delta$ then $\bigcup \{F^{c}_{\lambda} : \lambda \in \Delta\}$ is open By T_{3} $[\bigcap \{F_{\lambda} : \lambda \in \Delta\}]^{c}$ is open De - Morgan Lawthen $\bigcap \{F_{\lambda} : \lambda \in \Delta\}$ is closed by Def^{n} of closed set.

Theorem 8: if F_1 and F_2 b any two closed subsets of a topological space X Then $F_1 \cup F_2$ is a closed set.

Proof: F_1, F_2 are closed \Rightarrow F_1^c, F_2^c are open \Rightarrow $F_1^c \cap F_2^c$ is open by T_2 of Defⁿ $(F_1 \cup F_2)^c$ is open ByDe-Morganlaw \Rightarrow $F_1 \cup F_2$ is closed.

Note: $F_1, F_2, F_3, \ldots F_n$ be a finite number of closed subsets of X, then their union will also be a closed subset of X.

Ex : Give an example to show that the union of an infinite collection of closed sets in a topological space is not necessarily closed.

Solⁿ: Let (R,U) be the usual topological space. And let $F_n = [1/n, 1], n \in N$. So that F_n is closed interval on R, then $[\frac{1}{n}, 1]^c = \{x \in R, x < \frac{1}{n} \text{ or } x > 1\} = (-\infty, \frac{1}{n}) \cup (1, \infty)$ which is open hence $[1/n, 1] = F_n$ is closed set, Now

 $\bigcup \{F_n, n \in N\} = \{1\} \bigcup [\frac{1}{2}, 1] \bigcup [\frac{1}{3}, 1] \bigcup ... = (0, 1] \text{ since } (0, 1] \text{ is not closed it follows that the union of an infinite collection of closed sets is not necessarily closed. Characterization of a topological space in terms of closed sets:$

Theorem 9: Let X be an on-empty set $F_1, F_2 \in F \Rightarrow F_1 \cup F_2 \in F$

$$F_{3}:F_{\lambda}\in F\quad \forall\lambda\in\Delta\Rightarrow\bigcap\{F_{\lambda}\ ;\lambda\in\Delta\}\in F$$

Then there exist a unique topology on X such that the π -closed subsets of X are precisely the members of F.

Proof: Let π consist of the complements of the members of F, then π is a

topology for X.

$$T_{1:} \quad X \in F \Rightarrow X^{c} \in \pi \Rightarrow \phi \in \pi \text{ and } \phi \in F \Rightarrow \phi^{c} \in \pi \Rightarrow X \in \pi$$

$$T_{2:} G_{1}, G_{2} \in \pi \Rightarrow G_{1}^{c}, G_{2}^{c} \in F$$

$$\Rightarrow G_{1}^{c}, G_{2}^{c} \in F \quad by F_{2}$$

$$\Rightarrow (G_{1} \cap G_{2})^{c} \in F \quad by De - Morgan$$

$$\Rightarrow G_{1} \cap G_{2} \in F \quad by Def^{n}$$

$$T_{3:} \quad G_{\lambda} \in \pi \quad \forall \lambda \in \Delta$$

$$\Rightarrow G_{\lambda}^{c} \in F \forall \lambda \in \Delta$$

$$\Rightarrow \cap \{G_{\lambda}^{c}; \lambda \in \Delta\} \in F \quad by F_{3}$$

$$\Rightarrow [\bigcup \{G_{\lambda}; \lambda \in \Delta\}]^{c} \in F De - Morgan$$

$$so \bigcup \{G_{\lambda}: \lambda \in \Delta\} \in \pi$$

Hence π is a topology for X.

further a subset F for X is closed iff $F^c \in \pi$, that is iff $F \in F$. to show the uniqueness of topology, let π and π^- be two topologies have the same system of closed sets.

then $G \in \pi \Leftrightarrow G \text{ is } \pi - open$ $\Leftrightarrow G^c \text{ is } \pi - closed$ $\Leftrightarrow G^c \text{ is } \pi^- - closed \text{ [sin } ce \pi \text{ and } \pi^- have the same system of closed sets]}$ $\Leftrightarrow G \text{ is } \pi^- - open$ $\Leftrightarrow G \in \pi^- hence \pi = \pi^-$

Neighbourhoods:

Defⁿ: Let (X,π) be a topological space and let $x \in X$. A subset N of X is said to be a π -neighbourhood of x iff there exist a π -open set G such that $x \in G \subset N$. Similarly N is called a π -nbd of A subset of X iff there exist an open set G such that $A \subset G \subset N$. The collection of al nbd of in X is called the neighbourhood system at x and denoted by N(x).

EX : Let X={1,2,3,4,5} and let π ={ ϕ ,{1},{1,2},{1,2,5},{1,3,4},{1,2,3,4}X} then π -nbd of 1 are

 $\{1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \\ \{1,2,3,4\}, \{1,2,4,5\}, \{1,3,4,5\}, \{1,2,3,5\}, \text{and } X$

Not that $\{1,3\}$ is not an open set but it is a π -nbd of 1 since is a π -open set such that $1 \in \{1\} \subset \{1,3\}$

Ex: Which of the following subsets of R are nbd of 1?

(0,2),(0,2][1,2], [0,2]-1.5, R

Theorem 10: A subset of a topological space are open iff it's a nbd of each its points.

Proof: Let a subset G of a topological space be open. Then for every $x \in G$, $x \in G \subset G$ and therefore G is a nbd of each its points.

Conversely let G be a nbd of its point, if $G=\phi$, then there is nothing to prove,

if $x \neq \phi$, then to each $x \in G$ there exist an open set G_x such that $x \in G_x \subset G$. It

follows that $G = \bigcup \{G_x, x \in G\}$, hence G is open.

Ex: Let X be a t.s. If F is closed subset of X, and $x \in A^c$, prove that there is a nbd N of x such that $N \cap F = \phi$.

Solⁿ: Since F is closed then F^c is open and so by above theorem F^c contains a nbd of each its points. Hence there exist a nbd N of x such that $N \subset F^c$ *i.e.* $N \cap F = \phi$

- Theorem 11: Let X be a topological space, and for any $x \in X$, Let $N_{(x)}$ be the collection of all nbds of x then:
 - 1- $\forall x \in X, N(x) \neq \phi$, i.e. Every point x has at least one nbd.
 - 2- $N \in N(x)$ then $x \in N(x)$, i.e. Every nbd of x contains x.
 - 3- $N \in N(x), N \subset M$ then $M \in N(x)$ i.e. Every set containing a nbd of x is a nbd of x.
 - 4- *N* ∈ *N*(*x*), *M* ∈ *N*(*x*) *then N* ∩ *M* ∈ *N*(*x*), i.e. the intersection of two nbd of x is nbd of x.
 - 5- $N \in N(x)$ then there exist $M \in N(x)$ such that $M \subset N$ and $M \in N(y)$.i.e. If N is a nbd of x, then there exist a nbd M of x which is a subset of N such that M is a nbd of each of its points.
 - **Proof**:1-Since X is an open set it is a nbd of every $x \in X$. Hence there exist at least one nbd (namely X) for each $x \in X$. Hence $N_{(x)} \neq \phi$ for all $x \in X$.
- 2-If $N \in N_{(x)}$, then N is a nbd of x, so by Defⁿ of nbd $x \in X$.
- 3- If $N \in N(x)$, there exist an open set G such that $x \in G \subset N$, since
- $N \subset M$, $x \in G \subset M$, and so M is a nbd of x, hence $M \in N(x)$.
- 4- Let $N \in N_{(x)}$ and $M \in N_{(x)}$, the by Def^n of nbd, there exist an open sets G_1 and G_2 such that $x \in G_1 \subset N$ and $x \in G_2 \subset M$ hence $x \in G_1 \cap G_2 \subset N \cap M$, since

 $G_1 \cap G_2$, is an open set, it follows from (1) that $N \cap M$ is a nbd of x, hence $N \cap M \in N(x)$.

5-If $N \in N_{(x)}$, then there exist an open set M such that $x \in N \subset M$. Since M is open set it is a nbd of each of its point therefore $M \in N(y) \forall y \in M$.

Base for the neighbouhood system of a point ; Base for a topology Local Base at a point.

Defⁿ: Let (X,π) be a topological space, a non-empty collection $\mathbf{B}(x)$ of π -neighborhoods of x is called a base for π -nbd system of x iff for every π -nbd N of x there is $B \in \mathbf{B}(x)$ such that $B \subset N$, we say that $\mathbf{B}(x)$ is a local base at x or a fundamental system of nbds of x. If $\mathbf{B}(x)$ is local base at x, then the members of $\mathbf{B}(x)$ are called basic π -nbds of x.

Ex: Let $X = \{a, b, c, d, e\}$ and let $\pi = \{\phi, \{a\}, \{a, b\}, \{a, b, e\}, \{a, c, d\}, \{a, b, c, d\}, X\}$

Then the local base at each point a,b,c,d,e is given by $\mathbf{B}(a) = \{\{a\}\},\$

 $\mathbf{B}(b) = \{\{a,b\}\}, \mathbf{B}(c) = \{\{a,c,d\}\}, \mathbf{B}(d) = \{\{a,c,d\}\}, \mathbf{B}(e) = \{\{a,b,e\}\}.$

- Ex : Let (X,π) be any topological space, and let $x \in X$, show that the collection B(x) of all π -open subset of X containing x is a local base.
- **Sol**ⁿ : Let N be any nbd of x. then there exist an open set G such that
 - $x \in G \subset N$. since G is an open set containing $x, G \in \beta(x)$, this show that $\beta(x)$ is a local base at x.

Properties of local base:

B₀: $\beta(x) \neq \phi$ for every x in X.

Theorem 12: Let X be a topological space and let $\beta(x)$ be a local base at any point x of X, then $\beta(x)$ has the following properties.

- **B**₂: If $A \in \beta(x)$ and $B \in \beta(x)$ then $\exists s \ a \ C \in \beta(x)$ such that $C \subset A \cap B$
- **B**₃: If $A \in \beta(x)$ then $\exists s \ a \ set \ B \ such that \ x \in B \cap \subset A$, and such that for every $y \in B$, $\exists s \ a \ set \ C \in \beta(y) \ satisfying \ C \subset B$
- Proof: B₀- Since X is open, it is a nbd of its points, since $\beta(x)$ is a local base at any point x of X, and X is a nbd of X, it follows that there must exist a $B \in \beta(x)$ such that $B \subset X$. Hence $\beta(x) \neq \phi \forall x \in X$.

B₁: If $B \in \beta(x)$, then B is a nbd of x, so by Defⁿ of nbd $x \in B$.

- B₂:If $A \in \beta(x)$ then A is a nbd of x, similarly B is a nbd of x it follows that $A \cap B$ is a nbd of x, since $\beta(x)$ is a local base at x, it follow that there exist $C \in \beta(x)$ such that $C \in A \cap B$.
- B₃: Since $A \in \beta(x)$, A is a nbd of x, hence there exist an open set B Such that $x \in B \subset A$, since B is an open set it's a nbd of every $y \in B$ Again since $\beta(y)$ is a local base at y and B is a nbd of every $y \in B$ It follows that for every $y \in B \exists s, C \in \beta(y)$ such that $C \subset B$.

Ex : Consider the usual topology U for R and any point $x \in R$. then the collection $\beta(x) = \{(x - \varepsilon, x + \varepsilon); 0 < \varepsilon \in R\}$ constitutes a base for the U-nebd system for x, to prove this, let N be any nbd of x, then there exist U-nbd set G such that $x \in G \subset N$, since G is U-open there exist $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subset G \subset N$, thus to each nbd N of x, there exist a member $(x - \varepsilon, x + \varepsilon) \in \beta(x)$ such that $(x - \varepsilon, x + \varepsilon) \subset N$

H.W/ Also show that $\beta(x) = \{(x - \frac{1}{n}, x + \frac{1}{n}), n \in N\}$ is anther local base for U-nbd First countable space:

 Def^n : A topological space (x,π) is said to satisfy the first axiom of count-

ability if each points of X possesses a countable locale base, such a topology is said to be a first countable space.

- Ex: A discrete space (X,D) is a first countable, for in a discrete space every subset of X is open, in particular each singleton {x}, x∈ X is open and so is a nbd of x. Also every nbd N (i.e. open set containing x in this case) of x must be a superset of {x}.
 - hence the collection $\{\{x\}\}$ consisting of the single nebd $\{x\}$ of x, constitutes member is countable. Hence there exists a countable base at each point of X.

Ex : Show that the topological space (R,U) is first countable.

Solⁿ: Let $x \in R$ then the collection $\{(x - \frac{1}{n}, x + \frac{1}{n}); n \in N\}$ is a countable base at x and so (R,U) is first countable.

Base for a topology:

Defⁿ: Let (X,π) be a topological space, a collection β of subsets of X is said to form a base for π iff:

 $1-\beta \subset \pi \quad 2-For each Point \ x \in X \ and \ each nebd \ N \ of \ x \exists \ some \ B \in \beta \ such that \ x \in B \subset N$

- Ex : Let X={a,b,c,d} and let $\pi = \{\phi, \{a\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, X\}$, then the collection $\beta = \{\{a\}, \{b\}, \{c,d\}\}$ is a base for π since $\beta \subset \pi$ and for each nbd of a contains {a} which is a member of β containing a. Similarly each nbd of b contains {b} $\in \beta$, and each of c or d contains {c,d} $\in \beta$.
- Ex : Consider the discrete space (X,D), then the collection $\beta = \{\{x\}, x \in X\}$ Consisting of all singleton subset of X is abase for D, since each singleton set is D-open so that $B \subset D$, also for each $x \in X$ and each nbd N of x, $\{x\} \in \beta$, is such that $x \in \{x\} \subset N$

- Defⁿ : Let (X,π) be a topological space the space X is said to be second countable (or to satisfy the second axiom of count-ability) if there exist a countable base for π .
- Ex: The space (R.U) is second countable since the set of all open intervals (r,s) where r,s are rational numbers forms a countable base for U. This Follows from the fact that between any two real numbers there exists infinitely many rational numbers. thus to each point x in R and each nbd N of x $\exists r, s \in Q$ such that $x \in (r, s) \subset N$

Theorem 13:Let (x,π) be a topological space, a collection β of π is abase for π iff every π -open set can be expressed as the union of members of β .

Proof: Let β be a base for π and let $G \in \pi$, since G is π -open, it is a π -nbd of each of its point, hence by defⁿ of base to each $x \in G$ there exist a member $B \in \beta$ such that $x \in B \subset G$ it follows that $G = \bigcup \{B; B \in \beta \text{ and } B \subset G\}$.

Conversely, Let $\beta \subset \pi$ and every open set G be the union of members of β , we have to show that β is abase for π , we have

 \mathbf{i} - $\beta \subset \pi$ given

i – Let $x \in X$ and let N be any nebd of x, then $\exists s$ an open set G such that $x \in G \subset N$

But G is the union of members of β , hence there exists

 $B \in \beta$ such that $x \in B \subset G \subset N$, thus β is a base for π .

Ex: Let π and π^* be topologies for X, which have a common base β then $\pi = \pi^*$.

Solⁿ; Let $G \in \pi$, and $x \in G$, since G is π -open, it is π -nbd of x ,, and since β is a base for π , there exists $B \in \beta$ such that $z \in B \subset G\beta$. Since β is a base for π^* and $B \in \beta$, it follows that $B \in \pi^*$. Hence G is π^* -nbd of x, since x is arbitrary $G \in \pi^*$ *Thus* $\pi \subset \pi^*$, *similarly we can prove* $\pi^* \subset \pi$, hence $\pi = \pi^*$

Properties of a base for a topology:

Theorem14: let (X,π) be a topological space and let β be a base for π , then B has the following properties:

 $[B_1^*]$ For every $x \in X$ there exists a $B \in \beta$ such that $x \in \beta$, i.e. $X = \bigcup \{B; B \in \beta\}$.

 $[B_2^*]$ For every $B_1 \in \beta$, $B_2 \in \beta$ and a point $x \in B_1 \cap B_2$ there exists a $B \in \beta$ such

That $x \in B \subset B_1 \cap B_2$, that is the intersection of any two members of β is a union of members of β .

Proof: $[B_1^*]$ since X is a π -open set it is a nbd of each of its points hence by defⁿ of base, for every $x \in X$, there exists some $B \in \beta$ such that

 $x \in B \subset X$, in other words $X = \bigcup \{B, B \in \beta\}$

 $[B_2^*]$ If $B_1 \in \beta$ and $B_2 \in \beta$, then B_1 and B_2 are π -open, hence their intersection $B_1 \cap B_2$ is also π -open, and therefore $B_1 \cap B_2$ is a nbd of each of its points and so by defⁿ of base to each $x \in B_1 \cap B_2$ there exists $B \in \beta$ such that $x \in B \subset B_1 \cap B_2$, that is $B_1 \cap B_2$ is the union of members of β .

Limit points :

Def: Let (X, π) be a topological space, and let A be a subset of X, a point $x \in X$ is called a limit point (or a cluster point or an accumulation point) of A iff every nbd of x contains a point of A other than x. i.e. x will be a limit point of A iff every nbd of x meets A in a point different from x, that is $N \setminus \{x\} \cap A \neq \phi$ for all N is and of x or we say that x is a limit point of A iff every open set G containing x, $G \setminus \{x\} \cap A \neq \phi$, also we say that x will not be a limit point of A if there exists a nbd N of x Such that $N \cap A = \phi$ or $N \cap A = \{x\}$. Def: Let A be a subset of a topological space X, and let $x \in X$, the x is called an adherent point (or contact point) of A iff every nbd of x contains a point of A and denoted by d(A).

The set of all limit point of A is called derived set and denoted by D(A).

- Def: A point x is said to be an isolated point of a subset A of a topological space X, if $x \in X$ but x is not a limit point of A. A closed set which has no isolated point is said to be perfect.
- Ex: let (X.D) be descried topological space, and let A be any subset of X Is A has a limit point?

Sol: let $x \in X$, if $G \setminus \{x\} \cap A \neq \phi$ N $\setminus \{x\} \cap A \neq \phi$ for every open set G containing x But we have $\{x\} \setminus \{x\} \cap A = \phi$, therefore x is not a limit point of A. Hence A has not a limit point in a descried topology.

Ex: let X={a,b,c} and let π ={ ϕ ,X,{a},{b}{a,b}} find all limit point of the set A ={a,c}.

Sol: we have three points in X

- 1- $a \in X$, the open set which contain a are {a}, {a,b} X so since $\{a,b\} \cap \{a\} \setminus \{a\} = \phi$, a is not a limit point of A.
- 2- $b \in X$, the open set which contain b are {b}, {a,b}, X and

 $\{a,c\} \cap \{b\} \setminus \{b\} = \phi b \text{ is not a limit point of } A.$

3- $c \in X$, and the open set which contain c is X only, and

 $X \in A = \{c\} \neq \phi$, so c is a limit point of A, the isolated point of A

is a, since a is in A and not a limit point , and $D(A)=\{c\}$

Ex: let X={a,b,c,d,e} and let π ={ ϕ ,X,{b},{d,e},{b,d,e},{a,c,d,e}} then π is a topology on X. Consider the subset A={b,c,d}, the point c is a limit

point of A since the π -open nbds of c are {a,c,d,e}, X each contains a point of A other than c. But b is not a limit point of A since {b} is nbd of b which contains no point of A other than b similarly a,e are limit point of A so D(A)={a,c,e}. The isolated points of A are b and d since b,d are belong to A but are not limit points of A. then an adherent point of A are a,b,c,d,e.

- Theorem 15: Let X be a topological space, and let A be a subset of X then A is closed iff $D(A) \subset A$.
- Proof: Let A be closed, then A^c is open and so to each $x \in A^c$ there exist a nbd N of x such that $N \subset A^c$. Since $A \cap A^c = \phi$, the nbd N contains no point of A and so x is not a limit point of A. Thus no point of A can be a limit point of A ,that is A contains all its limit points. Hence $D(A) \subset A$. Conversely let $D(A) \subset A$ and let $x \in A^c$, then $x \notin A$. since $D(A) \subset A$, $x \notin D(A)$ hence there exist a nbd of x such that $N \cap A = \phi$ so that $N \subset A^c$, thus A^c contains a nbd of each of its points and so A^c is open, that is A is closed.

Closure:

Def: Let X be a topological Space and let A⊂ X. the intersection of all πclosed supersets of A is called the closure of A and denoted by A or c(A) or ClA. When confusion is possible as to what space the closure is to be take in, we shall Cl (A).

Theorem 16: Let A be a subset of a topological space, then

1- ClA is the smallest closed set containing A.

2- A is closed iff ClA=A

Proof: 1- this follows from definition.

2- If A closed, then A itself is the smallest closed set containing A and hence ClA=A. Conversely if ClA=A by 1 ClA is closed and so A is also closed.

Theorem 17: prove that $ClA = A \cup D(A)$.

Proof: We first prove that A∪D(A) is closed i.e.[A ∪ D(A)]^c = A^c∩D(A)^c is open, let x ∈ A^c∩D(A)^c, then x ∈ A^c and x ∈ D(A)^c so that x ∉ A and x∉D(A). This means that x is not a limit point of A, and hence there exist an open nbd N of x which contains no point of A, it follows that N ⊂A^c. Now no point y∈N can be a limit point of A, since N is a nbd of y which contains no point of A. hence N⊂D(A)^c. since N⊂A^c and N⊂D(A)^c, So N⊂A^c∩D(A)^c. thus A^c∩D(A)^c contains a nbd of each of its point and consequently A^c∩D(A)^c is open. We now show that ClA= A∪D(A) ,since A∪D(A) is closed set containing A and ClA is the smallest closed set containing A, we have ClA⊂A∪D(A). Again since ClA is closed, it contains all its limit points, and thus in particular, all limit points of A, so that D(A)⊂ClA also A⊂ClA.

Hence $A \cup D(A) \subset ClA$, it follows that $ClA = A \cup D(A)$.

Corollary: Prove that $ClA=adh(A)=\{x; each nbd of x intersect A\}$

Proof: $x \in adh(A)$ iff every nbd of x intersects A

Iff $x \in A$ or every nbd of x contains a point of A other than x Iff $x \in A$ or $x \in D(A)$ Iff $x \in A \cup D(A)$

Iff $x \in ClA$.

An adherent point is also some times called a closure point.

Ex: Let X= $\{a,b,c,d\}$ and let $\pi = \{\phi, X, \{a\}, \{b,c\}, \{a,d\}, \{a,b,c\}\}$

Closed subsets are X, {b,c,d}, {a,d}, {b,c}, {d}, then Cl{b}={b,c}, ϕ , since {b,c} is the intersection of all closed subsets of X which contain b. Again Cl{a,b}=X, since X is the only closed set containing {a,b}. similarly we have Cl{b,c,d}={b,c, d}.

Ex: Let X={a,b,c} and let $\pi = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Find the limit point of the sets A={b,c.}, B={a,c}

Properties of closure: "Kuratiwski theorem"

Let X be a topological space, and let A,B be any subset of X, then

 $i-Cl\phi=\phi$, $ii-A\subset ClA$ $iii-if A\subset B$, then $ClA\subset ClB$

 $iv - Cl(A \cup B) = ClA \cup ClB$ $v - Cl(A \cap B) \subset ClA \cap ClB$ vi - Cl(ClA) = ClA

Proof: i-Since ϕ is closed, we have $Cl\phi = \phi$.

ii- By theorem ClA is the smallest closed set containing A, so $A \subset ClA$

iii- By (ii) $B \subset ClB$, sin $ceA \subset B$ we have $A \subset ClB$, but ClB is a closed set. Thus ClB is closed set containing A. Since ClA is the smallest

closed set containing A, we have $ClA \subset ClB$.

 $iv - Since A \subset A \cup B$ and $B \subset A \cup B$, we have $ClA \subset Cl(A \cup B)$ and $ClB \subset Cl(A \cup B)$ by iii we have $ClA \cup ClB \subset Cl(A \cup B)$ (1)

Since ClA and ClB are closed sets, then $ClA \cup ClB$ is also closed, also $A \subset ClA$ and $B \subset ClB$ implies that $A \cup B \subset ClA \cup ClB$ thus $ClA \cup ClB$ is closed set containing $A \cup B$, since $Cl(A \cup B)$ is the smallest closed set

Containing $Cl(A \cup B) \subset ClA \cup ClB$ 2, from 1 and 2 we get

 $Cl(A \cup B) = ClA \cup ClB$.

V- $A \cap B \subset B$ then $Cl(A \cap B) \subset ClB$ and $A \cap B \subset A$ then $Cl(A \cap B) \subset ClB$. Hence $Cl(A \cap B) \subset ClA \cap ClB$

vi-Since ClA is closed, we have Cl(Cl(A)).

Theorem 18: Let X be a topological space, and let A be a subset of X then the following statements are equivalent:

i- A is closed ii- ClA=A iii-A contains all its limit point.

Ex: Consider the usual topological space and find the closure of the following subsets of R.

i-A={
$$\frac{1}{n}, n \in N$$
} ii- B=The set of all integer numbers,

iii-C= The set of all rational number, iv- D= $\{2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots\}$

Interior point and interior set:

Defⁿ : Let X be a topological space and let $A \subset X$, a point x in X is said to be an interior point of A iff A is a nbd of X, that is iff there exists an open set G such that $x \in G \subset A$, the set of all interior point of A is called the interior of A and is denoted by A⁰ or IntA

Theorem 19: $A^{\circ} = \{G: G \text{ is open}, G \subset A\}$

Proof:

 $x \in A^{\circ}$ iff A is anbd of x iff ther exsit an open set G subthat $x \in G \subset A$ iff $x \in \bigcup \{G; G is open, G \subset A\}$ Hence $A^{\circ} = \bigcup \{G; G is open, G \subset A\}$

Theorem 20: Let X be a topological space. And let A be a subset of X, then

i- IntA is an open set.

- ii- IntA is the largest open set contained in A.
- iii- A is open if IntA=A.

Proof: i- Let x be an arbitrary point of IntA, Then x is an interior point of A Hence by Def^n , A is a nebd of x, then there exist an open set G such that $x \in G \subset A$. Since G is open, it is a nbd of each of its points and so A is also a nbd of each of G. It follows that every pint of G is an interior point of A so that $G \subset IntA$, thus it is shown that to each point $x \in IntA$ there exist an open set G such that $x \in G \subset IntA$, hence IntA is a nbd of each of its points and consequently IntA is open.

ii-Let G be any open subset of A and let x ∈ G, so that x ∈ G ⊂ A since G is open,
A is a nbd of x and consequently x is an interior point of A, hence x ∈ IntA,
thus we have shown that x ∈ G ⇒ x ∈ IntA, and so G ⊂ IntA ⊂ A. Hence IntA contains
every open subset of A and it is therefore the largest open subset of A.
iii-Let A=IntA By(i) IntA is an open set and therefore A is also open.
Consequently let A be open. Then A is usually identical with the largest open subset of A. but by (ii) IntA is the largest open subset of A. Hence A=IntA
Ex: Let (X,D) be s discrete topological space and let A be any subset of X. Since A is open, we have IntA=A, thus in a discrete space every subset of X coincides with its interior.

Theorem 21: Let X be a topological space and let A be a subset of X. Then IntA equals the set all those points of A which are not limit pints of A^c

Proof: Let x be a point of A, which is not a limit point of A^{c} . Then there exists a nbd N of x which contains no point of A^{c} , and so $N \subset A$ this implies that A is also a nbd of x and so $x \in IntA$. Conversely let $x \in IntA$, since IntA is open, it is a nbd of x, also IntA contains no point of A^c , it follows that x is not a limit point of A^c , thus no point of IntA is a limit point of A^c , hence IntA consists of precisely those point of A which are not limit point of A^c .

Theorem 22 : Let X be a topological space, and let A,B be any subset of X, then:

i - IntX = X, $Int\phi = \phi$ $ii - IntA \subset A$ $iii - A \subset B \Rightarrow IntA \subset IntB$ $iv - Int(A \cap B) = IntA \cap IntB$ $v - IntA \cup IntB \subset Int(A \cup B)$ vi - Int(IntA) = IntA

Proof : i- Since X and ϕ are open set, we have by iii Theorem IntX =X, Int $\phi = \phi$.

iii -
$$x \in IntA \Rightarrow xis an int erior point of A \Rightarrow Ais a nebd of x \Rightarrow x \in A, hence A = IntA$$

- iii-Let $x \in IntA$, then x is an interior point of A, and so A is a nbd of x, since $A \subset B$, B is also a nbd of x, this implies that $x \in IntB$ thus we shown that $x \in IntA \Rightarrow x \in IntB$, $IntA \subset IntB$
- iv-Since $A \cap B \subset A$ and $A \cap B \subset B$ we have by iii $Int(A \cap B) \subset IntA$ and $Int(A \cap B) \subset IntB$ this implies that $Int(A \cap B) \subset IntA \cap IntB$ (1)

a gain let $x \in IntA \cap IntB.Then \ x \in IntA \ and \ x \in IntB$, hence x is an interior point of each of the sets A and B, it follows that A and B era nebds of x so that their intersection $A \cap B$ is also a nebd of x, hence

```
x \in Int(A \cap B) thus x \in IntA \cap IntB \Rightarrow x \in Int(A \cap B) so
```

 $IntA \cap IntB \subset Int(A \cap B) \dots (2)$

From 1 and 2 we get $Int(A \cap B) = IntA \cap IntB$

 $v - By(iii) A \subset A \cup B \Rightarrow IntA \subset Int(A \cup B)$ $B \subset A \cup B \Rightarrow IntB \subset Int(A \cup B)$ $hence IntA \cup IntB \subset Int(A \cup B)$

Not that in general $IntA \cup IntB \neq Int(A \cup B)$

For example Let A=[0,1) and [1,2) then IntA=(0,1) and IntB=(1,2)

 $IntA \cup IntB = (0,1) \cup (1,2) = (0,2) \setminus \{1\}$ also $A \cup B = [0,1) \cup [1,2] = [1,2]$

So Int($A \cup B$)=(1,2)

Thus in this case IntA \cup IntB is a proper subset of Int(A \cup B), and IntA \cup IntB \neq Int(A \cup B)

vi-Now by i of Theorem 20 IntA is an open set, hence by iii of the same theorem Int(IntA)=IntA

Exterior point and the exterior of a set:

Defⁿ: Let A be a subset of a topological space X, A point $x \in X$ is said to be an exterior point of A iff it is an interior point of A^c, that is there exist an open set G such that $x \in G \subset A^c$ or equivalently $x \in G$ and $G \cap A = \phi$. The set of all exterior points of A is called the exterior of A and is denoted by extA or e(A). thus $extA=Int(A^c)$, it follows that $ext(A^c)=[A^{c^{c^c}}]^0=A^0$ also we have

 $A \cap extA = \phi$, that is no point of A can be exterior point of A.

Remark: Since extA is the interior of A^c, it follows from Theorem 20 that

extA is open and is the largest open set contained in A^c.

Theorem 23: Let (X,π) be a topological space and let A be a subset of X then $extA = \bigcup \{G \in \pi, G \subset A^c\}$

Proof: By Def^n , extA=Int(A^c), but by Theorem 19

 $IntA^{c} = \bigcup \{G \in \pi; G \in A^{c}\} \quad hence \ extA = \bigcup \{G \in \pi; G \subset A^{c}\}$

Theorem 24: Let A be a subset of a topological space X, then a point x in X is an exterior point of A iff x is not an adherent point of A, that is iff $x \in ClA^c$. Proof : let x b an exterior point of A, then x is an interior point of A^c, so A^c is a nbd of x containing no point of A, it follows that x is not an adherent point of A, that is $x \in ClA^c$.

Conversely, suppose that x is not an adherent point of A, then there exist a nbd N of x which contains no points of A. This implies that $x \in N \subset A^c$. It follows that A^c is a nbd of x and consequently x is an interior point of A^c , that is x is an exterior point of A.

Theorem 25: Let X be a topological space and let A and B be subsets of X.

Then:

$$i - extX = \phi, exr\phi = X \quad ii - extA \subset A^{c} \quad iii - extA \subset ext[(extA)^{c}] \quad iv - A \subset B \Rightarrow extB \subset extA$$

$$v - IntA \subset ext(extA) \quad iv - ext(A \cup B) = extA \cap extB$$
Proof:
$$i - extX = IntX^{c} = Int\phi = \phi \quad ext\phi = Int\phi^{c} = IntX = X$$

$$ii - extA = IntA^{c} \subset A^{c} \quad by ii Theorem I_{4}$$

$$iii - ext[ext(A^{c})] = ext[IntA^{c}]^{c} = ext(IntA^{c})^{c} = Int\{[IntA^{c}]^{c}\}^{c}$$

$$= Int(IntA^{c}) \quad \{by A^{c^{c}} = A\}$$

$$= IntA^{c} \quad \{by Int(IntA) = IntA\}$$

$$= extA$$

$$iv - A \subset B \Rightarrow B^{c} \subset A^{c} \Rightarrow IntA^{c} \subset IntB^{c} \Rightarrow extB \subset extA$$

 $v - Byii we have extA \subset A^c$ then iv gives $extA^c \subset ext(extA)$, $But IntA = extA^c$ hence $IntA \subset ext(extA)$

$$vi - ext(A \cup B) = Int[(A \cup B)^{c}]$$

= Int(A^c \begin{aligned} B^{c} \begin{aligned} B^{c} \ B^{c} \ B^{c} \ B^{c} \ B^{c} \ B^{c} \ V^{c} \ B^{c} \

Frontier point and the frontier of a set.

```
Def<sup>n</sup> : A point x of a topological space is said to be a frontier point
( or boundary point) of a subset A of X iff it is neither an interior nor an exterior point of A. the set of all frontier points of A is called the frontier of A and shall be denoted by FrA.
```

 $FrA = [IntA \cup extA]^{c}$

Theorem 26: Lt X be a topological space and let A be a subset of X. then a Point x in X is a frontier point of A iff every nbd of x intersections both A and A^c .

Proof: We have $x \in FrA \Leftrightarrow x \notin IntA and x \notin extA = IntA^{c}$ \Leftrightarrow neither A nor A^{c} is a nebd of x \Leftrightarrow no nebd of x can be contained in A or in A^{c} why? \Leftrightarrow every nebd of x intersects both A and A^{c}

Corollary: FrA=FrA^c. for we have

$$x \in FrA \Leftrightarrow every nebd of x int er sects both A and A^{c}$$
$$\Leftrightarrow every nebd of x int er sects both A^{c} and A^{c^{c}}$$
$$\Leftrightarrow x \in FrA^{c} \qquad sin ce \ A^{c^{c}} = A$$

Theorem 27 : LetA be any subset of a topological space X. then IntA, extA

and FrA are disjoint and $X = IntA \cup extA \cup FrA$ Further FrA is a closed set.

Proof: By Defⁿ extA=IntA^c, also $IntA \subset A$ and $IntA^c \subset A^c$, sin $ce A \cap A^c = \phi$, it follows that

 $IntA \cap extA = IntA \cap IntA^{c} = \phi$ a gain by Defⁿ of frontier, we have

 $x \in FrA \Leftrightarrow x \notin IntA and \ x \notin extA$ $\Leftrightarrow x \notin \{IntA \cup extA\}$ $\Leftrightarrow x \in [IntA \cup extA]^{c}$ Thus $FrA = [IntA \cup extA]^{c}$ (1) It follows that $FrA \cap IntA = \phi$ and $FrA \cap extA = \phi$ and $X = IntA \cup extA \cup FrA$

Since IntA and extA are open, we see from 1 that FrA is closed.

Dense and non-dense sets:

Defⁿ : Let X be a topological space and let A,B be subset of X. then

- i- A is said to be dense in B iff $B \subset ClA$
- A is said to be dense in X or every where dense iff ClA=X it follows that A is every where dense iff every point of X is an adherent point of A,
- iii- A is said to be nowhere dense or non-dense in X iff $Int(ClA)=\phi$, that is, iff interior of the closure of A is empty.

iv- A is said to be dense in itself iff $A \subset D(A)$.

It follows from Def^n (a closed set which has no isolated points is said to be perfect) and iv of a above definition that a set A is perfect iff A is dense in itself and closed. This implies that A is perfect iff A=D(A)

For A is perfect iff A is closed and A has no isolated points

iff A is closed and every point of A is a limit

point of A

iff
$$D(A) \subset A$$
 and $A \subset D(A)$
iff $A=D(A)$.

Separable space:

Defⁿ: A topological space is said to be separable iff X contains a countable Dense subset, that is, iff there exist a countable subset A of X such That ClA=X.

For example the usual topological space (R,U) is separable since the set

Q of all rational numbers is countable dense subset of R.

Ex: Let X={a,b.c.d,e} and let π ={ ϕ ,{b},{c,d},{b,c,d},{a,c,d},{a,b,c,d},X}.

Find interior, exterior and frontier of the following subset of X.

 $A = \{c\} \quad B = \{a,b\} \quad C = \{a,c,d\} \quad D = \{b,c,d\}$

Solⁿ:1- i- since A is not a nebd of c, so $c \notin IntA$, hence IntA= ϕ

ii- Now A^c ={a,b,d,e} it is easy to see that b is an interior point of A^c, since A^c is a nebd of b, but a,d,e are not interior points of A^c, hence extA =b

iii- Since IntA= ϕ and extA=b it follows that FrA={a,c,d,e}.

- 2- i-Here b is an interior point of B , but a is not. IntB= $\{b\}$.
 - ii- Now $B^c = \{c,d,e\}$, since $c,d \in \{c,d\} \subset B^c$, it follows that B^c is a nbd of c,d hence c,d are interior points of B^c . that is c,d are exterior points of B. that is extB= $\{c,d\}$

iii-Since IntB= $\{b\}$, and extB= $\{c,d\}$ then FrB= $\{a,e\}$

- 3- here C is open then IntC=C={a,c,d}, and extC=IntC^c=Int{b,e}={b} also $FrC={e}$.
- 4- Also D is open set so that it is a nbd of each of its points and consequently every point of D is its interior point, hence IntD=D={b,c,d}, $D^{c} = \{a,e\}$. Since thee exists no open set G such that $a \in G \subset D^{c}$, D^{c} is not a nbd of a hence $a \notin IntD^{c}$, similarly $e \notin IntD^{c}$. therefore extD=IntD^c= ϕ also FrD={a,e}.
 - **Ex:** If A is open and closed then $FrA=\phi$
 - Solⁿ: Since A is open then IntA=A and also since A is closed A^c is open and Ext A = IntA^c=A^c but $FrA = {IntA \cup extA}^{c} = {A \cup A^{c}}^{c} = X^{c} = \phi$
- Ex: consider the usual topology U on R and find interior, exterior and frontier

Of the following subset of R. A=(0,1) B=[0.1) C=[0,1] D={ $\frac{1}{n}$; $n \in N$ }, N, Q

- Solⁿ:1- Since A is open, it is a nbd of each of its points and so every point of A is its interior point. Hence IntA=(0.1)
 - Now $A^c = (-\infty, o) \cup (1, \infty)$, here A^c is a nebd of each of its point except 0 and 1, hence extA =Int $A^c = (-\infty, o) \cup (1, \infty)$.

Also $FrA = \{IntA \cup extA\}^c = \{0,1\}.$

- 2- proceeding as in 1 we have IntB=(0,1) *extB* = *IntB*^c = $(-\infty,0) \cup (1,\infty)$ and *FrB* = {*IntB* \cup *extB*}^c = {0,1}.
- 4- Here D cannot be a nbd of any points of its points 1/n, n=1,2,3,...Since there exists no $\varepsilon > 0$ such that $(\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon) \subset D$, hence no point of D can be its interior point so that IntD= ϕ .

It is easy to see that D^c is a nbd of each of its points except 0,

hence $extD=IntD^{c} [D \cup \{0\}]^{c}$

 $FrA = [IntD \cup extD]^c = [D \cup \{0\}]$

Theorem 28 : Let X be a topological space and let A be a subset of X

 $ClA = IntA \bigcup FrA$

Proof: By Defⁿ of ClA, we have $ClA = \bigcap \{F; F \text{ is closed } A \subset F\}$,

then by De-Morgan law $[ClA]^c = \bigcup \{F^c; F^c \text{ is open and } F^c \subset A\} = extA$, taking

complements, we get $[(ClA)^c]^c = [extA]^c = IntA \cup FrA$ so that $ClA = IntA \cup FrA$

Corollary: $ClA = A \cup FrA$

Proof : Since $A \subset ClA$ and $FrA \subset ClA$ so that $A \cup FrA \subset ClA$ ()

Also $FrA = [IntA \cup extA]^c = [IntA]^c \cap [extA]^c$ agains in ce $IntA \subset A$ and $ClA = IntA \cup FrA$ it follows that $ClA \subset A \cup FrA$ (2) from 1 and 2 we get $ClA = A \cup FrA$

Defⁿ : Let X be a topological space and let $Y \subset X$. The π -relative topology for Y is the collection π_Y given by $\pi_Y = \{G \cap Y; G \in \pi\}$.

34

The topological space (Y, π_{y}) is called a subspace of (X, π), the

topology π_{Y} on Y is said to be induced by π .

Theorem 29: Let (X,π) be a topological space and let $Y \subset X$, then the

collection $\pi_Y = \{G \cap Y; G \in \pi\}$ is a topology on Y.

Proof: $T_{1:}$ Since $\phi \in \pi$ and $\phi \cap Y = \phi \Rightarrow \phi \in \pi_Y$ a gain $Y \cap X = Y \sin ce Y \subset X$ and $\sin ce X \in \pi$, we have $Y \in \pi_Y$.

T₂: Let $H_1, H_2 \in \pi_Y$, Then $H_1 = G_1 \cap Y$ and $H_2 = G_2 \cap Y$ for same $G_1, G_2 \in \pi$.

Now $H_1 \cap H_2 = G_1 \cap Y \cap G_2 \cap Y = (G_1 \cap G_2) \cap Y \in \pi_Y$ [Since $G_1, G_2 \in \pi$].

- T₃: Let $H_{\lambda} \in \pi_{Y}$; $\forall \lambda \in \Delta$, then \exists openset G_{λ} such that $H_{\lambda} = G_{\lambda} \cap Y \quad \forall \lambda \in \Delta$, now
 - $\bigcup \{H_{\lambda}; \lambda \in \Delta\} = \bigcup \{G_{\lambda} \cap Y; \lambda \in \Delta\} = \bigcup \{G_{\lambda}; \lambda \in \Delta\} \cap Y \in \pi_{Y} \text{ sin } ce \ \bigcup \{G_{\lambda}, \lambda \in \Delta\} \in \pi$ Hence π_{Y} is a topology for Y.

Ex: Let X={a,b,c,d,e}, π ={ ϕ ,{a},{b},{a,b},{a,c},{a,b,c},{a,b,e},{a,b,d,e},X} Y={b,c,e} then $\pi_{\gamma} = {\phi,{b},{c},{b,c},{b,e}}$

Defⁿ : Hereditarily property :

A property of a topological space is said to be hereditary if every subspace of the space has that property.

Ex: Consider the usual topology U of R and the subset [0,1] of R, then the set [0,1/2) is open in the U-relative topology of [0,1], since

 $[0,\frac{1}{2}) = (-1,\frac{1}{2}) \cap [0,1]$ and $(-1,\frac{1}{2})$ is U-open, similarly (3/4,1] is open in the U-

relative Topology for [0,1], since $(\frac{3}{4},1] = (\frac{3}{4},\frac{3}{2}) \cap [0,1]$ and $(\frac{3}{4},\frac{3}{2})$ is U-open.

Ex; Let U be the usual topology for R describe the relativization of U to the Set N of natural numbers.

Theorem 30: Let (Y,π_Y) be a sub-space of (X,π) ; then:

i- A subset A of Y is closed in Y iff there exists a set F closed in

X such that $A=F \cap Y$.

- ii- For every $A \subseteq Y$, $cl_Y A = cl_X A \cap Y$.
- iii- A subset M of Y is π_{Y} -nbd of a point $y \in Y$ *iff* $M = N \cap Y$ for some π -nbd N of Y.
- iv- A point y in Y is π_{Y} limit point of $A \subseteq Y$ iff y is a π -limit point of A, further $D_Y(A) = D(A) \cap Y$.
- v- For every $A \subset Y$, $Int_Y A \supset Int_X A$
- vi- For every A in Y $Fr_Y(A) \subset Fr_X(A)$.
- **Proof:** i- A closed in Y iff Y/A is open in Y.

If f $Y/A=G \cap Y$ for some open set G of X.

If f $A=Y/(G \cap Y)=(Y/G) \cup (Y/Y)$

- If f A=Y/G [since Y/Y= ϕ] De-Morgan law
- If f $A=Y \cap G^c$ "The complement of G in X"

If f $A=Y \cap F$ where $F=G^c$ is closed in X.

ii- By defⁿ $Cl_Y A = \bigcap \{K; K \text{ is closed in } Y, and A \subset K\}$ $Cl_Y A = \bigcap \{F \cap Y : F \text{ is closed in } X \text{ and } A \subset F \cap Y$ $= \bigcap \{F \cap Y; F \text{ is closed and } A \subset F\}$ $= [\bigcap \{F; F \text{ is closed and } A \subset F\}] \cap Y$ $= Cl_Y (A) \cap Y$

iii- Let M be a π_{Y} -nbd of y, then there exists a π_{Y} -open set H such that

 $y \in H \subset M \Rightarrow \exists a \pi - openset G such that y \in H = G \cap Y \subset M$. Let $N = M \cup G$.

Then N is a π -nbd of y since G is a π -open set such that $y \in G \subset N$.

Further
$$N \cap Y = (M \cup G) \cap Y = (M \cap Y) \cup (G \cap Y) = M \cup (G \cap Y)$$
 Since $M \subset Y$
= M sin ce $G \cap Y \subset M$

Conversely Let M=N \cap Y for some π -nbd N of y, then there exists

A π -open set G such that $y \in G \subset N$, which implies that $y \in G \cap Y \subset N \cap Y = M$

since $G \cap Y$ is π_Y -open set, M is π_Y -nbd of y,

vi- y is a π_{Y} -limit point of A if f $[M/\{y\} \cap A] \neq \Phi$ for all π_{Y} -nbds M of y.

if f $[N \cap Y/\{y\} \cap A \neq \Phi$ for all- nbds N of y

if f $[N/{y} \cap A] \neq \Phi$ for all nbds N of y

if f y is a π -limit point of A.

 $v - x \in IntA \Rightarrow x$ interior point of $A \Rightarrow A$ is $a \pi - nbd$ of x

 $\Rightarrow A \cap Y \text{ is } \pi_Y \text{ nbd of } x$ $\Rightarrow A \text{ is } a \pi_Y \text{ nbd of } x \quad [\sin ce A \subset Y \Rightarrow A \cap Y = A]$ $\Rightarrow x \in Int_Y A$ Hence $Int_X A \subset Int_Y A$.

 $iv - y \in Fr_{Y}A \implies y \text{ is } \pi_{Y} - from er \text{ point of } A \text{ and } Y/A$ $\implies every \pi_{Y} - nbdofy \text{ int } er \text{ sectsboth}A and Y - A$ $\implies N \cap Y \text{ int } er \text{ section both } A \text{ and } Y/A \quad \forall \pi - nbd \text{ N of } y$ $\implies every \pi - nbd \text{ N of } y \text{ int } er \text{ section both } A \text{ and } X - A$ $\implies y \text{ is } \pi - From er \text{ of } A$ $\implies y \in Fr_{X}A$ Hence $Fr_{Y}A \subset Fr_{X}A$.

Theorem 31: let (Y,π_Y) be a subspace of a topological space of (X,π) and let

B be a base for π , then $\beta_y = \{\beta \cap Y; B \subset \beta\}$ is a base for π_Y

Proof: Let H be a π_{Y} open subset of Y and let x in H, then there exists a

 π - open subset G of X such that H=G \cap Y. since β is a base for the

topologyπ

 $\exists s B \in \beta \text{ such that } x \in B \subset G, \text{ sin } ce H \subset Y, it \text{ follows that } x \in Y \text{ and } x \in B \cap Y \subset G \cap Y = H$

hence $\exists s \ a \ set \ B \cap Y \in \beta_Y$, Such that $x \in B \cap Y \subset H$. Thus to each $x \in H$, there exists a member $\mathbf{B} \cap Y$ of B_Y such that $x \in \mathbf{B} \cap Y \subset H$, that is $H = \bigcup \{B \cap Y; B \cap Y \in \beta_Y \text{ and } B \cap Y \subset H\}$

Hence β_y is a base for π_y .

Ex: X={a,b,c.d,e} and Y={a,c,e}
$$\pi_x = \{\phi, \{a\}, \{a,b\}, \{a,c,d\}, \{a,b,c,d\}, \{a,b,e\}, X\}$$

 $\pi_y = \{\phi, \{a\}, \{a,c\}, \{a,e\}, Y\} \ let A = \{a,e\} \subset Y \ Int_y A = \{a,e\} \ and \ Int_x A = \{a\}$

Separated Set

Definition: Let (X, τ) be a t.s. two non-empty subset A & B of X are said to be τ - separated iff $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap \overline{B} = \emptyset$.

Or equivalent we say $(A \cap \overline{B}) \cup (\overline{A} \cap B) = \emptyset$.

Note : Every separated set are disjoint but the converse not true in general

Example: Let A= (- ∞ ,0) and B=[0, ∞) of R. A & B are disjoint which is not separated . $\overline{A} = (-\infty,0]$ and $\overline{A} \cap B = (-\infty,0] \cap [0,\infty) = \{0\} \neq \emptyset$

Theorem(1) : Let (Y, \mathcal{I}_Y) be a subspace pf a t.s. (X, \mathcal{I}) and Let A, B be two subset of Y,

then A , B are τ –separated iff τ _Y-separated .

Proof: since $CL_Y A = CL_X A \cap Y$ and $CL_Y B = CL_X B \cap Y$

Now $(CL_{Y}A\cap B) \cup (CL_{Y}B\cap A)=$

 $= (CL_XA \cap Y) \cap B] \cup [(CL_XB \cap Y) \cap A]$

= $(CL_XA \cap B) \cup (CL_XB \cap A)$ [since A,B \subset Y]

Hence [(CL_Y A \cap B) U (CL_Y B \cap A)= Ø iff (CL_X A \cap B) U (CL_X B \cap A)= Ø].

It follows that A,B are τ –separated iff τ _Y-separated

Theorem(2) : Two closed (open)subset A,B of a t.s (X, τ) are separated iff subset are disjoint

Proof: Since any two separated sets are disjoint, we need only to prove that two disjoint closed (open) sets are separated if A& B are both disjoint and closed, than $A \cap B = \emptyset$

 $A = \overline{A}$ and $B = \overline{B}$ so that

A \cap B=A \cap \overline{B} = Ø and A \cap B= \overline{A} \cap B=Ø

Showing that A&B are separated

If A and B are both disjoint and open then A^c and B^c are both closed so that

 $clA^{c} = A^{c}$ and $clB^{c} = B^{c}$. Also

 $A \cap B = \phi \Longrightarrow A \subset B^c \text{ and } B \subset A^c$ $\implies clA \subset clB^c = B^c \text{ and } clB \subset clA^c = A^c$ $\implies clA \cap B = \phi \text{ and } clB \cap A = \phi$ $\implies A \text{ and } B \text{ are separated.}$

Connected and disconnected sets

Definition: Let (X, τ) be t.s A subset A of X is said to be τ -disconnected iff it is the union of two non-empty τ -separated sets iff there exist two non-empty sets C and D .such that $C \cap D$ = and $C \cap D$ =, A=C U D, A is τ -connected if is not τ -disconnected.

Note: two points a and b of a t.s X are said to be connected iff they are contained in a connected subsets of X.

Theorem(3): At.s X is disconnected iff $\exists s a non empty proper subset which is both open and closed.$

Proof: let A be a non empty proper subset we have to prove that X is disconnected

Let $B=A^c$, then B is a non empty set moreover $X=A \cup B$ and $A \cap B=\phi$

Since A is both open and closed , hence $\overline{A} = A$ and $\overline{B} = B$, it follows that $A \cap \overline{B} = \phi$ and

 $\overline{A} \cap B = \phi$, thus X can be expressed as the union of two non-empty separated sets so X is disconnected

Conversely: let X be a disconnected set then $\exists s a non empty subset A and B of X such that <math>A \cap \overline{B} = \phi$, $\overline{A} \cap B = \phi$, and $X = A \cup B$.

Since $A \subset \overline{A}$, $\overline{A} \cap B = \phi \implies A \cap B = \phi$, hence $A = B^c$ and B is non – empty

A is proper subset of X

Now $A \cup \overline{B} = X$, $[A \cup B = X \text{ and } B \subset \overline{B}, \text{ so } A \cup \overline{B} \supset X \text{ and } A \cup \overline{B} \subset X]$ always Also $A \cap \overline{B} = \phi \Rightarrow A = (\overline{B})^c$ and simillery $B = (\overline{A})^c$

Since \overline{A} and \overline{B} are closed so A&B are open, since A = B^c therefore A is closed thus A is a non-empty proper subset of X

Which both open and closed

Continuity in a topological space

Let (X, τ) and (Y, τ) be a topological space. A function $f(X, \tau) \rightarrow (Y, \tau)$ is said to be continuous iff for every μ -nbd M of $f(x) \exists s \ a \ \tau$ -nbd N of x s.t f(N)3M.

Also f is said to be continuous or ($\tau - \mu$ continuous) iff it is continuous at each point of X.

It follows that from the definition that f is continuous at x_0 iff for every μ -open set H containing $f(x_0) \exists s$ an τ -open set G containing x_0 s.t $f(G) \subset H$.

Ex: X={a,b,c,d} and Y={1,2,3,4} $\iota=\{\phi, X, \{a\}, \{b,a\}, \{a,b,c\}\}\ \mu=\{\phi, Y, \{1,2,3\}, \{1,2\}\}\$ And f:X \rightarrow Y defined by f(a)=4, f(d)=1,f(b)=2, f(c0=3. discuss the continuity X. Solution : since a \in X and f(a)=4 f(a)=4 \in Y, H \in Y is μ -open. {a}=G, f({a})={4} \subset Y f(G) \in H

 \therefore f is continuous at a .

Since $b \in X f(b)=2$

The μ -open set containing 2 are {1,2}, {1,2,3} and Y.

The τ -open set containing b are {a,b},{a,b,c},X.

 $F(b)=2 \in \{1,2\} \quad b \in \{a,b\} \quad f(\{a,b\})=\{2,4\} \not\subset \{1,2\} \quad b \in \{a,b,c\}$

 $F({a,b,c})=\{2,4,3 \not\subset \{1,2\} \qquad f \text{ is not continuous at } b.$

 $c \in X$, f(c)=3 the μ -open set containing f(c)=3 are $\{1,2,3\}$ and Y.

The τ -open set containing c are {a,b,c} and X.

 $F(\{a,b,c\}) = \{1,2,3\} \not\subset \{1,2,3\}$, $f(X) = Y \not\subset \{1,2,3\}$ f is not $\tau - \mu$ continuous.

 \therefore f is not continuous at c . f is not continuous at X .

A \in , f(d)=1, μ -open set ={1,2},{1,2,3},Y f:Y $\rightarrow X$, τ -open set = X.

 $F(X)=Y \not\subset \{1,2\}$ f is not continuous at d.

Theorem(4) : let X and Y be a topological space A function $f: X \rightarrow Y$ is continuous iff the inverse image under f of every open set in Y is open in x.

Proof : let f be continuous , and let H be an μ -open set.

We have to prove that $f^{1}(H)$ is open.

if $f^{-1}(H) = \phi$ there is nothing to prove

if $f^{1}(H) \neq \phi$ and let $x \in f^{1}(H)$ so that $f(x) \in H$.

by continuity of f, \exists an open set G containing x in X and $f(G) \subset H$ that is $x \in G \subset f^{-1}(H)$, $f^{-1}(H)$ is an open .

conversely : suppose that v is an open set for every open set H in Y

we shall show that f is continuous

let H be an open set Y containing f(x), $x \in f^{-1}(H)$ but $f^{-1}(H)$ is an open set by hypothesis.

there for $f^{-1}(H)$ is an open set in X containing x.

put $G = f^{-1}(H) \rightarrow f(G) = f(f^{-1}(H)) \subset H$

 $\therefore \ f(G) \subset H$, f is continuous (by def) .

Theorem(5) : let X and Y be a topological space A function $f: X \rightarrow Y$ is continuous iff the inverse image under f of every closed set Y is closed in X.

Proof : let f be a function and $F \subset Y$ is closed . $f^{-1}(F)$ is closed

Since F is closed in Y then $Y \setminus F$ is open in Y

By theorem $f^{1}(Y \setminus F) = X \setminus f^{1}(F)$ is open in X

 \therefore f⁻¹(F) is closed in X

Conversely : to show that f is continuous , let $f^{1}(F)$ be any closed subset in X for every

 $F\!\subset\! Y$ is closed . let G be any open set in Y

Theorem(6): let X and Y be any t.s then a function $f: X \rightarrow Y$ is continuous iff the inverse image of every sub base for Y is open in X.

Proof : suppose f is continuous , and B* be a sub base for Y , since each member of B* is open in Y it follows from ((theorem 1)) that $f^{1}(D)$ is open in X for every $D \in B^{*}$ Conversely : let $f^{1}(D)$ be an open set in X for every $D \in B^{*}$ to show that f is continuous , let H be any open set for Y . let B , so that B is abase for Y , If $B \in B$ then $\exists D_1, D_2, D_3, \ldots, D_n$ (n finite) in B^* s.t $B = D_1 \cap D_2 \cap \ldots \cap D_n$ $f^1(D) = f^1\{D_1 \cap D_2 \cap \ldots \cap D_n\} = f^1(D_1) \cap f^1(D_2) \cap f^1(D_3) \cap \ldots \cap f^1(D_n)$ by hypothesis each of $f^1(D_i)$ i=1,2,...,n are open set in X, and there for $f^1(B)$ is an open set in X. since B is abase for Y, $H \subset \bigcup \{B; B \subset G \subset B\}$, $f^1(H) \subset f^1(\bigcup \{B; B \in B\} = 99\{f^1(B); B \in B\})$ $\therefore f^1(H_1)$ is an open set in X, so by (theorem 1.) f is continuous. Theorem(7): *let X and Y be an t .s and f : X*→*Y is continuous iff the inverse image of every member base for Y is an open set in X*.

Theorem(8): A function f from a space X in the another space Y is continuous iff $f(clA) \subset clfA$, $OO \subset X$.

Proof: let f be a continuous function and let $A \subset X$, $\overline{f(A)}$ is closed set in Y

 \therefore f¹(clf(A)) is closed in X. by theorem 2, and there for clf¹(clf(A))=f¹(clf(A))---(*) Now $f(A) \subset clf(A)[\therefore A \subset \overline{A}]$ $A \subset f^{1}(f(A)) \subset f^{1}(clf(A))$ \therefore clA \subset f⁻¹(clf(A)) $A \subset f^{-1}(clf(A))$ \therefore clA \subset f⁻¹(clf(A)) $F(clA) \subset f(f^{-1}(clf(A)) \subset clf(A))$ \therefore f(clA) \subset clf(A). Conversely : suppose that $f(c|A) \subset clf(A) \ 00A \subset X$, to show that f is continuous Let F be any closed subset of Y, that is clF=F. $f^{1}(F)$ subset X so that by hypotheses $f^{1}(clf(F)) \subset cl f f^{1}(F) \subset clF = F$ there for fclf⁻¹(F) \subset F. $clf^{-1}(F) \subset f^{-1}(F)$ ----(1) but $f^{1}(F) \subset clf^{1}(F)$ ----(2) always by $[A \subset clA]$ from 1 and 2 we get $f^{-1}(F=cl f^{-1}(F))$, it follows that $f^{-1}(F)$ is closed subset of X hence f is continuous by theorem 2

41

theorem(9): A function f from a space X in the another space Y is continuous iff cl f ${}^{l}(B) \subset f^{l}(clB) \forall B \in Y.$ proof: let f be a continuous function and let $B \subset Y$, since clB is a closed subset of Y, then $f^{1}(clB)$ is a closed subset in X (bythe2) cl $f^{1}(clB)=f^{1}(clB)$ ---(1) now $B \subset clB \rightarrow f^{1}(B) \subset f^{1}(clB)$ \therefore cl $f^{1}(B) \subset cl f^{1}(clB)=f^{1}(clB).$ cl $f^{1}(B) \subset f^{1}(clB)=f^{1}(clB).$ conversely : let the condition hold let F be any closed subset in Y. so that clF=F. by hypothesis cl $f^{1}(F) \subset f^{1}(clF)=f^{1}(F)$ $f^{1}(F) \subset cl f^{1}(F) = cl f^{1}(F)$ \therefore $f^{1}(F) = cl f^{1}(F)$ \therefore $f^{1}(F) = cl f^{1}(F)$

Ex: let τ and μ be two topology for R. find whether the function f: $R \rightarrow R$, define by $f(x)=1 \forall x \in R$ is $\tau - \mu$ continuous

Solution : let H be any μ -open set , if $1 \in H$ then $f^{-1}(H) = R$ and if $1 \notin H$ then $f^{-1}(H) = \Phi$

Since each of R and Φ , are open set in τ , so f is continuous

Example: let f and g be a function from R to R defined as follows:

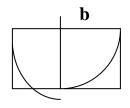
(a) $f(x)=x^2$, $\forall x \in R$ (b) g(x)=|x|, $\forall x \in R$

Find whether each of these function is :

i- μ - μ continuous . ii-S- μ continuous

iii-I - μ continuous iv- D- μ continuous

solution : since the set of all interval (a,b) with a
b form a base for μ it is enough to see whether f¹((a,b)), g⁻¹(a,b) are open w.r.t the given topology for R



$$-\sqrt{b}$$
 a \sqrt{b}

$$f^{1}(G) = (-\sqrt{b}, \sqrt{b})$$

$$f^{1}(G) = \begin{pmatrix} \Phi & \text{if } a < b \le 0 \\ (-\sqrt{b}, \sqrt{b}) & \text{if } a < 0 < b \\ (-\sqrt{b}, -\sqrt{a})U(\sqrt{a}, \sqrt{b}) & \text{if } 0 < a < b \end{cases}$$

i- as show above the inverse image of every interval (a,b) is μ -open.

 \therefore f is μ - μ continuous.

ii- since S is finer then μ [that is every μ -open is S-open] so that f is S-U-continuous

iii- If we take (a,b)=(1,2) then $f^{-1}(1,2)=(-\sqrt{2},-1)\cup(1,\sqrt{2})$ which is not I-open so f is not I-U continuous.

iv- since the inverse image of every open interval is D-open hence the space is D-U continuous .

Q1: let f be a function of R into R defined as f(x) = |x|, $\forall x \in \mathbb{R}$. find whether f is

I-U continuous U-U continuous D-U continuous S-U continuous **Example**: let f be a function of R in to R defined by

$$F(x) = \begin{bmatrix} 1/x & x \neq 0 \\ 0 & x = 0 \end{bmatrix}$$

find whether f is U-U, I-U, S-U and D-U continuous.

solution :consider the open interval (-1,1) where $f^{1}(-1,1) = f^{1}\{(-1,0) \cup \{0\} \cup (0,1)\}$ = $f^{1}(-1,0) \cup f^{1}\{0\} \cup f^{1}(-1,0)$ = $(-\infty,-1) \cup \{0\} \cup (1,\infty)$

Homomorphism

Definition : let (X, τ) and (Y, μ) be two topological spaces and let f be a function from X in to Y .. then

i-f is open function(interior function) iff f(G) is μ -open for every τ -open set G.

ii- f is closed function iff f(F) is μ -closed for every τ -closed set F.

iii- f is bicontinuous iff f is continuous and open function .

iff [f and f^1 is continuous]

iv- f is homomorphism iff

1- f is bijective [1-1 and onto]

2-f is continuous

3- f is open [or f is closed or f^{-1} is continuous]

Definition : A space X is said to be homomorphism to another space Y if \exists a homomorphism from X in to Y. and Y is said to be homeomorphic image of X we write $(X, \tau) \approx (Y, \mu)$.

Definition : A property of a topological space X is said to be a topological property if each homeomorphism of X has that property whenever X has that property .

[The image of every open set is open]

[The image of every closed set is closed]

Example: consider $\tau = \{\varphi, \{a\}, \{a,b\}, X\}$, $X = \{a,b,c\}$, $Y = \{r,p,q\}$,

 $\mu = \{ \varphi, \{r\}, \{p,q\}, Y \}$

F(a)=f(b)=f(c)=r, find whether f is continuous, open, closed, continuous and homomorphism.

Solution : since $f^{1}(\phi) = \phi$, $f^{1}(\{x\}) = X$, $f^{1}(\{p,q\}) = \phi$, $f^{1}(Y) = X$

Are τ -open hence f is continuous also since $f(\varphi)$, $f(\{a\})=\{r\}$, $f(\{a,b\})=\{r\}$,

 $f(x) = \{r\}$

Which μ -open so f is open.

Since every τ -open (and μ -open) sets are τ -closed and μ -closed function.

F is continuous and open so f is continuous.

F is bijective so f isn't homomorphism.

Example : show that the function $f: R \rightarrow R$ defined by

$$F(x) = \begin{bmatrix} X & \text{where } x < 1 \\ 1 & \text{where } x \in [1,2] \\ X^{2}/4 & \text{where } x > 2 \end{bmatrix}$$

Discusses the continuity and opens of f. **Solution** : let (a,b) be any open interval then $f^{-1}[(a,b]) = \begin{bmatrix} (a,b) & \text{if } a < b < 1 \\ (a,2\sqrt{b}) & \text{if } a < 1 < b \\ (2\sqrt{a},2\sqrt{b}) & \text{if } 1 < a < b \end{bmatrix}$

Since the inverse image of every μ -open set is μ -open hence the function f is continuous.

open:let G be any open set containing x , let G=(1.5,1.9) , f(G)={1} which is not open theorem(10):*let* (X, τ) *and* (Y, μ) *be two t.s the mapping f:X* \rightarrow Y *is open iff*

$f(IntA) \subset Int(f(A)),$

proof : let f be an open function and let $A \subset X$, IntA is an open set in X, f(IntA) is μ -open since f is open, since IntA $\subset A$ " always"

$$f(IntA) \subset f(A)$$
,

again since f(IntA) is μ -open there for f is an open function, then Int f(IntA)=f(IntA)---

1

also $f(IntA) \subset f(A)$, Int $f(IntA)=f(IntA) \subset Int f(A)$

```
hence f(IntA) \subset Int f(A).
```

conversely:

suppose that the hypothesis hold , to show that f is open , let G be an τ -open set so Int G=G

 $f(G)=f(IntG) \subset Intf(G)$ by hypothesis

 $\mathop{{}_{\scriptstyle \leftarrow}} f(G) \mathop{{}_{\scriptstyle \leftarrow}} Int \; f(G)$, but $\; Int \; f(G) \mathop{{}_{\scriptstyle \leftarrow}} f(G) \; always$

45

: Int f(G)=f(G) which implies that f(G) is open.

Definition : A property of a topological space is said to be hereditary if every subspace of the space has that property .

Separation Axioms

T₀-space (KOLOMOGORV)

Def: the space (X, τ) is said to be a T_0 -space iff for every two distinct point of $X \exists$ an open set G which contain one of them but not other.

Ex: the (X,I) is not T_0 -space, (X,D) is T_0 -space.

Theorem(11) : A t.s (X, τ) is T_0 -space iff for all $x, y \in X$, $x \neq y$ then $\{\overline{x}\} \neq \{\overline{y}\}$.

Proof : suppose that (X, τ) is T₀-space and , Let , $x \neq y$ we wont to show that $\{\overline{x}\} \neq \{\overline{y}\}$

 \therefore (X, τ) is a T₀-space, then $\forall x \neq y$, \exists an open set G containing x but not y. i.e x \in G but $y \notin G$.

 $\therefore y \in \mathbf{G}^{c}$, then $\{\overline{y}\} \subset \mathbf{G}^{c}$

Since $x \in G$, $x \notin G^c$, that $x \notin \{\overline{y}\}$, but $x \in \{\overline{x}\}$, hence $\{\overline{x}\} \neq \{\overline{y}\}$.

Conversely :Let $x \neq y$ and $\{\bar{x}\} \neq \{\bar{y}\}$, we have to show that (X, τ) is T₀-space

Since $\{\overline{x}\} \neq \{\overline{y}\}$, \exists an element $z \in X$ s.t $z \notin \{\overline{y}\}$ but $z \in \{\overline{x}\}$.

Suppose that $x \in \{\overline{y}\}$ then $\{\overline{x}\} \subset \{\overline{y}\}$ = $\{\overline{y}\}$ which implies that $z \in \{\overline{y}\}$ which is contradiction

 $\therefore \mathbf{x} \notin \{\overline{\mathbf{y}}\} \Longrightarrow (\mathbf{x} \in \{\overline{\mathbf{y}}\})^{c} = \mathbf{X} \setminus \{\overline{\mathbf{y}}\}$

 $\therefore \{\overline{y}\}^{c}$ is open set containing x but not containing y since $y \in \{\overline{y}\}$

 $\therefore(X, \tau)$ is T_0 .

Theorem(12):. Every subspace of a T_0 -space is a T_0 -space. And hence the property is hereditary.

Proof :.let(X, τ) be a T₀-space and let (y, τ _y) be any subspace of (X, τ) .we have td show that (y, τ _y) is a T₀-space.

let y_1, y_2 be any two distinct point of Y, since $Y \subset X$, so y_1, y_2 are two distinct point in X. but (X, τ) is a T₀-space, so an open set G. s.t containing one of them (say) y_1 but not y_2 then $G \cap Y$ is an open set in Y

therefore $G \cap Y$ is a τ_y -open set containing y_1 but not y_2 it follows that (y, τ_y) is a T_0 -space.

Theorem(13): the property of space being a T_0 -space is preserved under 1-1, onto open function and hence is a topological property.

Proof : let (X, τ) a T₀-space and let f be a 1-1 , onto open function from (X, τ) to another topological space (Y, μ) we have to show that (Y, μ) is a T₀-space

Let y_1, y_2 be any two distinct point in Y.

Since f is 1-1, onto function, $\exists x_1, x_2 \in X$, s.t $f(x_1)=y_1$ and $f(x_2)=y_2$, $x_1 \neq x_2$.

Since (X, τ) is a T₀-space, $\exists a \tau$ -open set G containing one of them(say) x_1 but not x_2

Since f is open function, so f(G) is μ -open set containing $f(x_1)=y_1$, but not $f(x_2)=y_2$.

Hence(y, μ) is a T₀-space.

T₁-space :"Frechet space "

Definition :A t.s. (X, τ) is said to be aT_1 -space iff for every two distinct points x and y of x. \exists two open set. G and H s.t. $x \in G$ but $y \notin G$ and $y \in H$ but $x \notin H$.

Note: $T_1 \subset T_0$; that is every T_1 -space is a to- space but the converse may not be true in general.

For example: let x be any set and $a \in x$, a is an arbitrary element : Z={ ϕ , every subset containing a}

 (X, τ) is a T₀-space, but (X, τ) is not T₁-space.

Since every open set containing b contains a also :where $a\neq b$.

Example : IS (R,U) is a T_1 - space .

Solu: let x,ybe any two distinct real numbers . and let y > x, let y-x=k then

 $G = \{(x-k/4, x=x+k/4)\} and H = \{(y-k/4, y+k/4)\} are \mu - open, s.t. x \in G but x \notin H and y \in H a$

but $y \notin G$. hence (R,u)is T₁-space

Theorem(14): the space (X, τ) is T_I -space iff every singleton on subset of x is closed.

Proof: suppose that every singleton subset of x is closed ,to show that (X, τ) is

aT₁-space

Let x, $y \in X$ and $x \neq y$, $\{x\}$ and $\{y\}$ are closed set .

 $y \notin \{x\} \Longrightarrow then y \in \{x\}^{c}$

 \therefore {x}^cis an open set containing y but not x. and {y}^c is an open set containing x but not y

 \therefore (X, τ) is a T₁-space .

Conversely: Let (X, \mathcal{T}) be a T_1 -space and let $x \in X$, we have two show that $\{x\}$ is closed,

Since (X, τ) is a T₁- space

 $\therefore \forall \, y \! \in \! X$, and $x \! \neq \! y.$

 \exists an open set G containing y but not x.

 $x \! \not\in \! G_y \subseteq \! \{x\}$

 \therefore {x}^c is the union of all open set containing y . { x}^c is open ,{x}is closed

Theorem(15): the property of a space being a T_1 - space preserved under 1-1, on to open function and hence is a topological property.

Proof : let (X, τ) be a T₁-space and let f be 1-1 ,open function of (X, τ) on to another t.s. (y, μ) is we shall show that (y, μ) is a T₁- space .

Let y_1, y_2 be any two distinct points of y, since f is 1-1 and on to, $\exists a \text{ distances points } x_1, x_2 \in X, \text{ s.t. } y_1=f(x_1) \text{ and } y_2=f(x_2)$

since (X, \mathcal{T}) is a T_1 -space, $\exists T_1$ -open set G and H s.t $x_1 \in G, x_1 \notin H$ and $x_2 \in H$ but $x_2 \notin G$ since f is an open function. f(G) and f(H) are μ -open subset in y .such that $y_1 = f(x_1) \in f(G)$ but $y_2 = f(x_2) \notin f(G)$. and $y_1 = f(x_1) \in f(H)$ but $y_2 = f(x_2) \notin f(H)$.

hence (y, μ) is a T₁-space.

EXersises:

- 1- show that every finite T_1 -space is discreet.
- 2- show that a t.s (X, τ) is T₁-space iff τ –contains a co-finite topology on X
- 3- show that every topology finer than T_1 -topology on any set X is a T_1 -topology.
- 4- prove that for any set X , \exists s a unique smallest topology τ -set (X, τ) is a T₁-space

5- prove that a finite subset of a T_1 -space has no a accumulation points.

T2-space : Hausdoff space

Definition : a t.s (X, τ) is said to be a T₂-space iff for every two disjoint points x_1, x_2 , \exists disjoint open set G_1, G_2 s.t, $x_1 \in G_1$ and $x_2 \in G_2$, that is $\forall x_1, x_2 \in X$, $x_1 \neq x_2$, \exists two open set G_1, G_2 , $G_1 \cap G_2 = \phi$, and $x_1 \in G_1$, $x_2 \in G_2$.

Example: show that (R,U) and (R,S) are T_2 -space.

Solution: let a,b be any tow distinct points in R , and a>b so $|a-b| = \zeta$ then

(a- $\zeta/4$, a+ $\zeta/4$)=G and (b- $\zeta/4$,b+ $\zeta/4$)=H are tow W-open set containing a &b respectively and G \cap H= ϕ , so the space is T₂-space.

Example: Consider the co-finite topology on an infinite set X , show that it is not T_2 -space .

Solution: For this topology no two open set can be disjoint, suppose if possible that G,H are tow disjoint open subsets of X so that $G \cap H = \phi$.

Then $(G \cap H)^c = \phi^c$ $G^c \cup H^c = \phi^c = X$ (De Morgan)

 $G^{\,\,c}\,\cup H^{\,\,c}\!\!=\!X$

But G c and H c are finite [by definition of co finite then G $^c \cup$ H c is finite also which is contradiction .

Theorem(16): let (X, τ) be a t.s and let (Y, μ) be a housdorff space, let $f: X \to Y$ be a 1-1, onto and continuous function then X is also housdorff.

Proof: let x_1, x_2 be any tow distinct point of X, since f is 1-1, and $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$. Let $y_1 = f(x_1)$, $y_2 = f(x_2)$ so that $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$.

Then $y_1, y_2 \in Y$ s.t $y_1 \neq y_2$

Since (Y, μ) is ahousdorff space, s a μ -open set G and H s.t $y_1 \in G_1$, $y_2 \in G_2$ and

 $G \cap H = \phi$, Since f is continuous, f¹ (G) and f¹ (H) are τ -open set

Now $f^{1}(G) \cap f^{1}(H) = f^{1}(G \cap H) = f^{1}(\phi) = \phi$

And $y_1 \in G \Longrightarrow f^{-1}(y_1) \in f^{-1}(G) \Longrightarrow x_1 \in f^{-1}(G)$

 $Y_2 \! \in \! H \Longrightarrow f^1(y_2) \in \! f^1(H) \Longrightarrow x_2 \! \in f^1(H)$

Hence the space is housdorff.

Theorem(17): every subspace of T_2 -space is a T_2 -space.

Proof: let (X, τ) be a T₂-space and let (Y, μ) be any subspace of X,

Let y_1, y_2 be any tow distinct points of y,

Since $Y \subset X$, then y_1, y_2 are tow distinct point in X but (X, τ) is T_2 -space, so tow open set H,G s.t $y_1 \in G$, $y_2 \in H$ and $G \cap H = \phi$

But by def, $G \cap Y$ and $Y \cap H$ are τ_y -open sets and

 $(G \cap Y) \cap (H \cap Y) = (G \cap H) \cap Y = \phi \cap Y = \phi$

Thus $G \cap Y$, $H \cap Y$ are tow disjoint τ_y -open sets , Hence the subspace (Y_1, τ_y) is T₂-space.

Theorem(18): Each singleton subset of a T_2 -space is closed.

Proof : Let X be a housdorff space , Let $x \in X$

To show that {x} is closed, Let y be an arbitrary point of X distinct from x. Since the space is T₂-space, \exists an open set G containing y, $x \notin G$ it follows that y is not an accumulation points of {x}, so D({x})= ϕ .

Hence $\{\bar{x}\} = \{x\}$ it follows that $\{x\}$ is closed set.

Theorem(19): Every T_2 -space is a T_1 -space but the converse is not true in general

Proof: let(X, τ) be a T₂-space and let y₁,y₂ be any two distinct point of X, since the space X is a T₂-space so, tow open set G, H s.t y₁ \in G, y₂ \in H and G \cap H = ϕ this implies

that $y_1\!\in\!G$ but $y_1\!\not\in\!H$ and $y_2\!\not\in\!G$ but $y_2\!\in\!H$.

Hence the space is a T_2 -space .

But the converse in above example of co-finite topology on an infinite set X, is not T_2 -space, but it is T_1 -space since for if x is an arbitrary point of, then by Def of $\tau X/\{x\}$ is open {be any the finite set } and consequently {x} is closed

The every singleton subset of X is closed and hence the space is T_1 -space .

Example: Let (X, τ) be a t.s and Let (Y, μ) be a housdorff space . if f and g are continuous function from X in to Y, show that the set A={x \in X; f(x)=g(x)} is closed

Solution: we shall show that $X \setminus A$ is open set .

Now X\A={ $x \in X$; $f(x)\neq g(x)$ }-----(1), Let p be an arbitrary point of X\A. Put $y_1=f(p)$ and $y_2=g(p)$,we have $y_1\neq y_2$, thus y_1, y_2 are tow distinct point in a housdorff space, $\exists two \mu$ -open sets G and H s.t $y_1=f(p)\in G, y_2=g(p)\in H$ and $G \cap H=\phi$

$$\begin{split} p \in f^{-1}(G), p \in g^{-1}(H), p \in f^{-1}(G) &\cap g^{-1}(H) = V, \\ since f, g \text{ are continuous function} \\ \therefore f^{-1}(G), g^{-1}(H) \text{ are open set, Hence is open set We have to show that } V \subset X \setminus A \\ Let y \in V = f^{-1}(G) &\cap g^{-1} \text{ then } y \in f^{-1}(G) \text{ and } y \in g^{-1}(H) \\ f(y) \in G \text{ and } g(y) \in H, \text{ since } G \cap H = \phi \text{ it follows that } f(y) \neq g(y) \text{ and } by(1) \end{split}$$

 $y \! \in \! X \! \setminus \! A$, thus we shown that to each arbitrary point $y \! \in \! V,$ also $y \! \in \! X \! \setminus \! A$,

hence $V \subset X \setminus A$

 $X \setminus A$ is an open set

There for A is closed

Regular and T₃-space

Def:A t.s (X, τ) is said to be a regular space iff for every closed set F and every point $p \in F$, \exists Tow open sets G and H s.t $p \in G, F \subset G$ and $G \cap H = \phi$ The regular space which is also T₁-space is called a T₃-space

Example: Let $X = \{a,b,c\}$, and Let $\tau = \{\phi,\{a\},\{b,c\},X\}$

 $\tau^{c} = \{, X\{b,c\}, \{a\}, \phi\}$

Example: show that (R,U) is a T₃-space.

Solution: let F be a U-closed subset and let $x \in R$, s.t $x \notin F$

Theorem(20): A t.s X is regular iff for every point $x \in X$ and every nbd N of x 9 a nbd M of x such that $\overline{M} \subset N$.

Proof :"The only if part" let N be any nbd of x .then \exists an open set G such that $x \in G \subset N$. Since G^c is closed and $x \notin G^c$,

But the space is regular $\exists two disjoint open set L&M$ such that $G^c \subset L$ and $x \in M$.

So that $M \subset L^c$ it follows that

 $\overline{M} \subset \overline{\operatorname{Lc}} = \operatorname{L}^{\operatorname{c}}$ ----- (*)

But $G^c \subset L \to L^c \subset G \subset N$ -----(**)

From (*) and (**) we get $\overline{M} \subset \mathbb{N}$.

The" if part" let the condition hold .

Let f be any closed subset of x .and $x \notin F$, then $x \in F^c$,

Since F^c is an open set containing $\ ,$ so by hypothesis $\exists \, an \, \, open \, \, set \, M \, \, such that \, x \, \in \, M$

and $\overline{M} \subset F^c \longrightarrow F \subset (\overline{M})^c$ then $(\overline{M})^c$ is an open set, containing F also

$$M \cap M^{c} = \emptyset, M \cap (\overline{M})^{c} = \emptyset$$

:. The space is regular

Example: Every T₃-space is a T₃-space

Solu :let (X, τ) be a T₉-space , and let x,y be any two distinct point.

Now by definition of X , the space is R T_1 and so $\{x\}$ is a closed set also $y \notin \{x\}$.

Since X is regular . \exists two open set G&H such that $y \in G$, $\{x\} \subset H \& G \cap H = \emptyset$, but $x \in \{x\}$

 \subset H, hence the space is T₂.

Theorem(21): Every compact housdorf space is a T_3 -space

Proof //let (X, τ) be compact housdorff space

To show that (X, \mathcal{I}) is a T₃-space

since X is housdorff, so X is a T₁-space, it suffices to show that (X, \mathcal{I}) is a regular, let F be a closed subset of X and let $p \in X$ such that $p \notin F$

so $p \in X \setminus F$, since (X, \mathcal{T}) is a housdorff space so for every $x \in F$, there must exist two open sets $G(x) \cap H(x) = \emptyset$...(*)

The collection $C = \{H(x); x \in F \}$ is open cover of F.

Since F is a closed subset of a compact space X, so that F is compact (by theorem)

Hence $\exists s \text{ a finite numbers of points } x_1, x_2, ..., x_n \text{ in } F \text{ such that } F \in \{H(x_i), i=1,2,...,n\}, let H=U\{H(x_i), i=1,2,...,n\}$ And $G = \cap \{G(x_i), i=1,...,n\}$ Then $p \in G$, since $p \in G(x_i)$ for each x_i also $G \cap H=\emptyset$, [other wise $G(x_k) \cap H(x_k) \neq \emptyset$ for some $x_k \in F$ this contradict(*)] hence the space is regular.

Normal $+T_3 = T_4$

Normal space and T₄-space

Definition : At.s.(X, τ) is said to be normal iff for every pair of disjoint τ -closed subset L and M of x , $\exists s \tau$ - open sets G and H such that L \subset G , M \subset H and G \cap H=Ø.

A normal space which T₁ –space is called a T₄–space

Example :lets $X = \{a,b,c\}, T = \{\emptyset, X, \{a\}, \{b,c\}\}$ since the only disjoint closed subsets are

{a} ,{b,c} which is also are τ -open sets.

The space is normal.

But τ is not a T₁-space.

Since $b\neq c$, there does not exist an open set containing one of them but not the other.

Theorem(22); A t.s (X, \mathcal{I}) is normal iff for any closed set F, and open set G^* containing F, \exists an open set V such that $F \subset H^*$ and $\overline{H}^* \subset \overline{G}^*$

Proof // the "only if part "let X be a normal space , and let F be any closed set and G be an open set containing F.

G is open \Rightarrow G^c is closed, and F∩G^c=Ø, since the space is normal ∃two disjoint open set H^{*} and G^{*} such that F⊂H^{*}, G^c⊂G^{*} and H^{*}∩G^{*}=Ø so that H^{*}⊂G^{*}

But
$$\operatorname{H}^* \subset \operatorname{G}^{*_{\operatorname{c}}} \Longrightarrow \overline{\operatorname{H}^*} \subset \overline{\operatorname{G}^{*_{\operatorname{c}}}} = \operatorname{G}^{*_{\operatorname{c}}} \dots \dots 1$$

Also $G^c \subset G^* \rightarrow G^{*c} \subset G$ 2

From 1 and 2 we get $\overline{H^*} \subset G$

•

The "if part "suppose the hypothesis is hold and to show that the space (X, τ) is normal

Let L and M be any two disjoint closed subset of X. that is $L \cap M = \emptyset$ then $L \subset M^c$, [L is closed, M^c is an open set containing by hypothesis \exists an open set H^* such that $L \subset H^*$, and $\overline{H^*} \subset M^c$ which implies that also $H^* \cap (\overline{H^*})^c = \emptyset$ thus the space is normal

Theorem(23): normality is topological property

Theorem(24): every closed subset of a normal space is normal space is normal.

Proof :let(X, τ) be a normal space , and let (Y, τ y) be any closed subspace of X we have to show that (Y, τ y) is normal

Let L^{*}, M^{*}be any two disjoint closed subset of Y, then $\exists a \text{ subset } L,M \text{ of } X \text{ such that } L^*=L\cap Y, M^*=M \cap Y \text{ since } Y \text{ is closed it follows that } L^* \text{ and } M^* \text{ are } \tau \text{ -closed subset in } X.$ Since X is normal, $\exists two \tau$ -open set G and H such that $L^* \subset H$,

 $M^* \subset G$ and $H \cap G = \emptyset$.

So $L^* \subset H$ and $L^* \subset Y \rightarrow L^* \subset H \cap Y$

 $M^*\!\subset\! G \text{ and } M^*\!\subset\! Y \to M^*\!\subset\! G \cap\! Y$

And $(H \cap Y) \cap (G \cap Y) = (H \cap G) \cap Y = \emptyset \cap Y = \emptyset$

 $L^* \subset H \cap Y$, $M^* \subset G \cap Y$ and $(H \cap Y) \cap (G \cap Y) = \emptyset$, hence the space is normal.

Example: show that if the space is normal.

Let L,M be any U-closed subset of R s.t $L \cap M = \emptyset$

Let $r \in L$ then $r \notin M$ and so $r \in R \setminus M$ since $R \setminus M$ is $U - open, \exists \zeta > 0$ such that

 $(r-\zeta, r+\zeta) \subset R \setminus M$, therefore $(r-\zeta, r+\zeta) \cap M = \emptyset$

Let G=U{ $(r - \zeta/3, r + \zeta/3)$; $r \in L$ then $L \subset G$. similarly it can be shown that for each

 $m \in M$, $\exists_s \delta > 0$ such that $(m - \delta, m + \delta) \cap L = \emptyset$, and let $H = U\{(m - \delta/3, m + \delta/3); m \in M\}$

therefore m \subset H,thus G,H % = 0 are two open set such that L \subset G,M \subset H

we have two show that $G \cap H = \emptyset$.

Suppose is possible that $x \in G \cap H$ so $x \in G$ and $x \in H$. then $x \in (r-\zeta/3, \zeta/3)$ for some

 $r \in L$ and $x \in (m-\zeta/3, m+\zeta)$ for some $m \in M$ we then have $/r-x/<\zeta/3$ and $/m-x/<\zeta/3$ hence $/r-m/=/r-x+x-m/ \le /r-x/ +/m-x / <\zeta/3 +\zeta/3$ if $\zeta < \delta$ then $/r-m/<\zeta$ and so $r \in (m-\zeta/3, m+\zeta)$ which is C!

if $\delta < \zeta$ then $r-m < \zeta$, and $m \in (r-\zeta/3, r+\zeta/3)$ which is contradiction

it follows that $G \cap H = \emptyset$ hence the space is normal

Urysohn's lemma

let $F_{1,}F_{2}$ be any pair of disjoint closed set in a normal space X, \exists a continuous function $F:X \rightarrow [0,1]$ s.t f(x) = 0 for $x \in F_{1}$, and f(x)=1 for $x \in F_{2}$

Completely regular space and tychonoff space .

Def: A topological space X is said to be completely regular iff for every closed subset F of X and every point $x \in X \setminus F$, $\exists a$ continuous function f of X in to the subspace [0,1] of R . s.t f(x)=0 and f(F)=1

A tychonoff space (or T_3 -1/2space) is completely regular and T_1 -space .

Theorem(25): A t.s(X, τ) is completely regular iff for every $x \in X$ and every open set G containing $x \exists_s a$ continuous function f of X in to [0,1] such that f(x)=0 and f(y)=1 $\forall y \in X \setminus G$

Proof: Let (Y, τ) be a completely regular space and G be an open set containing x , such that $x \notin X \setminus G$ then $X \setminus G$ is a closed set which dose not containing x .

By definition of completely regular $\exists a \text{ continuous function } f \text{ from } (X, \tau) \text{ in to a subset}$ [0,1] such that f(x)=0, f(y)=1 for all $y \in X \setminus G$.

Conversely : Let the condition is hold

Let F be any closed subset of X and x be a point of X such that $x \notin F$. then $x \in X \setminus F$ and since F is closed so X \F is an open set containing x

By hypothesis $\exists s \text{ a continuous function } f \text{ from } (X, \tau) \text{ into a subset } [0,1] \text{ s.t } f(x)=0 \text{ , } f(y)=1 \text{ for all } y \in X\{X \setminus F\}=F$

Hence the space is C.R

Theorem(26): Every completely regular space is regular. Hence every tychonoff space is a T_3 -space.

Proof: Let X be a completely regular, Let F be a closed subset of X, and let x be a point of X such that $x \notin F$ since the space is completely regular. \exists a continuous function f from(X, 7) into subset [0,1] such that f(x)=0, $f(F)=\{1\}$.

Also we can see that the space [0,1] with the relative usual topology is a T₂-space

Hence \exists open sets G and H of [0,1] s.t $0 \in G$ and $1 \in H$ and $G \cap H = \emptyset$ since f is a continuous then $f^{-1}(G)$ and $f^{-1}(H)$ are open set in (X, τ) s.t $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$

Further $f(x)=0 \in G \rightarrow x \in f^{-1}(G)$ and $f(F)=\{1\} \subset H \rightarrow F \subset f^{-1}(H)$

Hence the space is regular

Theorem(27): *Every* T_4 -space is a tychonoff space.

Proof: Let (X, τ) be a T₄-space by definition T₄=normal+T₁

To show that the space is tychonoff space it suffices to show that the space is C.R,

So Let F be a closed subset of X , and let x be a point of X s.t $x \notin F$,

since the space $(X, {\boldsymbol{\tau}} \,) is$ a $T_1 \text{-}$ so $\{x\}$ is closed subset of $X\,$,

thus $\{x\}$ and F are two disjoint closed subset of a normal space

So by ((Urshon's Lemma)) \exists a continuous function f from (X, τ) in to the set [0,1] s.t

 $f({x})=0$ i.e f(x)=0 and $f(F)={1}$

it follows that the space is C.R.