Metric Space:
Open sets: Let (X,d) be a metric space . A subset G of X is said to be d-open
iIff to each x <G there exist r >0 such that S(x,r) <G.

Def™: Let (X,d) be a metric space, and let X, < X if re R" then the set
{xeX; d(X,X,)< r} is called an open sphere (or open ball).the point x, is
called the center and r the radius of the sphere. and we denoted by
S(X,,r) or by B(X,,r): i.e. S(Xo,N)={ X, X; d(X,X,)< r}

Closed set is define and denoted by S[X,,r]={ X, X; d(X,X,)< r}.
Ex: Let xeR then a subset N of R is U nbd of x iff there exist a u-open set G
such that xec =N, but G is U-open and x< G implies that there exist an

0>0 such that (x-6,x+3)< G. Thus N is a U-nbd of x if N contains an
open interval (x-8,x+08) for some 6>0. In particular every open interval
containing x is a nbd of x.
Ex: Consider the set R of all real numbers with usual metric space
d(x,y) =|x-y and find whether or not the following sets are open.
A= (0,1) ,B=[0,1), C=(0,1] ,D=[0,1], E= (0,1)U(2,3) , F={1},
G={1,2,3}.
Sol" : A is open set Let x be appoint in A, we take r=min{x-0,1-x}, then it is
evident that (x-r, x+tr)c A
For example consider 1 <(0,1), then r=min{%-0,1-: }=min{:,2}=1
(:-1,4+1) =00, 1)=(0,1)=A.
B is no open set, since however small we choose a positive number r,
the open interval (0-r,0+r) = (-r,r) is not contained in B. Thus there

exists no open ball with 0 as centre and contained in B .



Theorem 1: In a metric space the intersection of a finite number of open sets
IS open.

Proof: Let (X,d) be a metric space and let {G; ;i=1,2,3,...,n } be a finite
collection of open subsets of X, to show that
H=N{G;;i=1,2,3,...n} is also open. let xe G; for every

i=1,2,3,...n, since each G;j is open there exist r;>0 such that
S(x,1)cGi i=1,2,3,...n . letr=min {ry r,rs,...,r}, then
S(x,r) «S(x,r;) for all i=1,2,3,...n, it follows that
S(x,r) cG; foralli=1,2,3,...,n, this implies that
S(x,r) «N{Gj, i=1,2,3,....,n}=H, thus it is shown that to each x in
H there exist r>0, such that S(x,r) < H. Hence H is open.
Theorem 2: In a metric space the union of an arbitrary collection of open set
IS open.
Proof: let (X,d) be a metric space and let {G,;2 < A} be an arbitrary collection

of open subset of X, to show that G =U{G, : 1 € A} is open, let X G,
then by def" of union x<G;, for some Ae<A, since G, is open there
exists r>0 such thats(x,r) = G, butG, = G, hence S(x,r) =G , thus we have

shown that to each x< G, there exists a positive numbers r such that

S(x,r) = G,hence G is open

Theorem 3: A subset of a metric space is open iff it is the union of family of
open ball.
Proof: Let (X,d) be a metric space and Ac X, let A be open ,if A=¢4, then itis

The union of empty family of ball , now let A= ¢, and xeA, since A is
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open, there exist an open ball B(x,r), r>0 such that B(x,r) cA, it
follows that A= {B(x,r), x in A}cA. Hence A=U{B(x,r),x e A}
So A is the union of a family of open ball.

Conversely if A is the union of a family of open ball then A is open by
Theorem 2.
Ex: Show that in a discrete metric space every set is open.
Sol": Let A be a subset of discrete metric space if A=4, then A is open, if

A=g, let xeA, since S(x,1)={x}, we have S(x,%) <A. Hence A is open.
Ex: Show that in a metric space, the complement of every singleton set is
Open . More generally the complement of a finite set is open.
Sol": HW
Ex: Give an example to show that the intersection of an infinite number of

open sets is not open.
Sol": Consider the collection {(-3,2), ne N} of open intervals in R with usual
metric d(X,y)=|x-y|, thenN{(-1,1), ne N }={0}, which is not open since there
exist not r>0 such that (-r,r) <{0}.
Closed sets:
Def": Let (X,d) be a metric space , a subset A of X is said to be closed iff the
complement of A is open.
Ex: Show that every singleton set in R is closed for the usual metric d for R.
Sol": Let acR, to show that {a} is closed. Now R-{a}=(-o0,a)U (a,0), but
(-0,a) and (a,0) are open sets, hence their union is also open.

Theorem 4: Let (X,d) be a metric space and let {H,; 1 < A} be an arbitrary



collection of closed subsets of X. then N{H,;1eA} IS also a closed set. In
other words, the intersection of an arbitrary family of closed sets is closed.
Proof: H,isclosed, V4 eA,
then X-H  isopen, VieA,
then U{X-H,, viea }is open by theorem
then X-N{H,,viea }isopen De-Morgan
then N{H, ,viea}isclosed.
Topologies:
Def": Let X be anon empty set and let  be a collection of subsets of X
satisfying the following three condition:
Tipen, Xenx.
To.if G exr and G, ez thenG, NG, ex.
T3 :If G, ex forevery 1 e A whereAisarbitrary set then U{G,; 1 A}
Then & is called a topology for X, the members of n are called m-open sets
and the pair (X,n) 1s called a topological space.
Ex: Show that the union of empty collection of sets is empty i.e.
U{A, 21 eg}=¢ and the intersection of empty collection of subsets of X is X
itself i.e. N{A,.1eg}t=X
Ex: Let X={a,b,c}, and consider the following collections of the subset of X:
1-m ={¢. X}
2-m, ={p{a}.{o.c} X}
37, ={s.{a}.{b}, X}
4-r, ={p{a} X}



5-r; ={¢.{a}.{o}.{a. b} X}
6 -7, ={{b}.{a,c} X}
7—-r, ={¢{a,0},{b,c}, X}
8 -7y ={p.{b}.{b,c}, X}
Let we verify these axioms for mg,

T, peny, , X eng
T,igN{br=¢N{a,b}=¢NX =¢ c 7
{b}N{a, b} ={b}" X ={b} € 7,

{a,b}" X ={a,b} e =,

T; :pU{b}={b}, pU{a.b}={a,b} 4UX =X {b}U{a,b}={a b}
{ab}UX ={a,b} {o}U{a,b}UX =X

} All are in mg .
So mg is a topology on X.
Theorem 5: Every metric space is a topological space, but the converse is not
true .
Proof: Let (X,d) be any metric space to prove that X, ¢ is open set.
Let x € X then3 B, (x) suchthat B, (x) = X so X isopen
If X e ¢ — 3B, (x)suchthat B, (x) — ¢ — gisopen
Let A,B be an open sets, to prove that ANB is open,

Letx e A(1B — xe Aand x e B — 3B, (x)c Aand B,(x) — B Leti = min{r,s)so
B,(X) = B,(x)NB,(x)c ANB soA[B isopen
Let {A ;i e l)bea faimlyof opensetto provethat UAi IS open
iel

Letx e JA thendie Isuchthatxe A - 3B, (X) = A > B, () = A = JA
iel iel
~|JA isopenset.
iel

But the converse is not true for example let X={a,b,c} and
n={¢,{a}, X}, suppose hat d is a metric of X, p=d(a,b) but B,(b)={b}



Which is not open.

Ex: Let X be any set. Then the collection I= { ¢,X) consisting of empty set
and the whole space. Is always a topology for X called the indiscrete or
(trivial) topology, the pair (X,1) is called an indiscrete topological space.

Ex: Let D be the collection of all subsets of X, then D is a topology for X
called the discrete topology.

Sol™ Since ¢ < X, X = X, wehaveg e D,and X e DSO that T satisfied.

T, : Also holds since the intersection of two subset of X is a gain a
subset of X.

T,: Is satisfied since the union of any collection of subset of X is again
a subset of X.

Ex : Let R be the set of all real numbers and let S consist of subsets of R

defined as follows:

I- s 1i- A non-empty subset G of R belong to S iff to each peG,3a
right half open interval [a,b) where a,b are in R, a<b such that pe[a,b)cG
show hat S is a topology for R called the lower limit topology or in short
RHO topology for R.

Sol"; Tq1: gesalso Re s since to each peR there exists aright half-open

interval [p,p+s ), £>0, suchthatpe[p,p+¢&) =R

T,: Let G,,G, S,and Let pe G, NG,, thenp € G, and p € G, SO there exists a right half-

open intervals H; and H, such that peH, cG,and peH, cG,, it follows that

peH,NH, eG,NG,,sinceH, NH, ¢ SO its clear that H,NH,is a right half-open
intervals, thus to each pe<G,NG,, there exist a right half-open interval

H,NH,,suchthatpe H,NH, =G,NG, , hence G,NG, eS.



Ts: Let G, €S, vieA where A is an arbitrary set, let peU{G,;1<A}. Then

there exist 4, e AsuchthatpeG, .since G, is S-open, there is a right half-open
intervals H such that peH <G, . it follows that peH cU{G, ;1 eA}.
HenceU{G,;1ea}es. Thus S is a topology for R.

Similarly the upper limit topology for R consist of ¢ and all those subset
G of R having the property that to each peG there exist a left half- open
interval (a,b] such that pe(a,b]cG.
Ex: let @ be the collection of subsets of N consisting of empty set ¢ and all
subset of N of the form G, ={m,m+1,m+2, ...}, min N show that wis a
topology for N, what are the open sets containing 5.
Sol": T,;perandA ={123..}=Ner

G, asm>n

T, :LetG,, e zrand G, € 7 ,m,n € N,thenG,, NG, ={ henceG,, NG, e 7

G, asn<m

T,:G, e 7V e A where A is arbitrary subset of N, since N is a well ordered
Set (prove that) A contains a smallest positive integer mg SO that
U{G, : 2 e A}={m,,m, +1,m, +2,.} =G, <, hence 7 is a topology for N.
G, =N={1,23,...}, G,={2,3.4,...},G3={3,4,5,6,...} G,={4,5,6,...}
Gs={5,6,7.8,...}
Note: A partially ordered set X is said to be well ordered if every subset of X
contains a first element.
Partial ordered set the pair(x,<) is called p.o. set if x<y for X,y in X If ae x be
such that a < xvxe, thenaisa firstelementof X .

Ex: List all possible topologies for the set X={a,b,c}.
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Ex: Let U consist of ¢ and all those subsets G of R having the property that to
each xeG there exist &> 0suchthat(x—¢,x+5) =G to show that U is a topology
for R called the usual topology.

Sol" : T1 - ¢ =U bydefinitionalsoR €U, sincetoeachx € R (x—1,x+1) R, In fact foranys > 0

(Xx—&,x+&)cR
T, : Let G1,Gycu  If G, NG, =g¢there is nothing to prove if G, NG, = ¢,let
xeG, NG, then xeG,and x € G,,hencede, >0,¢, > osuchthat(x—&,x+ &) = G,
(x—¢,x+¢) =G, takes =min{ ¢, &,}, theng >0and (x— &,x+ &) = G, N G,, henceG, NG, U.
Ta. Let{G,; 1 < A} be an arbitrary collection of members of U an let
x e\ {G,; 2 € A},thenx e G, for some 1 € A,sinceG, eU 3¢ > Osuchthat(x—&,x+£) = G,
But (x—&,x+¢&) cU{G, : 1 € A}, therefore U{G,;1 € A} U, so U is a topology for R.

Comparison of topology:

Def" : Let m; and m, be two topologies for a set X , we say that mt; is weaker or
(smaller) than =, or that &, is stronger or (Larger) than =« iff z, c ,
that is iff ev ery my —open is mp-open, if either =, c =, orz, c =, We say
that the topologies m; and m, are comparable. If z, « 7, and =, c =, ,
then we say that m; and 7, are not comparable.

For any set X, (X.1) is weaker topology and (X,D) is stronger topology.

Ex : Find three mutually non comparable topologies for the set X={a,b,c}
Sol": Let =, ={s{at, X} =,={a{0}. X}, =, ={s{c}x} Also from the following
topology =, ={s{a}.x}, =, ={s.{a}.{a.b}.{a.c}, X}, =, ={s.{b}.{b.c}, X}, we see that

m; and 73 are not comparable since z, « 7, and z, « =, but m; and m, are

comparable.

Intersection and union of topologies:



The union of two topology need not be a topology for example Let
X={a,b,c}, consider two topology defined on X as follows =, ={s.{a}, X} ,
=, ={¢.{6}, X}, then which is not topology for X
Theorem 6: Let {z, ;1< A} where A is an arbitrary set be a collection of
topologies for X then the intersection N{z,;2 <A} is also a topology for X.
Proof: Let {z, :1 < A}be a collection of topologies for X, we have to show that
N{z, :2 e A} IS also a topology for X , if A=¢, then N{z, :1 e a}=P(X). Thus in
this case the intersection of topologies is the discrete topology. Now leta = ¢,
T, :since z,:vaeais atopology, it follows that ¢, X ez,;viea , but
pen, YieAthenper, , AeA} and X ez, VA eAthenX ez,;1 € A}
T,:LetG, G, e{r,; 1A} then G,,G, e z,;VieAsincer, isatopology for X VA eA
It follows that G, NG, ez, ;vieA, hence G,NG, eN{z,; 1A} .
T3 Let G, eNfz,;21 €A}, VAie A where A is an arbitrary set, then
G,exr,;VieAand VaeA , since for each z, is a topology for X, it follows
that U{G,;a e Ayer,;via. HeNce U{G,;a e A} e{r,; 2 e A}y thusN{rz,; A A} IS A
topology for X,
Closed sets:

Def": Let (X, 7 ) be a topological space, a subset F of X is said to be n-closed

Iff its complement F° is open.
Ex: Let X={a,b,c}, and let n={¢,{a},{b,c}, X} since {a}* ={b,c}, {b,c}* ={a}
It follows that the closed sets are ¢, {a},{b,c}, and X.

Def" : A topological space (X,n) is said to be a door space iff every subset

of X is either open or closed. For example let X={a,b,c} and



10

n={¢,{b}.{a,b}.{b,c} X} then the closed sets are X,{a,c},{c}.{a}.¢.
Hence all the subsets of X are either open or closed and consequently (X,r)
IS a door space.
Ex: If acr show that {a} is closed set in the usual topology for R.
Sol" : {a}° = (—0,a)U(a,») but (-00,a) and (a,o0) are open sets hence their union
is also open, it follows that {a}° is open , therefore {a} is closed.
Intersection and union of closed sets:

Theorem7 : If {F,;2< A} is any collection of closed subsets of a topological
space X, then N{F,; 1 <A} is closed set.
Proof : F, isclosed VA e A then F°. isopen VA e A then U{F°. :1 A} IS 0pen By Tj

[XF, ;A € A}]® isopen De — Morgan Law
thenN{F, ; 2 € A}isclosed by Def " of closed set.

Theorem 8: if F; and F, b any two closed subsets of a topological space X
Then F,UF, is a closed set .
Proof : F,,F,areclosed= F,°,F,° areopen= F," N F,° isopenbyT, of Def "

(F,UF,)“isopen ByDe— Morganlaw= F, UF, isclosed.

Note: Fq,F,,F3,...F, be a finite number of closed subsets of X, then their
union will also be a closed subset of X.
Ex : Give an example to show that the union of an infinite collection of
closed sets in a topological space is not necessarily closed.
Sol" : Let (R,U) be the usual topological space. And let F,=[1/n,1], neN. So
that F, is closed interval on R, then [21]° ={xeR,x<2orx>1} = (—o0,2)U (1, )

which is open hence [1/n,1]=F, is closed set, Now
10
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U{F, ,ne N}={B UL QU 1U..= 04 since (0,1] is not closed it follows that the
union of an infinite collection of closed sets is not necessarily closed.
Characterization of a topological space in terms of closed sets:
Theorem 9: Let X be anon-empty set F,,F,eF=F UF, eF
F,:F,eF VieA=({F,;AecA}eF
Then there exist a unique topology on X such that the n-closed subsets of X
are precisely the members of F.
Proof: Let m consist of the complements of the members of F, then w is a
topology for X.

Ty XeF=>X‘er>gpernandgeF =g en=>Xern

T,:G,,G,en=G",G,  eF
=G,",G," eF byF,
= (G, NG, eF by De — Morgan
= G,NG,eF  byDef"
T,: G,er VAeA
=G, eFVieA
=({G,";AeA}eF byF,
= [H{G,; 4 € A}]° € F De—Morgan
soU{G, :AteA}er

Hence 7 is a topology for X.
further a subset F for X is closed iff Fc e, thatis iff FeF. to show the
uniqueness of topology, let m and ©~ be two topologies have the same system

of closed sets.

11
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then G e 7 < Gisz —open
< GCisz—closed
<G isz~ —closed [sincer and 7~ havethesame system of closed sets]
< Gisz™ —open

& Gern hencer =7

Neighbourhoods:
Def" : Let (X,n) be a topological space and let xe x . A subset N of X is said
to be a m-neighbourhood of x iff there exist a m-open set G such that xeG = N.
Similarly N is called a -nbd of A subset of X iff there exist an open set G
such that Ac G = N. The collection of al nbd of in X is called the
neighbourhood system at x and denoted by N(x).
EX : Let X={1,2,3,4,5} and let =={¢,{1}.{1,2},{1,2,5}.{1,3,4},{1,2,3,4}X}

then n-nbd of 1 are

{1}{1,2},{1,3}{1,4}{1,5},{1,2,3}{1,2,4},{1,2,5},{1,3,4}{1,3,5}.{1,4,5},
{1,2,3,4},{1,2,4,5},{1,3,4,5},{1,2,3,5},and X

Not that {1,3} is not an open set but it is a m-nbd of 1 since is a m-open set
such that 1e {3 = {1,3}

Ex: Which of the following subsets of R are nbd of 1?

(0,2),(0,2][1,2], [0,2]-1.5, R
Theorem 10: A subset of a topological space are open iff it’s a nbd of each its
points.

Proof: Let a subset G of a topological space be open. Then for every xeG,
xeG <G and therefore G is a nbd of each its points.

Conversely let G be a nbd of its point, if G=¢, then there is nothing to prove,

if x#¢, then to each xeG there exist an open set G, such that xeG, cG. It

12
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follows that G =U{G,,x < G}, hence G is open.
Ex: Let X be a t.s. If F is closed subset of X, and x< A®, prove that there is a
nbd N of x such that NONF =4 .
Sol": Since F is closed then F® is open and so by above theorem F° contains
a nbd of each its points. Hence there exist a nbd N of x such that
NcF®ie NNF=¢
Theorem 11: Let X be a topological space, and for any xe X, Let N, be the
collection of all nbds of x then:
1- wxe X, N(x) = ¢, i.e. Every point x has at least one nbd.
2- N eN(x)thenx e N(x), i.e. Every nbd of x contains x.
3- N eN(x),N cMthenM e N(x) i.e. Every set containing a nbd of x is a nbd of
X.
4- N eN(x),M e N(x) thenN M e N(x), I.e. the intersection of two nbd of X is
nbd of x.
5- N e N(x) thenthereexist M e N(x)suchthatM < Nand M < N(y).i.e. If N is a nbd of
X, then there exist a nbd M of x which is a subset of N such that M is a
nbd of each of its points.
Proof:1-Since X is an open set it is a nbd of every xeX. Hence there exist
at least one nbd (namely X)for each xe X. Hence N #¢ for all xeX.
2-1f NeN then N is a nbd of x, so by Def" of nbd xe X.
3- If Ne N(x)  there exist an open set G such that xeG < N,since
NcM,xeGeM, and so M is a nbd of x, hence M e N(x).
4- Let NeNy and M <Ny, the by Def" of nbd , there exist an open sets G,

and G, such that xeG, =N andxeG, =M hence xeG,NG, = NNM , Since
13
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G,NG,, Is an open set, it follows from (1) that NN M is a nbd of X, hence

NAM eN(x) .

5-1f Ne Ny, then there exist an open set M such that xe N =M. Since M is

open set it is a nbd of each of its point therefore M eN(y) vyeM.

Base for the neighbouhood system of a point ; Base for a topology

Local Base at a point.

Def": Let (X,n) be a topological space, a non-empty collection B(x)

of m-neighborhoods of x is called a base for n-nbd system of x iff
for every m-nbd N of x there is Be B (X) such that Bc N, we say
that B (X) is a local base at x or a fundamental system of nbds of x.

If B(X) is local base at x, then the members of B(x) are called

basic m-nbds of x.
Ex: Let X={a,b,c,d,e} and let = ={¢.{a}.{a.b}.{a,b,e} {a,c.d}.{a,b,c,d}, X}
Then the local base at each point a,b,c,d,e is given by B(a)={{a}},
B(b)={{a.b}}, B(c)={{a.c,d}}, B(d)={{a,.c,d}},B(e)={{a,b,e}}.
Ex : Let (X,m) be any topological space, and let x e X, show that the collection
B(x) of all m-open subset of X containing X is a local base.
Sol" : Let N be any nbd of x. then there exist an open set G such that

xeG <N . since G is an open set containing X, G e 4(x), this show that

B(x) 1S a local base at x.

Properties of local base:
Theorem 12: Let X be a topological space and let s (x) be a local base at

any point x of X, then g (x) has the following properties.

Bo: p(X)=¢ forevery xin X.
14
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Bi: If Be B(x) thenxeB

B,: If Ac B(x)and B e S(x)therdsaC e B(x)suchthatC = AN B

B.: A e B(x)thendsaset Bsuchthat x € B[ < A and suchthat for every y € B,
dsasetC € p(y)satisfyingC — B

Proof: By- Since X is open , it is a nbd of its points, since g (x) is a local base
at any point x of X, and X is a nbd of X, it follows that there must

exist a Be g(x) such that B x . Hence pg(x)=¢ vxe X..

Bi: If Beg(x), then B is a nbd of x, so by Def" of nbd xeB.

B,:If Ae p(x) then Ais a nbd of x, similarly B is a nbd of x it follows
that AnB is a nbd of X, since p(x)is a local base at x, it follow that
there exist C e B(x)such thatC « ANB.

Bs: Since A< p(x), Ais anbd of x, hence there exist an open set B

Such that xeB < A, since B is an open set it’s a nbd of everyyeB
Again since g(y) is a local base at y and B is a nbd of every yeB
It follows that for every yeB 3s,C e A(y)suchthatC = B.
Ex : Consider the usual topology U for R and any point xeR. then the
collection g(x) ={(x—¢,x+¢);0< e <R} constitutes a base for the U-nebd
system for X, to prove this, let N be any nbd of x, then there exist
U-nbd set G such that xeG =N , since G is U-open there exist >0
such that (x-&,x+¢) =G <N, thus to each nbd N of x, there exist a
member (x—& x+¢)e B(x) such that (x—¢,x+¢&) =N
H.W/ Also show that g(x) ={(x-1,x+1),ne N} is anther local base for U-nbd

First countable space:

Def" : A topological space (x,m) is said to satisfy the first axiom of count-

15
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ability if each points of X possesses a countable locale base, such a
topology is said to be a first countable space.
Ex: A discrete space (X,D) is a first countable, for in a discrete space every
subset of X is open, in particular each singleton {x}, xe X is open and so
is a nbd of x. Also every nbd N (i.e. open set containing X in this case)
of x must be a superset of {x}.
hence the collection {{x}} consisting of the single nebd {x} of x,
constitutes member is countable. Hence there exists a countable base at
each point of X.

Ex : Show that the topological space (R,U) is first countable.

Sol" : Let xeR then the collection {(x—%,x+%);ne N} is a countable base

at x and so (R,U) is first countable.
Base for a topology:
Def": Let (X,n) be a topological space, a collection B of subsets of X is said
to form a base for = iff:
1-Bcnx 2-ForeachPoint x e X and eachnebd N of x3someB e Bsuchthatx e B < N
Ex : Let X={a,b,c,d} and let » ={¢.{a}.{b}.{c.d}{a,b} {a,c.d}.{b,c,d}, X}, then the
collection g ={{a}{v} {c.d}} is a base for 7w since Bcn and for each nbd
of a contains {a} which is a member of B containing a. Similarly each
nbd of b contains {b}<p, and each of ¢ or d contains {c,d}< pB.

Ex : Consider the discrete space (X,D), then the collection f={{x}, xe X}

Consisting of all singleton subset of X is abase for D, since each
singleton set is D-open so that B = D, also for each xe x and each nbd

N of X, {x}e s, i1ssuch that xe{}<=N
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Def" : Let (X,n) be a topological space the space X is said to be second
countable (or to satisfy the second axiom of count-ability) if there exist
a countable base for 7.
Ex: The space (R.U) is second countable since the set of all open intervals
(r,s) where r,s are rational numbers forms a countable base for U. This
Follows from the fact that between any two real numbers there exists
infinitely many rational numbers. thus to each point x in R and each
nbd N of X 3r,seQsuchthatx e (r,s) =N
Theorem 13:Let (x,m) be a topological space, a collection 3 of & is abase for n
Iff every m-open set can be expressed as the union of members of p.
Proof: Let B be a base for w and let Ge, since G is m-open, it is a t-nbd of
each of its point, hence by def" of base to each x< G there exist a member
B e Bsuchthatx e B<=G it follows that G =U{B;B < g and B = G}.
Conversely, Let g~ and every open set G be the union of members
of B, we have to show that B3 is abase for w, we have
I- B <z given
i —Letx € X andlet N beanynebd of x,thendsanopenset Gsuchthatx e G < N
But G is the union of members of B, hence there exists
B € fsuchthatx € B < G < N,thus Sisabase forz .
Ex: Let m and r be topologies for X, which have a common base B then n=r .
Sol"; Let Gen, and xeG, since G is n-open, it is t-nbd of x ,, and since P is
a base for =, there exists B<f3 such that zeB<Gp. Since B is a base

forn and Bep, it follows that Ben . Hence G is m -nbd of x, since x

is arbitrary Gen
17
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Thus z < z*, similarly wecan prove z* = =, hence » ="
Properties of a base for a topology:
Theorem14: let (X,n) be a topological space and let 8 be a base for &, then
B has the following properties:
[B"1] For every xe X there exists a Be such that xep, i.e. X =U{B;B < 4}.
[B*g] For every B;<p3, B,<p and a point xe B;N B, there exists a B< such

That xeB<B,NB,, that is the intersection of any two members of  is a
union of members of B .

Proof: [B™1] since X is a m-open set it is a nbd of each of its points hence by
def" of base, for every xe X, there exists some Bep such that
xeBc X, inotherwords X =(B,B e A}

[B*Z] If Biep and B, , then B, and B, are m-open, hence their intersection
B.:NB, is also w-open, and therefore B;NB, is a nbd of each of its points and
so by def" of base to each x<B;NB, there exists B<p such that xeB<=B,NB,,
that is B;NB, is the union of members of .

Limit points :

Def: Let (X, «) be a topological space , and let A be a subset of X , a point
Xe X is called a limit point (or a cluster point or an accumulation
point) of A iff every nbd of x contains a point of A other than x.

i.e. X will be a limit point of A iff every nbd of x meets A in a point
different from x , that is N\{x} nA=¢ for all N is and of x or we say
that x is a limit point of A iff every open set G containing X ,

G\{x} NA=¢, also we say that x will not be a limit point of A if there

exists a nbd N of x Such that N nA=¢ or N nA={x}.
18
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Def: Let A be a subset of a topological space X, and let xe X, the x is called
an adherent point ( or contact point) of A iff every nbd of x contains a
point of A and denoted by d(A).

The set of all limit point of A is called derived set and denoted by D(A).

Def: A point x is said to be an isolated point of a subset A of a topological
space X, if xe X but x is not a limit point of A . A closed set which has
no isolated point is said to be perfect.

Ex: let (X.D) be descried topological space, and let A be any subset of X

Is A has a limit point?
Sol: let xe X, if G\{x} nA=d N\{x} nA=pfor every open set G containing x
But we have {x}\{x} nA=¢ , therefore x is not a limit point of A . Hence A
has not a limit point in a descried topology.

Ex: let X={a,b,c} and let n={¢,X,{a},{b}{a,b}} find all limit point of the set

A={a,c}.
Sol: we have three points in X
1- ae X, the open set which contain a are {a}, {a,b} X so since
{a,b}~{a}\{a}= ¢, ais not a limit point of A.
2- be X, the open set which contain b are {b},{a,b}, X and
{a,c}{b}\{b}=6 b is not a limit point of A.
3- ce X, and the open set which contain c is X only, and
X\{c}nA={c}=0, so cis a limit point of A, the isolated point of A
IS @, since a is in A and not a limit point , and D(A)={c}

Ex: let X={a,b,c,d,e} and let n={¢,X,{b},{d,e},{b,d,e} {a,c,d,e}} thentisa

topology on X. Consider the subset A={b,c,d} ,the point c is a limit
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point of A since the w-open nbds of c are {a,c,d,e}, X each contains a
point of A other than c. But b is not a limit point of A since {b} is nbd of
b which contains no point of A other than b similarly a,e are limit point
of Aso D(A)={a,c,e}. The isolated points of A are b and d since b,d are
belong to A but are not limit points of A. then an adherent point of A are
a,b,c,d,e.

Theorem 15: Let X be a topological space, and let A be a subset of X then A

is closed iff D(A)CA.

Proof: Let A be closed, then A® is open and so to each xeA° there exist a nbd
N of x such that N cA°. Since AnA°® =¢, the nbd N contains no point
of A and so x is not a limit point of A. Thus no point of A can be a

limit point of A ,that is A contains all its limit points. Hence D(A)cA.
Conversely let D(A)cA and let xe A°, then xeA. since D(A)cCA,
x¢D(A) hence there exist a nbd of x such that NmA=¢ so that NcA®,
thus A° contains a nbd of each of its points and so A° is open, that is A
IS closed.
Closure:
Def: Let X be a topological Space and let Ac X. the intersection of all =-
closed supersets of A is called the closure of A and denoted by A or c(A)
or CIA. When confusion is possible as to what space the closure is to be
take in, we shall CI (A).
Theorem 16: Let A be a subset of a topological space , then
1- CIA is the smallest closed set containing A.

2- A'is closed iff CIA=A
20
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Proof: 1- this follows from definition.
2- If A closed, then A itself is the smallest closed set containing A and
hence CIA=A. Conversely if CIA=A by 1 ClAis closed and so A is
also closed.

Theorem 17: prove that CIA=A UD(A).

Proof: We first prove that AUD(A) is closed i.e.JA U D(A)]° = A°~ D(A)° is
open , let xe A°~ D(A)°, then xe A® and xeD(A)® so that x¢ A and
xzD(A) . This means that x is not a limit point of A, and hence there
exist an open nbd N of x which contains no point of A, it follows that
N —A°. Now no point yeN can be a limit point of A, since N is a nbd
of y which contains no point of A. hence NcD(A)". since NcA° and
NcD(A)S, So NcA*nD(A)C. thus A°nD(A)° contains a nbd of each of
its point and consequently A°~D(A)° is open. We now show that
CIA= AUD(A) ,since AUD(A) is closed set containing A and CIA is
the smallest closed set containing A, we have CIACcAUD(A). Again

since CIA is closed, it contains all its limit points, and thus in

particular, all limit points of A, so that D(A)cCIA also AcCIA.

Hence AUD(A)cCIA, it follows that CIA=AUD(A).
Corollary: Prove that CIA=adh(A)={x; each nbd of x intersect A}
Proof: xeadh(A) iff every nbd of x intersects A

Iff xe A or every nbd of x contains a point of A other than x
Iff xe A or xeD(A)
Iff xe AUD(A)
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Iff xeCIA.
An adherent point is also some times called a closure point.
Ex: Let X={a,b,c,d} and let n={¢,X,{a},{b,c},{a,d}{a,b,c}}
Closed subsets are X, {b,c,d}, {a,d},{b,c},{d} then CI{b}={b,c}, ¢,
since {b,c} is the intersection of all closed subsets of X which contain b .
Again Cl{a,b}=X, since X is the only closed set containing {a,b}.
similarly we have CI{b,c,d}={b,c, d}.
Ex: Let X={a,b,c} and let = ={x,¢,{a},{a.b},{a,c}} .Find the limit point of the sets
A={b,c.} ,B={ac}
Properties of closure: ”Kuratiwski theorem ”
Let X be a topological space, and let A,B be any subset of X, then
i—Clg=¢, ii- AcCIA iii—if Ac B, then CIAcCIB
iv—CI(AUB)=CIAUCIB  v—CI(ANB)=CIANCIB vi—CI(CIA)=CIA
Proof: i-Since ¢ is closed, we have Clg=¢.
Ii- By theorem CIA is the smallest closed set containing A, SO AcCIA
lii- By (i) BccIB, sinceAcBWe have Accis,but CIB is a closed set.
Thus CIB is closed set containing A. Since CIA is the smallest

closed set containing A, we have ClAcCIB.

iv—SinceAc AUB and B c AU B,wehaveCIA < CI(AUB)and CIB c CI(AUB)
byiiiwe haveCIAUCIB< CI(AUB) .......... @

Since CIA and CIB are closed sets, then claucisis also closed, also

Ac ClAand B « clBimplies that AUB < ClIAUCIBthusCIAUCIB IS closed
set containing AUB,since cl(AUBY)is the smallest closed set

Containingcl(AUB) = CIAUCIB ......2, from land 2 we get
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CI(AUB)=CIAUCIB.
V- ANB < B thenCI(ANB) = CIBand AN B = AthenCI(ANB) = CIB. Hence
CI(ANB) = CIANCIB
vi-Since ClA s closed, we have CI(CI(A)).
Theorem 18: Let X be a topological space, and let A be a subset of X then the
following statements are equivalent:
I- Ais closed Ii- CIA=A i1i-A contains all its limit point.
Ex: Consider the usual topological space and find the closure of the following

subsets of R.

i-A:{%,n eN}  ii- B=The set of all integer numbers ,

11i-C= The set of all rational number, iv- D={2,3,4,5,.}
Interior point and interior set:
Def" : Let X be a topological space and let Acx , apoint x in X is said to be
an interior point of A iff Aiis a nbd of X, that is iff there exists an open
set G such that xeG < A, the set of all interior point of A is called the

interior of A and is denoted by A’ or IntA

Theorem 19: A° ={G :Gisopen,G < A}
Proof:

x e A iff Aisanbd of x
iff therexsitanopenset Gsuhthatx e G c A
iff x e J{G;Gisopen,G c A}

Hence A" = {G;Gisopen,G c A}

Theorem 20: Let X be a topological space. And let A be a subset of X, then

I-  IntAis an open set.
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iI-  IntAis the largest open set contained in A.
ii-  Aisopen if IntA=A.
Proof: i- Let x be an arbitrary point of IntA, Then x is an interior point of A
Hence by Def", A is a nebd of x, then there exist an open set G such that
xeGc A Since G is open, it is a nbd of each of its points and so A is also a
nbd of each of G. It follows that every pint of G is an interior point of A so
that G < Inta , thus it is shown that to each point x e Inta there exist an open set
G such that xeG < IntA, hence IntA is a nbd of each of its points and
consequently IntA is open.
li-Let G be any open subset of A and let x <G, sothatx e G = Asince G is open,
A'is a nbd of x and consequently x is an interior point of A, hence xeIntA ,
thus we have shown that xeG = xe IntAandsoG c IntAc A. Hence IntA contains
every open subset of A and it is therefore the largest open subset of A.
iii-Let A=IntA By(i) IntAis an open set and therefore A is also open.
Consequently let A be open. Then A is usually identical with the largest open
subset of A. but by (ii) IntA is the largest open subset of A. Hence A=IntA
Ex: Let (X,D) be s discrete topological space and let A be any subset of X.
Since A is open, we have IntA=A, thus in a discrete space every subset
of X coincides with its interior.
Theorem 21: Let X be a topological space and let A be a subset of X. Then
IntA equals the set all those points of A which are not limit pints of A°
Proof: Let x be a point of A, which is not a limit point of A“ Then there
exists a nbd N of x which contains no point of A°, and so N c A

this implies that A is also a nbd of x and so xe IntA. Conversely let
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x e IntA, since IntAis open, it is a nbd of x, also IntA contains no
point of A®, it follows that x is not a limit point of A, thus no point
of IntA is a limit point of A®, hence IntA consists of precisely those

point of A which are not limit point of A°,
Theorem 22 : Let X be a topological space, and let A,B be any subset of X,

then:
i—IntX =X, Intg =¢ ii—IntAc A iii—-Ac B= IntAc IntB
iv—Int(ANB) = IntAN IntB v— IntAU IntB < Int(AUB) vi—Int(IntA) = IntA

Proof : i- Since X and ¢ are open set, we have by iii Theorem IntX =X,
Intd=¢ .
lI- x e IntA= xisaninterior pointof A= Aisanebdof x= x € A,hence A= IntA
ili-Let xeIntA,then x is an interior point of A, and so A is a nbd of X,

since AcB , B isalso a nbd of x, this implies that x < IntB thus we

shown that x e IntA= x e IntB, IntAc IntB
IV-Since ANB < A and AN B < B wehavebyiii Int(ANB) < IntAand Int(A(B) < IntB
this implies that Int(ANB) < IntANINtB .......... (1)
a gain let x e IntANIntB.Then x € IntAand x < IntB, hence X is an interior
point of each of the sets A and B, it follows that A and B era nebds
of x so that their intersection ANB is also a nebd of x, hence

x e Int(ANB) thus x e IntAN IntB=> x € Int(AN B) SO

IntAN IntB < Int(ANB)........ (2)

From 1 and 2 we get Int(ANB) = IntAN IntB

v— By(iii)Ac AUB = IntAc Int(AUB)
Bc AUB= IntBc Int(AUB)
hence IntAU IntB — Int(AUB)
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Not that in general IntAU IntB = Int(AUB)
For example Let A=[0,1) and [1,2) then IntA=(0,1) and IntB=(1,2)
IntAU IntB = (0) U(1,2) = (0,2)\{1} also AUB=[0,1) U[1,2)=[1,2]
So Int(AuB)=(1,2)
Thus in this case IntAU IntB is a proper subset of Int(AuB), and
INtAU IntB = Int(AU B)
vi-Now by i of Theorem 20 IntA is an open set, hence by iii of the
same theorem Int(IntA)=IntA
Exterior point and the exterior of a set:
Def" : Let A be a subset of a topological space X, A point Xe X is said to be
an exterior point of A iff it is an interior point of A°, that is there exist an
open set G such that xeG < A°® or equivalently xeGandGNA=¢. The set of all
exterior points of A is called the exterior of A and is denoted by extA or
e(A). thus extA=Int(A°), it follows that ext(a®)=[A“']°=A° also we have
ANextA=¢ , that is no point of A can be exterior point of A.
Remark: Since extA is the interior of A®, it follows from Theorem 20 that
extA is open and is the largest open set contained in A°® .
Theorem 23: Let (X,n) be a topological space and let A be a subset of X then
extA= G e 7,G = A%}
Proof: By Def" , extA=Int(A°), but by Theorem 19
ItA° = ({G e 7;G e A°} hence extA=U{G e ;G < A’}
Theorem 24: Let A be a subset of a topological space X, then a point x in X
Is an exterior point of A iff x is not an adherent point of A, that is iff xecla°.

Proof : let x b an exterior point of A, then x is an interior point of A®, so A°
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IS a nbd of x containing no point of A, it follows that x is not an adherent
point of A, that is xeCIA®.

Conversely, suppose that x is not an adherent point of A, then there exist
a nbd N of x which contains no points of A. This implies that xeN < A® . It
follows that A® is a nbd of x and consequently x is an interior point of A, that
IS X is an exterior point of A.
Theorem 25: Let X be a topological space and let A and B be subsets of X.

Then:

i—extX =g, exrg=X ii—extAc A° i —extA c ext[(extA)°] iv— Ac B = extB < extA

v—IntAc ext(extA) iv—ext(AUB) = extA(extB
Proof: i—extX = IntX® = Int¢ =¢  extg = Intg® = IntX = X

i —extA= IntA° = A°  byiiTheorem|1,

iii —ext[ext(A®)]=ext[IntA°]° = ext(IntA®)° = Int{[IntA°]°}
= Int(IntA°)  {by A = A}
=IntA°  {byInt(IntA) = IntA}
= extA

iV-Ac B = B°c A° = IntA° c IntB® = extB — extA

v —ByiiwehaveextA — A° theniv givesextA® < ext(extA), But IntA= extA°
hence IntA c ext(extA)

vi—ext(AUB) = Intf[(AUB)°]
=Int(A°B°)  ByDemorganlaw
= IntA" () IntB° ByivTheorem I,
= extA[) extB
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Frontier point and the frontier of a set.
Def" :A point x of a topological space is said to be a frontier point
( or boundary point) of a subset A of X iff it is neither an interior nor an
exterior point of A. the set of all frontier points of A is called the
frontier of A and shall be denoted by FrA.
FrA=[IntA UextA]°
Theorem 26: Lt X be a topological space and let A be a subset of X. then a
Point x in X is a frontier point of A iff every nbd of x
intersections both A and A°.

Proof :Wehave x € FrA < x ¢ IntAand x ¢ extA = IntA°
<> neither Anor A® isanebd of x
<>nonebd of xcanbecontaindin Aorin A° why?
<> everynebd of xintersectsboth Aand A°

Corollary: FrA=FrA° . for we have

x € FrA < everynebd of xint er sectsboth Aand A°
< everynebd of xint ersectsboth A° and A®

< x e FrA° since A = A
Theorem 27 : LetA be any subset of a topological space X. then IntA, extA
and FrA are disjoint and x = IntAUextAU FrA Further FrA is a closed set.
Proof: By Def" extA=IntA°®, also IntA = Aand IntA° = A°,since AN A° = 4,it follows that

IntANextA = IntAN IntA° = ¢ a gain by Def" of frontier, we have

X € FrA < x ¢ IntAand x ¢ extA
< X g {IntAU extA}

< x e[IntAU extA]°

ThusFrA=[IntAUextAl° ......... (1)
It followsthat FrA(N IntA=¢ and FrA(\extA=gand X = IntAUextAU FrA

Since IntA and extA are open, we see from 1 that FrA is closed.

28



29

Dense and non-dense sets:
Def" : Let X be a topological space and let A,B be subset of X. then
I-  Aissaid to be dense in B iff B CIA
ii-  Aissaid to be dense in X or every where dense iff CIA=X it
follows that A is every where dense iff every point of X is an
adherent point of A,
ii- A is said to be nowhere dense or non-dense in X iff Int(CIA)=¢,
that is, iff interior of the closure of A is empty.
iv-  As said to be dense in itself iff Ac D(A).
It follows from Def" (a closed set which has no isolated points is said
to be perfect) and iv of a above definition that a set A is perfect iff A
Is dense in itself and closed. This implies that A is perfect iff A=D(A)
For A is perfect iff A is closed and A has no isolated points
iff A is closed and every point of A is a limit
point of A
iff D(A)cAand AcD(A)
iff A=D(A).
Separable space:
Def": A topological space is said to be separable iff X contains a countable
Dense subset, that is, iff there exist a countable subset A of X such
That CIA=X.
For example the usual topological space (R,U) is separable since the set

Q of all rational numbers is countable dense subset of R.
Ex: Let X={a,b.c.d,e} and let =={¢,{b},{c,d},{b,c,d}{a,c,d}{ab,c,d} X}.
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Find interior, exterior and frontier of the following subset of X.

A={c} B={a,b} C={ac,d} D={b,c,d}

Sol" :1-i- since A is not a nebd of ¢, S0 ceInta , hence IntA=¢

ii- Now A° ={a,b,d,e} it is easy to see that b is an interior point of A,
since A°® is a nebd of b, but a,d,e are not interior points of A®, hence
extA =b

Ii- Since IntA=¢ and extA=Db it follows that FrA={a,c,d,e}.

2- i-Here b is an interior point of B, but a is not. IntB={b}.

ii- Now B® ={c,d,e}, since c,d<{c,d} < B, it follows that B is a nbd of c,d
hence c,d are interior points of B°. that is c,d are exterior points of B.
that is extB={c,d}

ii-Since IntB={b}, and extB= {c,d} then FrB={a,e}

3- here C is open then IntC=C={a,c,d}, and extC= IntC°=Int{b,e}={b} also

FrC={e}.

4- Also D is open set so that it is a nbd of each of its points and
consequently every point of D is its interior point, hence IntD=D={b,c,d},
D° ={a,e}. Since thee exists no open set G such that acc <b°, D°is not a
nbd of a hence a¢ Intd® , similarly e Intp°. therefore extD=IntD= ¢
also FrD={a,e}.

Ex: If A'is open and closed then FrA=¢
Sol": Since A is open then IntA=A and also since A is closed A® is open and
Ext A = INtA°=A° but Fra={IntAUextA}* ={AUA°} = X° = ¢
Ex: consider the usual topology U on R and find interior, exterior and frontier
Of the following subset of R. A=(0,1) B=[0.1) C=[0,1] D={t;nenN},N, Q
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Sol™:1- Since A is open, it is a nbd of each of its points and so every point of

A is its interior point. Hence IntA=(0.1)
Now A°=(-x,0)U (L), here A® is a nebd of each of its point except 0
and 1, hence extA =INtA°=(—w,0) U 1 ).
AlSO FrA ={IntAUextA}* ={0,1}.
2- proceeding as in 1 we have IntB=(0,1) extB = IntB® = (—0,0) U (1,=0) and
FrB ={IntB UextB}*= {01} .
4- Here D cannot be a nbd of any points of its points 1/n, n=1,2,3,...

Since there exists N0 ¢ >0suchthat (1 —¢,1+¢) < D, hence no point of D

can be its interior point so that IntD=¢ .
It is easy to see that D® is a nbd of each of its points except 0,
hence extD=IntD° [DU {0}]°
FrA =[IntD UextD]° =[D U{0}]
Theorem 28 : Let X be a topological space and let A be a subset of X
CIA = IntAU FrA
Proof: By Def" of CIA, we have claA={F;Fisclosed Ac F},
then by De-Morgan law [CIA]® = U{F ; F“isopenand F* = A} =extA , taking
complements, we get [(CIA)°]° =[extA]° = IntAU FrAsothatCIA = IntAU FrA
Corollary: clA= AUFrA
Proof :Since Ac CIA and FrAc CIA sothat AUFrAcCIA ........ ()]

AlsoFrA=[IntAUextA]° =[IntA]° N[extA]° againsince IntAc Aand
CIA = IntAU FrAit followsthat CIAc AUFrA ......... (2)
fromland 2we get CIA= AU FrA
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Subspace:
Def" : Let X be a topological space and let v = x . The n-relative topology for

Y is the collectionz, given by =, ={GNY;Gex} .
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The topological space (Y, z,) is called a subspace of (X,x), the
topology =, on Y is said to be induced by .
Theorem29: Let (X,n) be a topological space and let Y = X, then the
collection =, ={GNY;Gex} isatopologyonY.
Proof : Ty. Sincepe randgpNY =¢ = g x, againY 1 X =YsinceY c X andsince X e 7,
we have Y exr,.
T, Let H,,H, ez, , ThenH, =G, NYandH, =G, NY for sameG,,G, e r.
Now H,NH, =G, NYNG,NY =(G,NG,)NY ez, [SinceG,,G, € x].
T3 Let H, e, ;VAeA, then Fopenset G, suchthat H, =G, NY VAieA, nOW
U{H, ;1€ A}=UG, NY;1eA}=U{G,; L e A} Y en, since U{G,,LeA}en

Hence =, is a topology for Y.

Ex: Let X={a,b,c,d,e}, n=={¢,{a}.{b} {a,b}{ac} {ab,c} {ab,e}{ab,de} X}
Y={b,c,e} then

my ={p.{b}.{c}.{b,c}{b.e}}
Def" : Hereditarily property :
A property of a topological space is said to be hereditary if every subspace

of the space has that property.

Ex: Consider the usual topology U of R and the subset [0,1] of R, then the
set [0,1/2) is open in the U-relative topology of [0,1], since
[0,4) = (-1, Y)N[04and (-1,2) IS U-open, similarly (3/4,1] is open in the U-
relative Topology for [0,1], since ¢1=¢,%)N[0and (2,2) is U-open.
Ex; Let U be the usual topology for R describe the relativization of U to the
Set N of natural numbers.
Theorem 30: Let (Y,ny) be a sub-space of (X,n); then:

i- A subset A of Y is closed in Y iff there exists a set F closed in
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X such that A=F nY.
li- For every AcyY, cl,A=cl, ANY.
ii- A subset M of Y is z,-nbd of apoint yey itf M=NNY for
some n-nbd N of Y.
IV- A point y in Y is my- limit point of Acy iffyisam -limit
point of A, further Dy (A)=D(A) nY.
v- Forevery Acy, Int,AoiInt, A
vi- Forevery AinY Fry(A)c Fry(A).
Proof: i- Aclosed in Y iff Y/Aisopenin.
If f Y/A=G nY for some open set G of X.
If f A=Y/(GNY)=(Y/G)U (YY)
Iff A=Y/G [since Y/Y=¢] De-Morgan law
Iff A=YNG® “The complement of G in X”
If f A=YNnF where F=G®is closed in X.
ii- By def” I, A={K; K isclosedin Y,and A = K}

Cl,A={FNY :FisclosedinXand Ac FNY
=({FNY;Fisclosedand A c F}
=[({F;Fisclosed and Ac F}]NY
=Cl, (ANY

ili- Let M be a my.nbd of y, then there exists a wy_.open set H such that
yeH cM = 3Jar—opensetG suchthatye H=GNY M. Let N=MUG.

Then N is a =-nbd of y since G is a m-open set such that yeG < N.

Further NOY =M UG)NY=MNY)UGNY)=MU(GNY) SinceM cY
=M sinceGNY <M

Conversely Let M=N nY for some n-nbd N of y, then there exists
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A m-open set G such that yeG < N, whichimpliesthat yeGNY =« NNY =M

since GNY is my —open set, M is my-nbd of v,

vi- y is a my-limit point of A if f [M/{y}nA] #® for all ty —nbds M of y.

if f [NNY/{y}nA +# ® for all- nbds N of y

if f [N/{y}nA]#®D for all nbds N of y
if f y is a w-limit point of A.

v—X € IntA = xinterior pointof A= Aisaz —nbd of x
= ANYisz,nbdof x

= Aisar,nbd of x
= Xxelnt, A

Hence Int, A < Int, A

[sihceAcY = ANY =A

iv—yeFr,A =yisz, — fronierpointof Aand Y /A

—every sz, —nbdofyint er sectshothAandy — A
=N (Y intersectionbothAandY /A Vz—nbdN of y

=everyz —nbd N of y intersection bothAand X — A
=V is 7~ — Frontierof A

=>yeFrA
Hence Fr, Ac Fr, A

Theorem 31: let (Y,my ) be a subspace of a topological space of (X,n) and let
B be a base for w, then g, ={sNY;B < s} is a base for ny
Proof: Let H be a vy open subset of Y and let x in H , then there exists a

nt- open subset G of X such that H=GNY. since P is a base for the
topologyn

dsB € fsuchthatx e B = G,sinceH Y, it followsthatxeYandxe BY cGY =H
hencedsasetBMY € ,,Suchthatx e BNY < H.

Thustoeach x € H ,thereexistsamemberB (1Y of B, suchthatxe B(\Y < H,
thatis H = {BNY;BNY € 8, and BNY = H}

Hence p, isabase for , .
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Ex: X={a,b,c.d,e} and Y={a,c,e} », ={s.{a}.{a.b}.{a,c,d}.{a,b,c,d},{a,b,e}, X}

z, ={¢.{a}.{a,c},{a.e}, Y} letA={a,e}cY Int,A={ae}andInt, A={a}

Separated Set
Definition: Let (X, 7 ) be a t.s. two non-empty subset A & B of X are said to be 7 -
separated iff ANB=@ and ANB=0.
Or equivalent we say (ANB)uU (A NB)=0 .
Note : Every separated set are disjoint but the converse not true in general
Example: Let A= (-0,0) and B=[0,0) of R . A & B are disjoint which is not separated .

A =(-00,0] and A NB=(-00,0] N[0,00)={0}#0D

Theorem(1) : Let (Y,7y) be a subspace pfat.s. (X, 7) and Let A, B be two subset of Y ,

then A, B are T —separated iff 7 y-separated .

Proof: since CLy A =CLxANY and CLyB=CL,BNY

Now (CLyANB) U (CLyBNA)=

= (CLxANY) NB] U [(CLxBNY) NA]

=(CLxANB) U (CLxBNA) [since ABcY]

Hence [ (CLy ANB) U (CLyBNA)= @ iff (CLxANB) U (CLxBNA=0 ].

It follows that A,B are T —separated iff 7 y-separated

Theorem(2) : Two closed (open)subset A,B of at.s (X, 7) are separated iff subset are
disjoint

Proof: Since any two separated sets are disjoint , we need only to prove that two disjoint
closed (open) sets are separated if A& B are both disjoint and closed , than ANB=0
A=A and B=B so that

A NB=ANB=© and ANB=ANB=0

Showing that A&B are separated

If A and B are both disjoint and open then A° and B° are both closed so that

clA° = A® andcIB® = B®. Also
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ANB=¢ =>AcB® and Bc A°
= clAccIB°=B° and cIB cclA®= A°
=clANB=¢ and CcIB(N1A=¢
— Aand Bareseparated.

Connected and disconnected sets
Definition: Let (X, 7) be t.s A subset A of X is said to be T -disconnected iff it is the
union of two non-empty 7 -separated sets iff there exist two non-empty sets C and D

.such that CND=and CND=, A=C U D, A is T - connected if is not 7 -disconnected .

Note: two points a and b of a t.s X are said to be connected iff they are contained in a
connected subsets of X.

Theorem(3): At.s X is disconnected iff 3s a non empty proper subset which is both open
and closed.

Proof: let A be a non empty proper subset we have to prove that X is disconnected

Let B=A", then B is a non empty set moreover X=Au B and AnB=4¢

Since A is both open and closed , hence A=A and B=B, it follows that An B=¢ and
AnB=¢ , thus X can be expressed as the union of two non-empty separated sets so X is
disconnected

Conversely: let X be a disconnected set then3s a non empty subset A and B of X such
that An B=¢ , AnB=¢ ,and X=AuUB.

Since Ac A, AnB=¢ =AnB=¢ , hence A=Band B is non —empty

A is proper subset of X

Now AuB=X ,[AuB=XandBcB,so AuB>X and AuB <« X] always

Also AnB=¢ = A=(B) and simillery B=(A) ¢

Since AandB are closed so A&B are open , since A= B therefore A is closed thus A is a
non-empty proper subset of X

Which both open and closed
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Continuity in a topological space
Let (X,7) and (Y, 7 ) be a topological space . A function f(X,7)—(Y,7 ) is said to be
continuous iff for every x-nbd M of f(x) 3sa 7 -nbd N of x s.t f(N)3M.
Also f is said to be continuous or (7 - 4 continuous ) iff it is continuous at each point of

X.

It follows that from the definition that f is continuous at X, iff for every x-open set H

containing f(x,) 3s an 7 -open set G containing Xo S.t f(G) < H.

Ex: X={a,b,c,d} and Y={1,2,3.4} ={¢ ,X,{a},{b,a},{a,b,c}} x={4,Y {1,2,3},{1,2}}
And f:X—Y defined by f(a)=4 , f(d)=1,f(b)=2 , f(c0=3 . discuss the continuity X.
Solution : since ac X and f(a)=4 f(a)=4<Y ,HeY is u-open. {a}=G , f({a})={4}<Y
f(G)eH

- fis continuous at a .
Since be X f(b)=2
The . -open set containing 2 are {1,2},{1,2,3}and Y.
The 7 -open set containing b are {a,b},{a,b,c],X .

F(b)=2e{1,2} be{ab} f({ab})={24}<{1.2} be{ab,c}
F({a,b,c})={2,4,32{1,2} f is not continuous at b .
ce X ,f(c)=3 the x-open set containing f(c)=3 are {1,2,3}and Y .
The 7 -open set containing c are {a,b,c}and X.

F({ab,c})={1,2,3}2{1,2,3} , f(X)=Y «{1,2,3} fisnot T -, continuous.

~.Fis not continuous at ¢ . f is not continuous at X .
Ae, f(d)=1, p-openset={1,2},{1,23},Y f:Y—>X, 7 -openset=X.
F(X)=Y«z{1,2} fisnotcontinuous atd .

Theorem(4) . let X and Y be a topological space A function f :X—Y is continuous iff the

inverse image under f of every open set in Y is open in x.
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Proof : let f be continuous , and let H be an . -open set.

We have to prove that f*(H) is open .

if F1(H)=¢ there is nothing to prove

if f'(H)£¢ and let xef*(H) so that f(x)e H.

by continuity of f, 3 an open set G containing X in X and f(G) cH thatis xeGc f
Y(H), F(H) is an open .

conversely : suppose that v is an open set for every open set Hin 'Y

we shall show that f is continuous

let H be an open set Y containing f(x) , xef*(H) but f'(H) is an open set by
hypothesis .

there for f*(H) is an open set in X containing x.

put G = fH(H)—f(G)=f( f*(H))cH

- (G) cH, fis continuous ( by def) .

Theorem(5) : let X and Y be a topological space A function [ :X—Y is continuous iff the
inverse image under f of every closed set Y is closed in X .

Proof : let f be a function and Fc Y is closed . f*(F) is closed

Since Fis closed in Y then Y\F isopeninY

By theorem f(Y\F)=X\ f*(F) is open in X

- FX(F) is closed in X

Conversely : to show that f is continuous , let f*(F) be any closed subset in X for every
FcYisclosed. let GbeanyopensetinyY ..........

Theorem(6): let X and Y be any t.s then a function f :X—Y is continuous iff the inverse
image of every sub base for Y is openin X .

Proof : suppose f is continuous , and B* be a sub base for Y, since each member of B*
is open in Y it follows from ((theorem 1)) that (D) is open in X for every DeB*
Conversely : let (D) be an open set in X for every D < B* to show that f is continuous ,

let H be any open set for Y . let B, so that B is abase for Y,
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If BeBthen 3 D;,D,,D5, ..., D, (nfinite) in B* s.t B=D;~n Dy~ ...n D,

(D)= f{D1n Dy~ ...AD}= FH(D) A FY(D) A FY(Ds) ...~ F1(D,) by hypothesis
each of 1(D;) i=1,2,...,n are open set in X , and there for £*(B) is an open set in X .
since B is abase for Y ,Hc u{B;:BcGcB}, f'(H) c f'(u {B;B<B}=99{ f'(B):B<B}
- F1(Hy) is an open setin X, so by (theorem 1.) f is continuous.

Theorem(7):let X and Y be an t .s and f : X—Y is continuous iff the inverse image of

every member base for Y is an open set in X .

Theorem(8):A function f from a space X in the another space Y is continuous iff
f(clA) c cIfA), 00 X.

Proof: let f be a continuous function and let A= X, f(A)is closed set in Y

- FY(cIf(A)) is closed in X . by theorem 2 , and there for clf*(clf(A))=F(clf(A))---(*)
Now f(A) cclf(A)[.. Ac A]

AcTl(f(A)) cf(cIf(A))

- clAcF(clf(A))

Acfl(clf(A))

~.clAc f(clf(A))

F(clA) « f(F(clf(A)) c clf(A)

- f(clA) cclf(A).

Conversely : suppose that f(clA) = clIf(A) 00Ac X, to show that f is continuous
Let F be any closed subset of Y , that is clF=F .

f1(F) subset X so that by hypotheses  f*(cIf(F))=cl f f*(F)c cIF=F

there for fclf '(F)cF .

clf'(F) = FH(F)--—-(1)

but f*(F) c cIf }(F)----(2) always by [AcclA]

from 1 and 2 we get f'(F=cl f*(F) , it follows that f*(F) is closed subset of X

hence f is continuous by theorem 2
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theorem(9):A function f from a space X in the another space Y is continuous iff cl
Y(B)cf*(cIB) vBeY.

proof: let f be a continuous function and let B< Y, since cIB is a closed subset of Y,
then f(cIB) is a closed subset in X (bythe2) cl f*(cIB)= f*(cIB)---(1)

now BcclB— f(B)=f'(cIB)

- ¢l FY(B)ccl Fi(cIB)= f*(cIB).

cl F1(B)=f'(cIB)

conversely : let the condition hold let F be any closed subset in Y . so that clF=F . by
hypothesis cl £1(F) < f(clF)= f*(F)

f1(F)ccl F1(F) always

- FY(F)=cl f'(F)

- FY(F) is closed in X .

Ex: let 7 and x be two topology for R . find whether the function f: R —R , define by
f(X)=1 v xeR is 7 - g continuous
Solution : let H be any 1 -open set, if 1eH then f*(H)=R and if 1¢H then f'(H)=®

Since each of R and @, are open set in 7 , so f is continuous

Example: let f and g be a function from R to R defined as follows:

(a) f(x)=x*, vxeR (b) g(x)=|x , vxeR
Find whether each of these function is :

I- 12- 1 continuous . 1i-S- 12 continuous
ii-1 - x continuous iv- D- 12 continuous

solution : since the set of all interval (a,b) with a<b form a base for . it is enough to see

whether f'((a,b)) , g™*(a,b) are open w.r.t the given topology for R

b

/
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-Jb a Jo

f(G)=(-vb ,vb)

(o)) if a<b<0
f1(G)=| (-vb,vb) if a<O<b

(-vb -va)U(Ja,+b) if O<a<b
I- as show above the inverse image of every interval (a,b) is x-open .
- Fis u-pu continuous .
Ii- since S is finer then 4 [ that is every u-open is S-open ] so that f is S-U-continuous
iii- If we take (a,b)=(1,2) then f'(1,2)= (-v2,-1)u (1, ¥2) which is not I-open
so fis not I-U continuous .
Iv- since the inverse image of every open interval is D-open hence the space is D-U
continuous .

Q1: let f be a function of R into R defined as f(x)= |x| , vxeR . find whether f is

I-U continuous U-U continuous D-U continuous S-U continuous
Example: let f be a function of R in to R defined by

[ 1/x x#0
F(x)=
0

x=0
find whether fis U-U , I-U , S-U and D-U continuous .
solution :consider the open interval (-1,1) where f*(-1,1)= f'{(-1,0) u{0}u (0,1)}
=f'(-1,0)u F{0}u ' (-1,0)
=(-»-1) v{0}u(1,»)

43



44

Homomorphism
Definition : let (X,z) and (Y, ) be two topological spaces and let f be a function from
XintoY ..then
i-f is open function(interior function) iff f(G) is x-open for every 7 -open set G.
Ii- T is closed function iff f(F) is x-closed for every - -closed set F.
iIi- f is bicontinuous iff f is continuous and open function .
iff [ fand f* is continuous ]
Iv- fis homomorphism iff
1- fis bijective [ 1-1 and onto ]
2-f is continuous
3- f is open [or f is closed or f* is continuous ]
Definition : A space X is said to be homomorphism to another space Y if 3 a
homomorphism from X into Y . and Y is said to be homeomorphic image of X we
write (X,z) =(Y, u) .
Definition : A property of a topological space X is said to be a topological property
if each homeomorphism of X has that property whenever X has that property .
[ The image of every open set is open ]
[The image of every closed set is closed ]
Example: consider - ={¢,{a},{a,b}, X}, X={a,b,c}, Y={r,p,q},
n={o {r}.{p.a} Y}
F(a)=f(b)=f(c)=r, find whether f is continuous , open, closed , continuous
and homomaorphism .
Solution :since f* (p)=¢ , F'({xP=X ,F'{p.aP)=¢ ,F(Y)=X
Arer -open hence f is continuous also since f(¢) , f({a})={r}, f({a,b})={r} ,
f)={r}
Which x—open so fis open .

Since every 7 -open (and x—open) sets are 7 -closed and x—closed function .
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F is continuous and open so f is continuous .
F is bijective sof isn't homomorphism .
Example : show that the function f:R—R defined by

X where x<1
F(X)= [ 1 where xe[1,2]
X?4  where x>2
Discuses the continuity and opens of f. (ab) if a<b<l
Solution : let (a,b) be any open interval then f'[(a,b])=| (a,2+vb) if a<l<b
(2Va,2+b) if 1<a<b
Since the inverse image of every x-open setis x—open hence the function fis
continuous.
open:let G be any open set containing x , let G=(1.5,1.9) , f(G)={1} which is not open
theorem(10):let (X,z) and (Y, ») be two t.s the mapping f:X—Y is open iff
f(IntA) c Int(f(A),
proof : let f be an open function and let Ac X, IntA is an open set in X, f(IntA) is x -
open since fis open , since IntAc A " always"
f(IntA)cf(A) ,
again since f(IntA) is x-open there for f is an open function , then Int f(IntA)=f(IntA)---
1
also f(IntA)cf(A) , Int f(IntA)=f(IntA) < Int f(A)
hence f(IntA)c Int f(A) .
conversely:
suppose that the hypothesis hold , to show that f is open , let G be an 7 -open set so Int
G=G
f(G)=f(IntG) c Intf(G) by hypothesis
~HG)cIntf(G) , but Int f(G)<=f(G) always

45



46
-~ Int f(G)=f(G) which implies that f(G) is open .
Definition : A property of a topological space is said to be hereditary if every subspace
of the space has that property .
Separation Axioms
To-space (KOLOMOGORYV)
Def: the space (X,7) is said to be a To-space iff for every two distinct point of X 3 an
open set G which contain one of them but not other .
Ex: the (X,1) is not Ty-space , (X,D) is Ty-space .
Theorem(11) : At.s (X,7) is To-space iff for all x,ye X, x#y then {x}#{y}.
Proof : suppose that (X,7) is To-space and , Let , X2y we wont to show that{x }#{y }
~(X,7)isaTy-space, then v x#£y, 3an open set G containing X but noty . i.e xe G but
yeG.
~yeG®, then {y}c=G"
Since xeG , xeG°, that xe{y}, but xe{x}, hence {x}£{y}.
Conversely :Let x£y and {x }#{y }, we have to show that (X,7) is T,-space
Since {x}#{y}, Janelementze X s.tzg{y}butze{x}.
Suppose that xe{y }then{x }={y }= {y }which implies that z< {y }which is
contradiction
wxe{y}= (xe{y} =Xy}
~{y} is open set containing x but not containing y since ye {y}
~(X,7) is To.
Theorem(12):. Every subspace of a Ty-space is a To-space. And hence the property is
hereditary.
Proof :.let(X,7) be a To-space and let (y, r ) be any subspace of (X,7) .we have td

show that (y,7 ) is a To-space.
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let y1 Y, be any two distinct point of Y, since Y < X, so y,Y, are two distinct point in X .
but (X,7) is a To-space , so an open set G . s.t containing one of them (say) y; but not y,
thenGnY isanopensetinyY
therefore G Y is ar ,—open set containing y; but not y; it follows that (y, 7 y) is a To-
space.
Theorem(13): the property of space being a To-space is preserved under 1-1 , onto
open function and hence is a topological property .
Proof : let (X,7) a To-space and let f be a 1-1 , onto open function from(X,7) to another
topological space (Y, x) we have to show that (Y, x) isa To-space
Let y1,y, be any two distinct pointin Y .
Since fis 1-1, onto function , 3x;,Xe X, s.t f(Xy)=y; and f(X2)=y, , Xi1#x;.
Since (X,7)is a To-space,3art -open set G containing one of them(say) x; but not x,
Since f is open function , so f(G) is x-open set containing f(x;)=y1,but not f(x,)=y, .
Hence(y, «)is a To-space.

T,-space :"'Frechet space **
Definition :A t.s. (X,7)is said to be aT;-space iff for every two distinct points x and y of
X. 3two open set. G and H s.t. xe G but yeG and yeH but xgH.
Note: T, Ty; that is every T;-space is a to- space but the converse may not be true in
general .
For example: let x be any set and a<x , a is an arbitrary element : Z={ ¢ ,every subset
containing a}
(X,7)is a To-space , but(X, 7 )is not T,-space .
Since every open set containing b contains a also :where a#b .
Example : IS (R,U) is a T;- space .
Solu: let x,ybe any two distinct real numbers . and let y >x , let y-x=k then
G={(x-k/4,x=x+k/4)}and H={(y-k/4,y+k/4)}are n—open,s.t.xeG butxe¢H andyeH
but ye«G . hence (R,u)is T;-space

Theorem(14): the space (X,7) is T;-space iff every singleton on subset of x is closed .
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Proof: suppose that every singleton subset of x is closed ,to show that(X, 7 )is

aT;-space

Let X, yeX and x #y,{x}and {y}are closed set .

ye{x}=then ye{x}°

~.{x}"is an open set containing y but not x. and {y}°is an open set containing x but not y
- (X,7)isaT;-space .

Conversely: Let (X,7) be a T;-space and let x € X ,we have two show that {x}is closed ,
Since (X,7)is a T;- space

~vyeX,and X #y.

Jan open set G containing y but not x.

XeGy c{x}

- {x}° is the union of all open set containing y . { x} is open ,{x}is closed

Theorem(15): the property of a space being a T,- space preserved under 1-1 ,on to
open function and hence is a topological property .
Proof : let (X,7) be a T;-space and let f be 1-1 ,open function of (X,7) on to another t.s.
(y, w«)is we shall show that (y, ) isa T- space .
Let y; Y, be any two distinct points of y, since fis 1-1 and on to,3a distances points X,
X, e X, s.t.y,=f (Xy)and y,=f (x,)
since (X,7) isa T;-space, 3T;-openset Gand H s.t x;eG,x;¢H and X,eH but X, G
since f is an open function . f(G)and f(H)are . -open subset in y .such that y;=f(x;) e f(G)
but y,=f(x,) f(G) . and y;=f (x;)ef(H) but y, =f(x,)  f(H).
hence (y, ) is a T;-space .
EXersises:
1
2
3

show that every finite T,-space is discreet .

show that a t.s (X,7) is T;-space iff 7 —contains a co-finite topology on X

show that every topology finer than T;-topology on any set X is a T;-topology .

S
1

prove that for any set X ,3s a unique smallest topology 7 —set (X, 7) is a T;-space
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5- prove that a finite subset of a T,-space has no a accumulation points.
T2-space : Hausdoff space
Definition : at.s (X,7) is said to be a T,-space iff for every two disjoint points Xy,X,
,3disjoint open set G;,G, S.t, X;e Gy and X,e G, , that is v Xq,Xoe X , X37#X, , 3 two open
set G1,Gy, G1nGyo=¢ , and X1 Gy , X,eGo.
Example: show that (R,U) and (R,S) are T,-space .
Solution: let a,b be any tow distinct points in R, and a>b so la—b/=C then
(@-C/4 ,a+( /4)=G and (b-C /4,b+( /4) =H are tow W-open set containing a &b
respectively and G~ H=¢ , so the space is T,-space .

Example: Consider the co-finite topology on an infinite set X , show that it is not T,-
space .
Solution: For this topology no two open set can be disjoint , suppose if possible that
G,H are tow disjoint open subsets of X so that GAH=¢.
Then (GAH) =¢°¢

G® UH® =4 “=X (De Morgan)
G UH®=X
But G © and H “are finite [by definition of co finite then G U H ° is finite also which is
contradiction .
Theorem(16): let (X, ) be at.s and let (Y, ) be a housdorff space , let f:X—Y be a 1-
1, onto and continuous function then X is also housdorff .
Proof: let x;,X, be any tow distinct point of X, since fis 1-1 , and x;#x; then f(x,)#f(x,).
Let yi=f(x1) , yo=f(X,) s0 that x,;=F*(y1) , X,=F"(y2) .
Thenyy,y,eY s.tyi#y,
Since (Y, u) is ahousdorff space, sau-openset Gand Hs.ty,;Gy, y,G;, and
GnH=¢ , Since fis continuous , f* (G) and f* (H) are - —open set
Now f* (G) ~nf* (H)=f' (GAH)=f(¢)=¢
And y1eG = f(y1) ef(G) = x1¢ F(G)
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YzeH = fi(yz) eF'(H) = Xz F(H)
Hence the space is housdorff .
Theorem(17): every subspace of T,-space is a T,-space .
Proof: let (X,r) be a T,-space and let(Y, ») be any subspace of X,
Let y,,y, be any tow distinct points of y ,
Since Y X, then y,,Y, are tow distinct point in X but (X,z ) is T,-space , SO tow open
setH,Gs.ty,eG,y,eHand GAnH=¢
But by def , GnY and Y ~H are r —open sets and
GCAY)Nn(HAY)=(GCAH)nY=¢nY=¢
Thus GnY, Hn Yare tow disjointz y—open sets , Hence the subspace (Yq,7y) is To-
space.
Theorem(18): Each singleton subset of a T,-space is closed .
Proof : Let X be a housdorff space , Let xe X
To show that {x} is closed , Let y be an arbitrary point of X distinct from x . Since the
space is T,-space , 3an open set G containing y , X G it follows that y is not an
accumulation points of {x} , so D({x})=¢ .
Hence {x }={x} it follows that {x} is closed set .
Theorem(19): Every T,-space is a T;-space but the converse is not true in general
Proof: let(X,r ) be a T,-space and let y;,y, be any two distinct point of X , since the
space X is a T,-space so , tow open set G, Hs.ty;,€G, y,eH and Gn H =¢ this implies
that y;eG buty;¢H and y,¢ G but y,eH .
Hence the space is a T,-space .
But the converse in above example of co-finite topology on an infinite set X, is not T,-
space , but it is T;-space since for if x is an arbitrary point of , then by Def of T X/{x}
Is open {be any the finite set } and consequently {x} is closed

The every singleton subset of X is closed and hence the space is T;-space .
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Example: Let (X,z) beat.sand Let(Y, ) be ahousdorff space . if fand g are
continuous function from X in to Y, show that the set A={xe X; f(x)=g(x)} is closed
Solution: we shall show that X\A is open set .

Now X\A={xe X; f(x)#g(x)}------ (1), Let p be an arbitrary point of X\A .

Put y,=f(p) and y,=g(p),we have y,#y, , thus y,,y, are tow distinct point in a housdorff
space, 3two . -open sets G and H s.t y;=f(p)e G,y,=g(p)eH and G~ H=¢

pe £ (G), pe g" (H), pe f*(G) ng™ (H)=V,
since f, g are continuous function
- F1(G), g™ (H) are open set, Hence is open set We have to show that V < X\A
LetyeV=f*(G) ng*thenye f* (G)and ye g (H)
f(y) eGand g(y)eH , since GnH=4¢ it follows that f(y) #g(y) and by(1)

ye X\A , thus we shown that to each arbitrary point yeV, also ye X\A ,
hence Vc X\A
X\A is an open set
There for A'is closed

Regular and Ts-space
Def:At.s (X,7) is said to be a regular space iff for every closed set F and every point
peF, 3Towopensets Gand Hs.t peG,FcGand GnH=¢
The regular space which is also T;-space is called a Ts-space
Example: Let X={a,b,c}, and Let - ={¢ ,{a}{b,c} X}

0o ={,X{b,c}{a}.¢}

Example: show that (R,U) is a Ts-space .
Solution: let F be a U-closed subset and let xeR, s.t xeF.......

Theorem(20): A t.s X is regular iff for every point xe X and every nbd N of x 9 a nbd
M of x such that M N .
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Proof :"The only if part” let N be any nbd of x .then 3an open set G such that xe GeN.
Since G° is closed and x ¢ G°,

But the space is regular 3two disjoint open set L&M such that G°cL and xe M .

So that Mc L it follows that

But G°cL — L° cGcN-----(**)

From (*) and (**) we get M N .

The" if part" let the condition hold .

Let f be any closed subset of x .and x«F, then xeF°,

Since F° is an open set containing , so by hypothesis 3an open set M such that xe M
and M cF* —Fc (M )°then (M )€ is an open set , containing F also
MNM=0MN(M )*=@

.. The space is regular

Example: Every Ts-space is a Ts-space

Solu :let (X, T)be a Ty-space , and let x,y be any two distinct point.

Now by definition of X, the space is R Tyand so {x} is a closed set also y ¢ {x}.

Since X is regular . 3two open set G&H such that ye G ,{Xx}cH & GNH=0 ,but xe {x}
<H, hence the space is T»,.

Theorem(21): Every compact housdorf space is a Tz-space

Proof //let (X,7 )be compact housdorff space

To show that (X,7)is a Ts-space

since X is housdorff , so X is a T;-space , it suffices to show that (X, 7 )is a regular , let
F be a closed subset of X and let pe X such that pgF

so pe X\F, since (X, 7) is a housdorff space so for every xeF ,there must exist two open
sets G(x)NH(x) =Q...(*)

The collection C={H(x) ; xeF } is open cover of F.

Since F is a closed subset of a compact space X, so that F is compact (by theorem )
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Hence 3s a finite numbers of points Xj,X»,..,X, in F such that Fc{H(X;),i=1,2,...,n} let
H=U{H(x),i=1,2,...,n}
And G =N{G(x)), i=1,..n }
Then pe G, since pe G(x;) for each x; also GNH=0,
[other wise G (X )NH (xx) #O for some xy e F this contradict(*)]
hence the space is regular .
Normal +T5 =T,
Normal space and T, —space
Definition : At.s.(X, 7) is said to be normal iff for every pair of disjoint? -closed subset
L and M of x, 3s 7 - open sets G and H such that Lc G, Mc H and GNH=0.
A normal space which T, —space is called a T,—space
Example :lets X={a,b,c}, T={@,X,{a}{b,c}}since the only disjoint closed subsets are
{a} ,{b,c} which is also are 7 -open sets.
The space is normal.
But T is not a T,-space .

Since b#c ,there does not exist an open set containing one of them but not the other .

Theorem(22);A t.s (X,T) is normal iff for any closed set F , and open set G~
containing F,3 an open set V such that FcH and H <G’

Proof // the "only if part "let X be a normal space , and let F be any closed set and G be
an open set containing F.

G is open =G°is closed , and FNG®=@ , since the space is normal 3two disjoint open
set H and G” such that FcH', G°cG and HNG =@ so that H = G’

ButH cG°=H* cG* =G ° ....... 1

Also G°cG -G c G ......... 2

From 1 and 2 we get H* <G

The "if part "suppose the hypothesis is hold and to show that the space (X, 7) is normal
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Let L and M be any two disjoint closed subset of X . that is LNM=@ then Lc M® |[L is
closed , M® is an open set containing by hypothesis 3an open set H'such that LcH™,
and H* = M which implies that also H N(H*)°=@ thus the space is normal
Theorem(23): normality is topological property
Theorem(24): every closed subset of a normal space is normal space is hormal .
Proof :let(X,7) be a normal space , and let (Y,7y) be any closed subspace of X we
have to show that (Y,7y ) is normal
Let L", Mbe any two disjoint closed subset of Y, then 3Ja subset L,M of X such that
L"=LNY,M"=M NY since Y is closed it follows that L and Mare 7 -closed subset in X.
Since X is normal , 3two 7 -open set G and H such that L" <H ,
M =G and HNG=0 .
SoL'cHandL cY —L" cHNY
M'cGandM'cY - M cGNY
And (HNY)N(GNY)=HNG)NY=0NY=0
L" cHNY , M cGNY and (HNY)N(GNY)= @, hence the space is normal .
Example: show that if the space is normal.
Let L,M be any U-closed subset of R st LNM=0
LetreL then reM and so re R\M since R\M is U — open ,3 { >0 such that
(r-C, r +0) = R\M, therefore (r-{,r + )NM=0
Let G=U{ (r-{/3,r+{/3) ;reL then Lc G . similarly it can be shown that for each
meM , 356>0such that (m- 5§,m+s)NL =@, and let H=U {(m-6/3, m+5/3) ; me M}
therefore mc H,thus G,H are two open set such that Lc G,McH
we have two show that GNH=0.
Suppose is possible that xe GNH so Xxe G and xe H . then xe (r-{ /3 ,{/3)for some
reL and xe (m-¢/3 , m+{) for some me M we then have /r-x/<{/3 and /m-x /<{/3 hence
[ r-m [=/r-x+X-m/ < /r-x/ +Im-x / <{/3 +{/3 if (<& then /r-m/ <C and so re (M-{/3,m+{)
which is C!
If < then \r-m\ <{, and me (r-{/3 , r+{/3 )which is contradiction
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it follows that GNH=@ hence the space is normal
Urysohn's lemma
let FL F, be any pair of disjoint closed set in a normal space X,3a continuous function
F:X— [o0,1] s.t f(x) =o for xe Fy, and f (x)=1 for xe F,
Completely regular space and tychonoff space .

Def: A topological space X is said to be completely regular iff for every closed subset F
of X and every point xe X\F , 3a continuous function f of X in to the subspace [0,1] of
R .s.tf(x)=0 and f(F)=1
A tychonoff space (or Ts-1/2space ) is completely regular and T,-space .
Theorem(25): A t.s(X, 7 )is completely regular iff for every xe X and every open set G
containing x 3 a continuous function f of X in to [0,1] such that f(x)=0 and f(y)=1
v ye X\G
Proof: Let (Y, 7) be a completely regular space and G be an open set containing x , such
that X ¢ X\G then X\G is a closed set which dose not containing X .
By definition of completely regular 3a continuous function f from (X, 7) in to a subset
[0,1] such that f(x)=0, f(y)=1 for all ye X\G .
Conversely : Let the condition is hold
Let F be any closed subset of X and x be a point of X such that x¢F . then xe X\F and
since F is closed so X\F is an open set containing x
By hypothesis 3s a continuous function f from (X, 7) into a subset [0,1] s.t f(x)=0, f(y)=
1 for all ye X{X\F}=F
Hence the space is C.R
Theorem(26): Every completely regular space is regular . Hence every tychonoff
space is a Ts-space .
Proof: Let X be a completely regular, Let F be a closed subset of X , and let x be a point
of X such that x ¢ F since the space is completely regular . 3 a continuous function f
from(X, 7) into subset [0,1] such that f(x)=0, f(F)={1} .
Also we can see that the space [0,1] with the relative usual topology is a T,-space
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Hence 3open sets G and H of [0,1] s.t 0eG and 1eH and GNH=0 since fis a
continuous then f*(G) and f'(H) are open set in (X,7) s.t
£1(G) Nf'(H)= fY(GNH)= f(2)=0
Further f(x)=0e G —x<f!(G) and f(F)={1}cH—Fcf*(H)
Hence the space is regular
Theorem(27): Every T4-space is a tychonoff space.
Proof: Let (X,7) be a T,-space by definition T,=normal+T;
To show that the space is tychonoff space it suffices to show that the space is C.R,
So Let F be a closed subset of X , and let x be a point of X s.t xeF,
since the space (X, 7)is a T;- so {x} is closed subset of X ,
thus {x} and F are two disjoint closed subset of a normal space
So by ((Urshon's Lemma )) 3 a continuous function f from (X, 7) in to the set [0,1] s.t
f({x})=0 i.e f(x)=0 and f(F)={1}
it follows that the space is C.R .
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