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Metric Space: 

Open sets: Let (X,d) be a metric space . A subset G of X is said to be d-open  

                   iff to each x G there exist r >o such that S(x,r) G. 

Def
n
: Let (X,d) be a metric space, and let xо X if rR

+ 
then the set     

          {xX; d(x,xо)< r} is called an open sphere (or open ball).the point xо is  

           called the center and r the radius of the sphere. and we denoted by  

           S(xо,r) or by B(xо,r): i.e. S(xо,r)={ xоX; d(x,xо)< r} 

            Closed set is define and denoted by S[xо,r]={ xоX; d(x,xо)≤ r}. 

Ex: Let xR then a subset N of R is U nbd of x iff there exist a u-open set G   

       such that NGx  , but G is U-open and xG implies that there exist an  

        >0 such that (x-,x+)  G. Thus N is a U-nbd of x if N contains an  

         open interval (x-,x+) for some >0. In particular every open interval    

          containing x is a nbd of x. 

Ex: Consider  the set R of all real numbers with usual metric space 

      d(x,y)  = yx   and find whether or not the following sets are open. 

        A= (0,1) ,B=[0,1), C= (0,1] ,D=[0,1], E= (0,1) (2,3)   , F={1},   

        G={1,2,3} . 

Sol
n
 : A is open set Let x be appoint in A, we take r=min{x-0,1-x}, then it is  

         evident that (x-r, x+r)  A 

         For example consider 
4
1 (0,1), then r=min{

4
1 -0,1-

4
1 }=min{

4
1 ,

4
3 }=

4
1  

         (
4
1 -

4
1 ,

4
1 +

4
1 ) =(0, 

2
1 ) (0,1)=A. 

         B is no open set, since however small we choose a positive number r,  

          the open interval (0-r,0+r) = (-r,r) is not contained in B. Thus there  

          exists no open ball with 0 as centre and contained in B  . 
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Theorem 1: In a metric space the intersection of a finite number of open sets  

                      is open. 

        Proof: Let (X,d) be a metric space and let {Gi ;i=1,2,3,…,n } be a finite  

                    collection of open subsets of X, to show that     

                   H=∩{Gi;i=1,2,3,…n} is also open. let x Gi for every  

                i=1,2,3,…n, since each Gi is open there exist ri>0 such that  

               S(x,ri)Gi   i=1,2,3,…n . let r=min {r1,r2,r3,…,rn}, then                              

                S(x,r) S(x,ri)  for all i=1,2,3,…n, it follows that 

                 S(x,r) Gi , for all i=1,2,3,…,n, this implies that 

                  S(x,r) ∩{Gi, i=1,2,3,….,n}=H, thus it is shown that to each x in        

                   H there exist r>0, such that S(x,r)   H. Hence H is open. 

Theorem 2:   In a metric space the union of an arbitrary collection of open set  

                     is open. 

Proof: let (X,d) be a metric space and let { }; G  be an arbitrary collection  

            of open subset of X, to show that }:{  GG   is open, let xG ,   

           then by def
n
 of union xGλ for some  λ∆, since Gλ is open there    

           exists r>0 such that GrxShenceGGbutGrxS  ),(,,),(    , thus we have  

            shown that to each xG , there exists a positive numbers r such that  

           GrxS ),( ,hence G is open 

Theorem 3: A subset of a metric space is open iff it is the union of family of  

                 open ball. 

Proof: Let (X,d) be a metric space and AX, let A be open ,if A= , then it is 

            The union of empty family of ball , now let A  , and xA, since A is  
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            open, there exist an open ball B(x,r), r>0 such that B(x,r) A, it      

             follows that A{B(x,r), x in A}A. Hence  A= }),,({ AxrxB     

           So A is the union of a family of open ball. 

 Conversely if A is the union of a family of open ball then A is open by 

Theorem 2. 

Ex: Show that in a discrete metric space every set is open. 

Sol
n
: Let A be a subset of discrete metric space if A= , then A is open, if  

        A  , let xA, since S(x,
2
1 )={x}, we have S(x,

2
1 ) A. Hence A is open. 

Ex: Show that in a metric space, the complement of every singleton set is 

Open . More generally the complement of a finite set is open. 

Sol
n
: H.W 

Ex: Give an example to show that the intersection of an infinite number of  

        open sets is not open. 

Sol
n
: Consider the collection {(- ), 11

nn
, Nn } of open intervals in R with  usual 

metric d(x,y)= yx  , then∩{(- ), 11
nn

, Nn }={0}, which is not open since there 

exist not r>0 such that (-r,r) {0}. 

Closed sets: 

Def
n
: Let (X,d) be a metric space , a subset A of X is said to be closed iff the 

complement of A is open. 

Ex: Show that every singleton set in R is closed for the usual metric d for R. 

Sol
n
: Let aR, to show that {a} is closed. Now R-{a}=(-∞,a) (a,∞), but       

(-∞,a) and (a,∞) are open sets, hence their union is also open. 

Theorem 4: Let (X,d) be a metric space and let };{ H  be an arbitrary  
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collection of closed subsets of X. then ∩ };{ H  is also a closed set. In 

other words, the intersection of an arbitrary family of closed sets is closed. 

Proof:  ,closedisH , 

           then X-  ,openisH , 

           then  {X-  ,H  }is open by theorem      

           then  X-∩{  ,H  } is open De-Morgan 

           then ∩{  ,H } is closed. 

Topologies: 

 Def
n
: Let X be anon empty set and let π be a collection of subsets of X  

          satisfying the following three condition: 

      T1:   X, . 

       T2: if   2121 GGthenGandG  . 

       T3 : };{    GthensetarbitraryiswhereeveryforGIf   

  Then π is called a topology for X, the members of π are called π-open sets 

and the pair (X,π) is called a topological space. 

Ex: Show that the union of empty collection of sets is empty i.e. 

  },{A  and the intersection of empty collection of subsets of X is X 

itself  i.e.  XA  },{   

Ex: Let X={a,b,c}, and consider the following collections of the subset of X: 

        },{1 1 X   

          }},,{},{,{2 2 Xcba   

          }},{},{,{3 3 Xba   

           }},{,{4 4 Xa   
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           }},{},{},{,{5 5 Xbaba   

            }},,{},{{6 6 Xcab  

            }},,{},,{,{7 7 Xcbba   

             }},,{},{,{8 8 Xcbb   

        Let we verify these axioms for π8, 

          

8

8

82

881

},{},{

}{}{},{}{

},{}{:

,:

















baXba

bXbbab

XbabT

XT







 

           
XXbabbaXba

bababXXbababbT









},{}{},{},{

},{},{}{},{},{,}{}{:3 
 } All are in π8 . 

            So π8  is a topology on X. 

Theorem 5: Every metric space is a topological space, but the converse is not  

                true . 

Proof: Let (X,d) be any metric space to prove that X,  is open set. 

           openisXsoXxBthatsuchxBthenXxLet rr  )()(  

            openisxBthatsuchxBxIf rr   )()(  

           Let A,B be an open sets, to prove that A∩B is open, 

            
openisBAsoBAxBxBxB

sosriLetBxBandAxBxandAxBAxLet

sri

sr









)()()(

),min{)()(B
 

       

.

)()(

);{

setopenisA

AAxBAxBAxthatsuchIithenAxLet

openisAthatprovetosetopenoffaimlyabeIiALet

Ii

i

Ii

iiriri

Ii

i

Ii

ii

ii



















 

          But the converse is not true for example let X={a,b,c} and  

      ={,{a},X}, suppose hat d is a metric of X , =d(a,b) but B(b)={b}  
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           Which is not open. 

Ex: Let X be any set. Then the collection I= { ,X) consisting of empty set   

       and the whole space. Is always a topology for X called the indiscrete or  

       (trivial) topology, the pair (X,I) is called an indiscrete topological space. 

Ex: Let D be the collection of all subsets of X, then D is a topology for X   

       called the discrete topology. 

Sol
n
: Since DXandDhaveweXXX  ,,,  so that T1 satisfied. 

          T2 : Also holds since the intersection of two subset of X is a gain a  

           subset of X. 

         T3: Is satisfied since the union of any collection of subset of X is again 

            a subset of X.  

Ex : Let R be the set of all real numbers and let S consist of subsets of R  

         defined as follows: 

       i- S  ii- A non-empty subset G of R belong to S iff to each  ,Gp a 

right  half open interval [a,b) where a,b are in R, a<b such that Gbap  ),[  

show hat S is a topology for R called the lower limit topology or in  short 

RHO topology for R. 

Sol
n 
; T1: SRalsoS  since to each pR there exists aright half-open 

interval  [p,p+  ), Rpppthatsuch  ),[,0   

 T2: Let 212121 ,,, GpandGpthenGGpLetandSGG   so there exists a right half-

open intervals H1 and H2 such that 2211 GHpandGHp  , it follows that 

 212121 sin, HHceGGHHp   so its clear that  21 HH  is a right half-open 

intervals, thus to each 21 GGp  , there exist a right half-open interval 

212121 , GGHHpthatsuchHH    ,  hence SGG 21  . 
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 T3: Let   ,SG  where ∆ is an arbitrary set, let };{  Gp  .  Then 

there exist 
pp

GceGpthatsuchp  sin. is S-open, there is a right half-open 

intervals H such that .
p

GHp   it follows that   };{  GHp  . 

Hence SG  };{  . Thus S is a topology for R. 

       Similarly the upper limit topology for R consist of  and all those subset 

G of R having the property that to each Gp  there exist a left half- open      

interval (a,b] such that Gbap  ],( . 

Ex: let π be the collection of subsets of N consisting of empty set  and all   

subset of N of the form  Gm ={m,m+1,m+2, …}, m in N show that π is a          

topology for N, what are the open sets containing 5. 

Sol
n
 :   NAandT ,...}3,2,1{; 11  

    








  nm

m

n

nmnm GGhence
mnasG

nmasG
GGthenNnmGandGLetT ,,,:2  

     GT :3  where ∆ is arbitrary subset of N, since N is a well ordered                

Set (prove that) ∆ contains a smallest positive integer m0 so that                 

 
0

,...}2,1,{}:{ 000 mGmmmG , hence π is a topology for N.  

G1 =N ={1,2,3,…},  G2={2,3,4,…}, G3 ={3,4,5,6,…}   G4={4,5,6,…}  

G5={5,6,7,8,…} 

Note: A partially ordered set X is said to be well ordered if every subset of X 

contains a first element. 

Partial ordered set the pair(x,) is called p.o. set if xy for x,y in X If Xa be 

such that Xofelementfirstaisathenxxa , . 

Ex: List all possible topologies for the set X={a,b,c}. 
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Ex: Let U consist of  and all those subsets G of R having the property that to  

each Gx  there exist Gxxthatsuch  ),(0   to show that U is a topology 

for R called the usual topology. 

Sol
n
 :  T1 - 0,)1,1(sin,   anyforfactInRxxRxeachtoceURalsodefinitionbyU  

                   Rxx  ),(   

      T2 : Let G1,G2 U , if 21 GG  there is nothing to prove if 21 GG  ,let   

                21 GGx   then 12121 ),(,, GxxthatsuchoohenceGxandGx    

      .,),(0},,min{),( 2121212 UGGhenceGGxxandthentakeGxx    

      T3: Let };{ G  be an arbitrary collection of members of U an let  

        GxxthatsuchUGcesomeforGxthenGx  ),(0sin,},;{  

       But ),(   xx }:{  G ,therefore UG  };{  , so U is a topology for R. 

Comparison of topology: 

Def
n
 : Let π1 and π2  be two topologies for a set X , we say that π1 is weaker or   

           (smaller) than π2 or that π2  is stronger or (Larger) than π1 iff 21      

            that is iff ev ery π1 –open is π2-open, if either 1221   or  we say    

            that the topologies π1  and π2 are comparable. If 21    and 12    , 

           then we say that π1 and π2 are not comparable. 

 For any set X , (X.I) is weaker topology and (X,D) is stronger topology. 

Ex : Find three mutually non comparable topologies for the set X={a,b,c} 

 Sol
n
 :  Let  }},{,{1 Xa    }},{,{2 Xb   ,  }},{,{3 Xc    Also from the following 

topology }}..{{1 Xa  , }},,{},,{},{,{2 Xcabaa  ,  }},,{},{,{3 Xcbb  , we see that 

π1 and π3 are not comparable since  1331   and  but π1 and π2 are 

comparable. 

Intersection and union of topologies: 
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       The union of two topology need not be a topology for example Let    

X={a,b,c}, consider two topology defined on X as follows   }},{,{1 Xa   , 

}},{,{2 Xb  , then  which is not topology for X 

Theorem 6: Let };{    where λ is an arbitrary set be a collection of      

 topologies for X then the intersection };{    is also a topology  for X. 

Proof: Let }:{   be a collection of topologies for X, we have to show that  

  }:{    is also a topology for X , if  , then }:{   =P(X). Thus in 

this case the intersection of topologies is the discrete topology.  Now let  , 

T1 : since   : is a topology, it follows that    ;, X  , but  

        },{,, ,    then  and };{    XthenX  

T2 : Let };{, 21   GG  then    XforytopoaisceGG logsin,;, 21  

       It follows that    ;,21 GG  , hence };{21   GG . 

 T3: Let    ,};{G  where ∆ is an arbitrary set, then  

       andG ,; , since for each   is a topology for X, it follows  

 that    ;};{G . Hence };{};{};{     thusG  is a 

topology for X. 

Closed sets:  

Def
n
 : Let (X, π ) be a topological space, a subset F of X is said to be π-closed 

         Iff its complement F
c
 is open. 

Ex: Let X={a,b,c}, and let π={,{a},{b,c},X} since {a}
c
 ={b,c}, {b,c}

c
 ={a}      

        It follows that the closed sets are , {a},{b,c}, and X. 

Def
n
 : A topological space (X,π) is  said  to be a door space iff every subset  

 of X is either open or closed. For example let X={a,b,c} and 
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 π={,{b},{a,b},{b,c},X} then the closed sets are X,{a,c},{c},{a},.  

   Hence all the subsets of X are either open or closed and consequently (X,π) 

is a door space. 

Ex: If Ra  show that {a} is closed set in the usual topology for R. 

 Sol
n
 : ),(),(}{  aaa c   but (-∞,a) and (a,∞) are open sets hence their union   

  is also open, it follows that {a}
c
 is open , therefore {a} is closed. 

Intersection and union of closed sets: 

Theorem7 : If };{ F  is any collection of closed subsets of a topological 

                   space X, then };{ F  is closed set. 

Proof : }:{   
cc FthenopenisFthenclosedisF   is open By T3 

              .};{

}];{[

setclosedofDefbyclosedisFthen

LawMorganDeopenisF

n

c

















                

Theorem 8: if F1 and F2 b any two closed subsets of a topological space X  

                  Then 21 FF    is a closed set . 

Proof : ncccc
DefofTbyopenisFFopenareFFclosedareFF 2212121 ,,   

             
.)( 2121 closedisFFlawMorganByDeopenisFF c  
 

Note: F1,F2,F3,…Fn be a finite number of closed subsets of X, then their   

           union will also be a closed subset of X. 

 Ex : Give an example to show that the union of an infinite collection of  

        closed sets in a topological space is not necessarily closed.   

Sol
n
 : Let (R,U) be the usual topological space. And let Fn=[1/n,1], Nn . So 

that Fn is closed interval on R, then }1,{]1,[ 11  xorxRx
n

c

n  = ),1(),( 1  
n

 

which is open hence [1/n,1]=Fn is closed set, Now      
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]1,0(...]1,[]1,[}1{},{
3
1

2
1   NnFn  since (0,1] is not closed it follows that the 

union of an infinite collection of closed sets is not necessarily closed. 

Characterization of a topological space in terms of closed sets: 

Theorem 9: Let X be anon-empty set FFFFFF  2121,        

                  FFFFF  };{:3     

Then there exist a unique topology on X such that the π-closed subsets of X 

are precisely the members of F. 

Proof: Let π consist of the complements of the members of F, then π is a  

            topology for X. 

         T1:     XFandXFX cc   

         

n

c

cc

cc

DefbyFGG

MorganDebyFGG

FbyFGG

FGGGGT









21

21

221

21212

)(

,
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}];{[

};{

:

3

3

Gso

MorganDeFG

FbyFG

FG

GT

c

c

c





  

        Hence π is a topology for X. 

   further a subset F for X is closed iff  cF , that is iff .FF    to show the 

uniqueness of topology, let π and π
-
 be two topologies have the same system 

of closed sets. 
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openisG

setsclosedofsystemsamethehaveandceclosedisG

closedisG

openisGGthen

c

c

][sin   

  Neighbourhoods:  

Def
n
 : Let (X,π) be a topological space and let Xx . A subset N of X is said  

to be a π-neighbourhood of x iff there exist a π-open set G such that NGx  .   

Similarly N is called a π-nbd of A subset of X iff there exist an open set G 

such that .NGA   The collection of al nbd of  in X is called the 

neighbourhood system at x  and denoted by N(x). 

EX : Let X={1,2,3,4,5} and let π={,{1},{1,2},{1,2,5},{1,3,4},{1,2,3,4}X}    

         then π-nbd of 1 are     

{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},   

{1,2,3,4},{1,2,4,5},{1,3,4,5},{1,2,3,5},and X 

  Not that {1,3} is not  an open set but it is a π-nbd of 1 since is a π-open  set 

such that }3,1{}1{1   

  Ex: Which of the following subsets of R are nbd of 1? 

       (0,2),(0,2][1,2], [0,2]-1.5 ,   R 

Theorem 10: A subset of a topological space are open iff it’s a nbd of each its    

               points. 

Proof: Let a subset G of a topological space be open. Then for every xG,   

GGx    and therefore G is a nbd of each its points. 

 Conversely let G be a nbd of its point, if G=, then there is nothing to prove, 

if x≠, then to each xG there exist an open set Gx such that   GGx x  . It 
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follows that },{ GxGG x   , hence G is open. 

Ex: Let X be a t.s. If F is closed subset of X, and x A
c
, prove that there is a    

       nbd N of x such that FN   . 

Sol
n
: Since F is closed then F

c
 is open and so by above theorem F

c
 contains   

a nbd of each its points. Hence there exist a nbd N of x such that         

 FNeiFN c ..  

Theorem 11: Let X be a topological space, and for any xX , Let N(x) be the    

               collection of all nbds of x then:  

1-  )(, xNXx , i.e. Every point x has at least one nbd. 

2- )()( xNxthenxNN  , i.e. Every nbd of x contains x. 

3- )(),( xNMthenMNxNN   i.e. Every set containing a nbd of x is a nbd of 

x. 

4- ),()(,)( xNMNthenxNMxNN   i.e. the intersection of two nbd of x is 

nbd of x. 

5- ).()()( yNMandNMthatsuchxNMexisttherethenxNN  i.e. If N is a nbd of 

x, then there exist a nbd M of x which is a subset of N such that M is a 

nbd of each of its points. 

Proof:1-Since X is an open set it is a nbd of  every xX. Hence there exist 

at least one nbd (namely X)for each x X. Hence N(x) ≠  for all xX. 

  2-If NN(x),then N is a nbd of x, so by Def
n
 of nbd xX. 

 3- If N N(x) , there exist an open set G such that  ,NGx  since  

 GxMN , M , and so M is a nbd of x, hence )(xNM  . 

4- Let NN(x) and  M N(x), the by Def
n
 of nbd , there exist an open sets G1 

and G2 such that  MGxandNGx  21  hence MNGGx   21 , since 
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21 GG  , is an open set, it follows from (1)  that  MN   is a nbd of x, hence 

)(xNMN   . 

5-If NN(x), then there exist an open set M such that MNx  . Since M is 

open set it is a nbd of each of its point therefore    .)( MyyNM    

 Base for the neighbouhood system of a point ; Base for a topology 

Local Base at a point. 

Def
n
: Let (X,π) be a topological space, a non-empty collection B(x)  

          of π-neighborhoods of x is called a base for π-nbd system of x iff 

           for every π-nbd N of x there is B B (x) such that B  N, we say  

           that B (x) is a local base at x or a fundamental system of nbds of x. 

           If B(x) is local base at x, then the members of B(x) are called   

            basic  π-nbds of x. 

Ex: Let X= {a,b,c,d,e} and let }},,,,{},,,{},,,{},,{},{,{ Xdcbadcaebabaa                   

       Then the local base at each point a,b,c,d,e is given by B(a)={{a}},    

            B(b)={{a,b}}, B(c)={{a,c,d}}, B(d)={{a,,c,d}},B(e)={{a,b,e}}. 

Ex : Let (X,π) be any topological space, and let x X , show that the collection   

       Β(x) of all π-open subset of X containing x is a local base. 

 Sol
n
 : Let N be any nbd of x. then there exist an open set G such that  

           NGx   . since G is an open set containing x, )(xG  , this show that 

            )(x  is a local base at x. 

        Properties of local base: 

   Theorem 12: Let X be a topological space and let  (x) be a local base at  

                          any point x of X, then  (x) has the following properties. 

     B0:  (x)    for every x in X. 
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     B1: If BxthenxB  )(  

     B2: If BACthatsuchxCasthenxBandxA  )()()(   

     B3: If 
BCsatisfyingyCsetas

ByeveryforthatsuchandABxthatsuchBsetasthenxA





)(

,,)(



 
 

 Proof: B0- Since X is open , it is a nbd of its points, since  (x) is a local base  

           at any point x of X, and X is a nbd of X, it follows that there must  

            exist a )(xB   such that XB   . Hence  )(x .Xx . 

           B1: If )(xB  , then B is a nbd of x, so by Def
n
 of nbd Bx . 

           B2:If )(xA   then A is a nbd of x, similarly B is a nbd of x it follows  

                that BA  is a nbd of x, since )(x is a local base at x, it follow that 

                there exist BACthatsuchxC  )( . 

           B3: Since )(xA  , A is a nbd of x, hence there exist an open set B  

                  Such that ABx  , since B is an open set it’s a nbd of every By   

                 Again since )(y  is a local base at y and B is a nbd of every  By  

                It follows that for every By  BCthatsuchyCs  )(,  .    

        Ex : Consider the usual topology U for R and any point xR. then the  

        collection }0;),{()( Rxxx    constitutes a base for the U-nebd  

        system for x, to prove this, let N be any nbd of x, then there exist  

        U-nbd set G such that NGx   , since G is U-open there exist 0  

         such that NGxx  ),(  , thus to each nbd N of x, there exist a   

          member )(),( xxx     such that Nxx  ),(   

H.W/ Also show that },),{()( 11 Nnxxx
nn

  is anther local base for U-nbd 

First countable space: 

   Def
n
 : A topological space (x,π) is said to satisfy the first axiom of count-      
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             ability if each points of X possesses a countable locale base, such a    

              topology is said to be a first countable space.  

Ex: A discrete space (X,D) is a first countable, for in a discrete space every 

       subset of X is open, in particular each singleton {x}, x X is open and so  

        is a nbd of x. Also every nbd N (i.e. open set containing x in this case)  

        of x must be a superset of {x}. 

       hence the collection {{x}} consisting of the single nebd {x} of x,     

       constitutes member is countable. Hence there exists a countable base at  

       each point of X. 

 Ex : Show that the topological space (R,U) is first countable. 

  Sol
n
 : Let Rx  then the collection });,{( 11 Nnxx

nn
  is a countable base 

            at x and so (R,U) is first countable. 

Base for a topology: 

   Def
n
: Let (X,π)  be a topological space, a collection β of subsets of X is said  

             to form a base for π iff: 

            NBxthatsuchBsomexofNnebdeachandXxPoeachFor   int21  

Ex : Let X={a,b,c,d} and let }},,,{},,,{},,}{,{},{},{,{ Xdcbdcabadcba  , then the  

        collection }},{},{},{{ dcba  is a base for π since βπ and for each nbd  

        of a contains {a} which is a member of β containing a. Similarly each   

         nbd of b contains {b}β, and each of c or d contains {c,d} β. 

Ex : Consider the discrete space (X,D), then the collection β={{x}, xX} 

        Consisting of all singleton subset of X is abase for D, since  each  

        singleton set is D-open so that DB  , also for each Xx  and each nbd  

         N of x, ,}{ x  is such that Nxx  }{  
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Def
n
 : Let (X,π) be a topological space the space X is said to be second  

          countable (or to satisfy the second axiom of count-ability) if there exist  

           a countable base for π. 

Ex: The space (R.U) is second countable since the set of all open intervals          

          (r,s) where r,s are rational numbers forms a countable base for U. This  

           Follows from the fact that between any two real numbers there exists   

           infinitely many rational numbers. thus to each point x in R and each  

             nbd N of x   ),(, srxthatsuchQsr N 

Theorem 13:Let (x,π) be a topological space, a collection β of π is abase for π                      

iff every π-open set can be expressed as the union of members of β. 

Proof: Let β be a base for π and let Gπ, since G is π-open, it is a π-nbd of    

each of its point, hence by def
n
 of base to each xG there exist a member 

GBxthatsuchB   it follows that };{ GBandBBG   . 

           Conversely, Let    and every open set G be the union of members  

          of β , we have to show that β is abase for π, we have 

          i- given   

           NGxthatsuchGsetopenansthenxofnebdanybeNletandXxLeti  ,  

              But G is the union of members of β, hence there exists  

               forbaseaisthusNGBxthatsuchB , . 

Ex: Let π and π
* 
be topologies for X, which have a common base β then π=π

*
. 

 Sol
n
; Let G, and xG, since G is -open, it is -nbd of x ,, and since β is   

          a base for , there exists Bβ such that GBz  β. Since β is a base  

          for
*
 and Bβ, it follows that B

*
. Hence G is 

*
-nbd of x, since x  

           is arbitrary G
* 
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    provecanwesimilarlyThus , , hence    

Properties of a base for a topology: 

   Theorem14: let (X,) be a topological space and let β be a base for , then    

                       Β has the following properties: 

     [B
*
1] For every xX there exists a Bβ such that xβ, i.e. };{  BBX  . 

     [B
*
2] For every B1β, B2β and a point xB1∩ B2 there exists a Bβ such  

  That ,21 BBBx  that is the intersection of any two members of β is a 

union of members of β . 

  Proof: [B
*
1] since X is a π-open set it is a nbd of each of its points hence by 

def
n
 of base, for every xX, there exists some Bβ such  that 

},{,  BBXwordsotherinXBx    

 [B
*
2] If B1β and B2β , then B1 and B2 are -open, hence their intersection 

B1∩B2 is also -open, and therefore B1∩B2 is a nbd of each of its points and 

so by def
n
 of base to each xB1∩B2 there exists Bβ such that 21 BBBx  , 

that is B1∩B2 is the union of members of β. 

 Limit points :  

Def: Let (X, ) be a topological space , and let A be a subset of X  , a point       

         xX is called a limit point (or a cluster point or an accumulation 

         point) of A iff every nbd of x contains a point of A other than x. 

          i.e. x will be a limit point of A iff every nbd of x meets A in a point      

         different from x , that is  N\{x} A for all N is and of x or we say     

         that x is a limit point of A iff every open set G containing x , 

         G\{x} A, also we say that x will not be a limit point of A if there    

         exists a nbd N of x Such that N A=  or N A={x}. 
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Def: Let A be a subset of a topological space X, and let xX, the x is called    

         an adherent point ( or  contact point ) of A iff every nbd of x contains a   

         point of A and denoted by d(A). 

         The set of all limit point of A is called derived set and denoted by D(A). 

Def: A point x is said to be an isolated point of a subset A of a topological    

        space X , if xX but x is not a limit point of A . A closed set which has   

         no isolated point is said to be perfect. 

Ex: let (X.D) be descried topological space, and let A be any subset of X 

       Is A has a limit point? 

Sol: let xX, if G\{x} A N\{x} Afor every open set G containing x   

 But we have {x}\{x} A= , therefore x is not a limit point of A . Hence A 

has not a limit point in a descried topology.  

Ex: let X={a,b,c} and let {,X,{a},{b}{a,b}} find all limit point of the set   

       A ={a,c}. 

Sol: we have three points in X  

      1- aX, the open set which contain a are {a}, {a,b} X so since 

          {a,b}{a}\{a}= , a is not a limit point of A. 

      2- bX , the open set which contain b are {b},{a,b}, X and  

            {a,c}{b}\{b}= b is not a limit point of A. 

        3- cX, and the open set which contain c is X only, and 

               X\{c}A={c}, so c is a limit point of A, the isolated point of A        

               is a, since a is in A and not a limit point , and D(A)={c} 

Ex: let X={a,b,c,d,e} and let ={,X,{b},{d,e},{b,d,e},{a,c,d,e}} then is a   

        topology on X. Consider the subset A={b,c,d} ,the point c is a limit    
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        point of A since the -open nbds of c are {a,c,d,e}, X each contains a   

        point of A other than c. But b is not a limit point of A since {b} is nbd of  

        b which contains no point of A other than b similarly a,e are limit point  

        of A so D(A)={a,c,e}. The isolated points of A are b and d since b,d are  

        belong to A but are not limit points of A. then an adherent point of A are    

        a,b,c,d,e. 

Theorem 15: Let X be a topological space, and let A be a subset of X then A  

                    is closed iff D(A)A. 

Proof: Let A be closed, then A
c
 is open and so to each xA

c
 there exist a nbd   

           N of x such that N A
c
. Since AA

c
 =, the nbd N contains no point  

           of A and so x is not a limit point of A. Thus no point of A can be a  

            limit point of A ,that is A contains all its limit  points. Hence D(A)A.   

            Conversely let D(A)A and let xA
c
, then xA. since D(A)A,  

            xD(A) hence there exist a nbd of x such that NA=so that NA
c
,  

            thus A
c
 contains a nbd of each of its points and so A

c
 is open, that is A  

             is closed. 

Closure: 

Def: Let X be a topological Space and let A X. the intersection of all -    

        closed supersets of A is called the closure of A and denoted by A or c(A)  

         or ClA. When confusion is possible as to what space the closure is to be  

          take in, we shall Cl (A). 

Theorem 16: Let A be a subset of a topological space , then  

               1- ClA is the smallest closed set containing A. 

                2- A is closed iff ClA=A 
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Proof: 1- this follows from definition. 

            2- If A closed, then A itself is the smallest closed set containing A and   

                 hence ClA=A. Conversely if ClA=A by 1 ClA is closed and so A is    

                 also closed. 

Theorem 17: prove that ClA =A D(A). 

Proof: We first prove that AD(A) is closed i.e.[A  D(A)]
c
 = A

c
 D(A)

c
  is  

           open , let x A
c
 D(A)

c
 , then xA

c
 and xD(A)

c
 so that xA  and   

            xD(A) . This means that x is not a limit point of A, and hence there  

            exist an open nbd N of x which contains no point of A, it follows that    

            N A
c
. Now no point yN can be a limit point of A, since N is a nbd  

            of y which contains no point of A. hence ND(A)
c
. since NA

c
 and   

            ND(A)
c
, So NA

c
D(A)

c
. thus A

c
D(A)

c
 contains a nbd of each of  

            its point and consequently A
c
D(A)

c
 is open. We now show that  

            ClA= AD(A) ,since AD(A) is closed set containing A and ClA is   

            the smallest closed set containing A, we have ClAAD(A). Again  

             since ClA is closed, it contains all its limit points, and thus in  

              particular, all limit points of A, so that D(A)ClA also AClA.   

              Hence AD(A)ClA, it follows that ClA=AD(A). 

Corollary: Prove that ClA=adh(A)={x; each nbd of x intersect A} 

  Proof: xadh(A) iff every nbd of x intersects A 

                         Iff xA or every nbd of x contains a point of A other than x 

                          Iff xA or xD(A) 

                          Iff xAD(A) 
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                          Iff xClA . 

              An adherent point is also some times called a closure point. 

Ex: Let X={a,b,c,d} and let ={,X,{a},{b,c},{a,d},{a,b,c}} 

       Closed subsets are X, {b,c,d}, {a,d},{b,c},{d},then Cl{b}={b,c}, ,    

       since {b,c} is the intersection of all closed subsets of X which contain b .   

        Again Cl{a,b}=X, since X is the only closed set containing {a,b}.  

        similarly we have Cl{b,c,d}={b,c,d}. 

Ex: Let X={a,b,c} and let      },,,,,,{ cabaaX   .Find the limit point of the sets 

        A={b,c.}  , B={a,c} 

Properties of closure: ”Kuratiwski theorem ” 

         Let X be a topological space, and let A,B be any subset of X, then 

          iiCli ,  - ClBClAthenBAifiiiClAA  ,  

          ClAClAClviClBClABAClvClBClABACliv  )()()(   

Proof: i-Since   is closed, we have  Cl . 

            ii- By theorem ClA is the smallest closed set containing A, so  ClAA  

            iii- By (ii) BAceClBB  sin, we have ClBA ,but ClB is a closed set.     

                Thus ClB is closed set containing A. Since ClA is the smallest    

                closed set containing A, we have ClBClA .                                  

               
)1(..........)(

)()(,

BAClClBClAhaveweiiiby

BAClClBandBAClClAhaveweBABandBAASinceiv








 

                Since ClA and ClB are closed sets, then ClBClA is also closed, also 

                  ClBBandClAA  implies that ClBClAthusClBClABA   is closed    

               set containing BA ,since )( BACl  is the smallest closed set     

               Containing 2.......)( ClBClABACl   , from 1and 2 we get    
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                ClBClABACl  )( . 

             v- ClBBAClthenABAandClBBAClthenBBA  )()(  . Hence 

                 ClBClABACl  )(  

            vi-Since ClA is closed, we have Cl(Cl(A)). 

Theorem 18: Let X be a topological space, and let A be a subset of X then the   

                 following statements are equivalent: 

       i- A is closed              ii- ClA=A          iii-A contains all its limit point. 

Ex: Consider the usual topological space and find the closure of the following  

           subsets of R. 

          i-A={ },
1

Nn
n

      ii- B=The set of all integer numbers ,  

          iii-C= The set of all rational number,  iv- D= ,...},,,2{
4
5

3
4

2
3   

Interior point and interior set: 

Def
n
 : Let X be a topological space and let XA   , a point x in X  is said to be   

           an interior point of A iff A is a nbd of X, that is iff there exists an open     

            set G such that AGx  , the set of all interior point of A is called the  

             interior of A and is denoted by A
0 
or IntA 

 

Theorem 19: },:{ AGopenisGGA   

Proof: 

     

},;{

},;{

AGopenGisGAHence

AGopenGisGxiff

AGxthatsuhGsetopenanexsittheriff

xofanbdisAiffAx
















 

Theorem 20: Let X be a topological space. And let A be a subset of X, then 

i- IntA is an open set. 
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ii- IntA is the largest open set contained in A. 

iii- A is open if IntA=A. 

  Proof: i- Let x be an arbitrary point of IntA, Then x is an interior point of A  

  Hence by Def
n
 , A is a nebd of x, then there exist an open set G such that 

.AGx   Since G is open, it is a nbd of each of its points and so A is also a               

nbd of each of G. It follows that every pint of G is an interior point  of A so 

that IntAG   , thus it is shown that to each point IntAx  there exist an open set 

G such that IntAGx  , hence IntA is a nbd of each of its points and 

consequently IntA is open. 

 ii-Let G be any open subset of A and let AGxthatsoGx  , since G is open, 

A is a nbd of x and consequently x is an interior point of A, hence IntAx  , 

thus we have shown that AIntAGsoandIntAxGx  , . Hence IntA contains 

every open subset of A and it is therefore the largest open subset of A.          

iii-Let A=IntA By(i)  IntA is an open set and therefore A is also open. 

Consequently let A be open. Then A is usually identical with the largest open 

subset of A. but by (ii) IntA is the largest open subset of A. Hence A=IntA   

 Ex: Let (X,D) be s discrete topological space and let A be any subset of X.  

         Since A is open, we have IntA=A, thus in a discrete space every subset  

          of X coincides with its interior. 

 Theorem 21: Let X be a topological space and let A be a subset of X. Then  

            IntA equals the set all those points of A which are not limit pints of A
c
  

 Proof: Let x be a point of A, which is not a limit point of A
c. 

Then there  

            exists a nbd N of x which contains no point of A
c
 , and so AN     

             this implies that A is also a nbd of x and so IntAx . Conversely let 
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             IntAx , since IntA is open, it is a nbd of x, also IntA contains no  

             point of A
c
 , it follows that x is not a limit point of A

c
 , thus no point  

             of IntA is a limit point of A
c
 , hence IntA consists of precisely those  

             point of A which are not limit point of A
c
. 

Theorem 22 : Let X be a topological space, and let A,B be any subset of X,  

                     then: 

 
                  

IntAIntAIntviBAIntIntBIntAvIntBIntABAIntiv

IntBIntABAiiiAIntAiiIntXIntXi





)()()(

,




 

 Proof : i- Since X and  are open set, we have by iii Theorem  IntX =X,  

              Int= . 

          ii- IntAAhenceAxxofnebdaisAAofpoerioranisxIntAx  ,intint   

          iii-Let IntAx ,then x is an interior point of A, and so A is a nbd of x,   

                 since BA  , B is also a nbd of x, this implies that IntBx  thus we  

                 shown that IntBIntAIntBxIntAx  ,   

         iv-Since IntBBAIntandIntABAIntiiibyhaveweBBAandABA  )()(   

              this implies that IntBIntABAInt  )(   ……….(1) 

              a gain let IntBxandIntAxThenIntBIntAx  . , hence x is an interior  

               point of each of the sets A and B, it follows that A and B era nebds 

              of x so that their intersection BA  is also a nebd of x, hence  

              )( BAIntx   thus )( BAIntxIntBIntAx    so 

               )( BAIntIntBIntA   …….(2) 

               From 1 and 2 we get  IntBIntABAInt  )(  

           

)(

)(

)()(

BAIntIntBIntAhence

BAIntIntBBAB

BAIntIntABAAiiiByv
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              Not that in general )( BAIntIntBIntA    

             For example Let A=[0,1) and [1,2) then IntA=(0,1) and IntB=(1,2) 

            }1{\)2,0()2,1()1,0(   IntBIntA  also A B=[0,1)  [1,2)=[1,2] 

             So Int(A B)=(1,2) 

              Thus in this case IntA IntB is a proper subset of Int(A B), and 

                IntA IntB Int(A B) 

            vi-Now by i of Theorem 20  IntA is an open set, hence by iii of the  

                same theorem Int(IntA)=IntA 

Exterior point and the exterior of a set: 

 Def
n
 : Let A be a subset of a topological space X, A point x X  is said to be 

  an exterior point of A iff it is an interior point of A
c
, that is there exist an 

open set G such that cAGx    or equivalently  AGandGx  . The set of all 

exterior points of A is called the exterior of A and is denoted by extA or 

e(A).  thus extA=Int(A
c
), it follows that 00][)( AAAext

cccc      also we have 

      extAA  , that is no point of A can be exterior point of A. 

Remark: Since extA is the interior of A
c
, it follows from Theorem 20 that  

             extA is open  and is the largest open set contained in A
c
 . 

 Theorem 23: Let (X,π) be a topological space and let A be a subset of X then 

                    },{ cAGGextA    

 Proof: By Def
n
 , extA=Int(A

c
), but by Theorem 19  

             };{};{ ccc AGGextAhenceAGGIntA     

Theorem 24: Let A be a subset of a topological space X, then a point x in X 

is an exterior point of A iff x is not an adherent point of A, that is iff cClAx . 

 Proof : let x b an exterior point of A, then x is an interior point of A
c
, so  A

c
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is a nbd of x containing no point of A, it follows that x is not an adherent 

point of A, that is cClAx . 

      Conversely, suppose that x is not an adherent point of A, then there  exist 

a nbd N of x which contains no points of A. This implies that  cANx   . It 

follows that A
c
 is a nbd of x and consequently x is an interior point of A

c
, that 

is x is an exterior point of A. 

Theorem 25: Let X be a topological space and let A and B be subsets of X.    

                   Then: 

    XexrextXi  ,   extAextBBAivextAextextAiiiAextAii cc  ])[(     

     extBextABAextivextAextIntAv   )()(     

 Proof: XIntXIntextIntIntXextXi cc    

             4ITheoremiibyAIntAextAii cc   

            

extA

IntAIntAIntbyIntA

AAbyIntAInt

IntAIntIntAextIntAextAextextiii

c

cc

cccccccc

c









})({

}{)(

}]{[)(][)]([

 

                extAextBIntBIntAABBAiv cccc   

 

                
)(

,)(

extAextIntAhence

extAIntAButextAextextAgivesivthenAextAhaveweiiByv ccc




 

              

                 

extBextA

ITheoremivyIntBIntA

lawDemorganByBAInt

BAIntBAextvi

cc

cc

c

















4

)(

])[()(

B
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Frontier point and the frontier of a set. 

 Def
n
 :A point x of a topological space is said to be a frontier point                                                

         ( or boundary point) of a subset A of X iff it is neither an interior nor an  

          exterior point of A. the set of all frontier points of A is called the  

          frontier of A and shall be denoted by FrA. 

       FrA=[IntA  extA]
c
  

Theorem 26: Lt X be a topological space and let A be a subset of X. then a   

                   Point x in X is a frontier point of A iff every nbd of x  

                   intersections both A and A
c
 . 

      

c

c

c

c

AandAbothtserxofnebdevery

whyAinorAincontaindbecanxofnebdno

xofnebdaisAnorAneither

IntAextAxandIntAxFrAxhaveWeoof

secint

?

:Pr









 

 Corollary: FrA=FrA
c
 . for we have 

                          

AAceFrAx

AandAbothtserxofnebdevery

AandAbothtserxofnebdeveryFrAx

c

c

cc

cc

c







sin

secint

secint

 

Theorem 27 : LetA be any subset of a topological space X. then IntA, extA      

 and FrA are disjoint and FrAextAIntAX   Further FrA is a  closed set. 

Proof: By Def
n
 extA=IntA

c
 , also thatfollowsitAAceAIntAandAIntA ccc ,sin,    

             cIntAIntAextAIntA   a gain by Def
n
 of frontier, we have 

             

 

FrAextAIntAXandextAFrAandIntAFrAthatfollowsIt

extAIntAFrAThus

extAIntAx

extAIntAx

extAxandIntAxFrAx

c

c





















1...........][

][

}{

  

             Since IntA and extA are open, we see from 1 that FrA is closed. 
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Dense and non-dense sets: 

  Def
n
 : Let X be a topological space and let A,B be subset of X. then 

i- A is said to be dense in B iff BClA 

ii- A is said to be dense in X or every where dense iff ClA=X it 

follows that A is every where dense iff every point of X is an 

adherent point of A, 

iii- A is said to be nowhere dense or non-dense in X iff Int(ClA)=, 

that is, iff interior of the closure of A is empty. 

iv- A is said to be dense in itself iff AD(A). 

It follows from Def
n
 ( a closed set which has no isolated points is said 

to be perfect) and iv of a above definition that a set A is perfect iff A 

is dense in itself and closed. This implies that A is perfect iff A=D(A) 

      For A is perfect iff A is closed and A has no isolated points 

                                 iff A is closed and every point of A is a limit              

                                                                                          point of A    

                                              iff D(A)A and AD(A) 

                                              iff A=D(A). 

Separable space: 

  Def
n
: A topological space is said to be separable iff X contains a countable  

           Dense subset, that is, iff there exist a countable subset A of X such   

            That ClA=X. 

       For example the usual topological space (R,U) is separable since the set  

       Q of all rational numbers is countable dense subset of R. 

Ex: Let X={a,b.c.d,e} and let π={,{b},{c,d},{b,c,d},{a,c,d},{a,b,c,d},X}. 
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        Find interior, exterior and frontier of the following subset of X. 

       A={c}    B={a,b}    C={a,c,d}   D={b,c,d} 

Sol
n
 :1- i- since A is not a nebd of c, so IntAc  , hence IntA= 

       ii- Now A
c
 ={a,b,d,e} it is easy to see that b is an interior point of A

c
 ,  

         since A
c
 is a nebd of b , but a,d,e are not interior points of A

c
 , hence  

          extA =b  

     iii- Since IntA= and extA=b it follows that FrA={a,c,d,e}. 

2- i-Here b is an interior point of B , but a is not. IntB={b}. 

     ii- Now B
c
 ={c,d,e}, since c,d cBdc  },{ , it follows that B

c
 is a nbd of c,d  

        hence c,d are interior points of B
c
. that is c,d are exterior points of B. 

        that is extB={c,d}  

      iii-Since IntB={b}, and extB= {c,d} then FrB={a,e} 

 3- here C is open then IntC=C={a,c,d}, and extC= IntC
c
=Int{b,e}={b} also 

      FrC={e}. 

4- Also D is open set so that  it is a nbd of each of its points and    

    consequently every point of D is its interior point, hence IntD=D={b,c,d},   

    D
c
 ={a,e}. Since thee exists no open set G such that cDGa   , D

c
 is not a  

    nbd of a hence cIntDa  , similarly cIntDe . therefore  extD=IntD
c
=  

    also FrD={a,e}. 

   Ex: If A is open and closed then FrA= 

  Sol
n
: Since A is open then IntA=A and also since A is closed A

c
 is open and  

          Ext A = IntA
c
=A

c
 but  cccc XAAextAIntAFrA }{}{   

Ex: consider the usual topology U on R and find interior, exterior and frontier 

        Of the following subset of R. A=(0,1) B=[0.1) C=[0,1] D= };{1 Nn
n

 ,N , Q 
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Sol
n
:1- Since A is open, it is a nbd of each of its points and so every point of  

           A is its interior point. Hence IntA=(0.1) 

           Now A
c
= ),1(),(  o , here A

c
 is a nebd of each of its point except 0  

          and 1, hence extA =IntA
c
= ),1(),(  o . 

          Also }1,0{}{  cextAIntAFrA  . 

       2- proceeding as in 1 we have IntB=(0,1) ),1()0,(  cIntBextB  and  

             }1,0{}{  cextBIntBFrB  . 

        4- Here D cannot be a nbd of any points of its points 1/n , n=1,2,3,... 

           Since there exists no Dthatsuch
nn

 ),(0 11  , hence no point of D  

           can be its interior point so that IntD= . 

               It is easy to see that D
c
 is a nbd of each of its points except 0,  

          hence extD=IntD
c
 [D {0}]

c
  

         }]0{[][  DextDIntDFrA c   

Theorem 28 : Let X be a topological space and let A be a subset of X    

                  FrAIntAClA   

  Proof: By Def
n
 of ClA, we have };{ FAclosedisFFClA   ,  

         then by De-Morgan law extAAFandopenisFFClA cccc  };{][   , taking   

          complements, we get FrAIntAClAthatsoFrAIntAextAClA ccc   ][])[(  

Corollary: FrAAClA   

    )1........(:Pr ClAFrAAthatsoClAFrAandClAASinceoof     

           
FrAAClAgetweandfrom

FrAAClAthatfollowsitFrAIntAClA

andAIntAceagainextAIntAextAIntAFrAAlso ccc
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Subspace: 

 Def
n
 : Let X be a topological space and let XY  . The π-relative topology for  

            Y is the collection Y given by };{   GYGY   . 
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               The topological space (Y, Y ) is called a subspace of (X,π), the  

                topology Y  on Y is said to be induced by π. 

Theorem29: Let (X,π) be a topological space and let XY  , then the  

            collection Y };{  GYG   is a topology on Y. 

  Proof : T1:   XceandXYceYXYgainaYandSince Y sinsin ,  

                     we have  YY  . 

               T2: Let   21221121 ,,, GGsameforYGHandYGHThenHH Y  .  

                     Now   21212121 ,[)( GGSinceYGGYGYGHH Y ]. 

               T3: Let    YGHthatsuchGsetopenthenH Y ,; , now 

                        },{sin};{};{};{ GceYGYGH Y     

                      Hence Y is a topology for Y. 

 Ex: Let X={a,b,c,d,e}, π={,{a},{b},{a,b},{a,c},{a,b,c},{a,b,e}{a,b,d,e},X} 

              Y={b,c,e} then  

            }},{},,{},{},{,{ ebcbcbY    

Def
n
 : Hereditarily property : 

   A property of a topological space is said to be hereditary if every subspace  

    of the space has that property. 

  Ex: Consider the usual topology U of R and the subset [0,1] of R, then the     

set [0,1/2) is open in the U-relative topology of [0,1], since  

     ),1(]1,0[),1(),0[
2
1

2
1

2
1  and is  U-open, similarly (3/4,1] is open in the U-

relative  Topology for [0,1], since ),(]1,0[),(]1,(
2
3

4
3

2
3

4
3

4
3 and  is U-open. 

Ex; Let U be the usual topology for R describe the relativization of U to the  

        Set N of natural numbers. 

  Theorem 30: Let (Y,πY) be a sub-space of (X,π); then: 

                i- A subset A of Y is closed in Y iff there exists a set F closed in   
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                    X such that A=F  Y. 

                ii- For every YA , YAclAcl XY  . 

                iii- A subset M of Y is Y -nbd of  a point YNMiffYy   for   

                    some π-nbd N of Y. 

                iv- A point y in Y is πY- limit  point of YA  iff y is a π -limit    

                     point of A , further DY (A)= D(A)  Y. 

                 v- For every AIntAIntYA XY  ,  

                  vi-  For every A in Y FrY(A)  FrX(A). 

Proof:  i- A closed in Y iff  Y/A is open in Y. 

                                     If f  Y/A=G  Y for some open set G of X. 

                                      If f  A=Y/(G Y)=(Y/G) (Y/Y) 

 If f   A=Y/G    [since Y/Y=] De-Morgan law 

                                       If f   A=Y G
c
      “The complement of G in X” 

                                        If f  A=Y F   where F=G
c
 is closed in X. 

         ii- By def
n
   },;{ KAandYinclosedisKKAClY     

                  

YACl

YFAandclosedisFF

FAandclosedisFYF

YFAandXinclosedisFYFACl

X

Y









)(

}];{[

};{

:{









 

iii- Let M be a Y-nbd  of y, then there exists a Y-open set H such that 

      MYGHythatsuchGsetopenaMHy   . Let GMN  . 

  Then N is a -nbd of y since G is a -open set such that NGy  . 

    
MYGceM

YMSinceYGMYGYMYGMYNFurther









sin

)()()()(
 

    Conversely Let M=N  Y for some -nbd N of y, then there exists  
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             A -open set G such that MYNYGythatimplieswhichNGy  ,        

           since GY is Y –open set , M is Y-nbd of y, 

vi- y is a Y-limit point of A  if f  [M/{y} A] ≠ for all πY –nbds M of y.                    

                                               if f [N Y/{y} A ≠  for all- nbds N of y    

                                                if f  [N/{y} A] ≠ for all nbds N of y 

                                                 if f  y is a π-limit point of A. 

 

.

[sin

intint

AIntAIntHence

AIntx

AYAYAcexofnbdaisA

xofnbdisYA

xofnbdaisAAofpoeriorxIntAxv

YX

Y

Y

Y





















  

.

secint

/secint

secint

/int

AFrAFrHence

AFry

AofFrontierisy

AXandAbothtioneryofNnbdevery

yofNnbdAYandAbothtionerYN

AYtsbothAandernbdofyevery

AYandAofpofronierisyAFryiv

XY

X

Y

YY



























 

Theorem 31: let (Y,πY ) be a subspace of a topological space of (X,π) and let    

                  Β be a base for π, then };{   BYy   is a base for Y 

 Proof: Let H be a Y open subset of Y and let x in H , then there exists a  

             - open subset G of X such that  H=G Y. since β is a base for the 

topology 

          HYGYBxandYxthatfollowsitYHceGBxthatsuchBs  ,sin,  

           
};{

,,

.,

HYBandYBYBHisthat

HYxthatsuchBofYmemberaexiststhereHxeachtoThus

HYBxSuchthatYBsetashence

y

Y

Y

















BB  

            Hence Yy forbaseais  . 
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Ex: X={a,b,c.d,e} and Y={a,c,e} }},,,{},,,,{},,,{},,{},{,{ XebadcbadcabaaX    

        }{},{},{}},,{},,{},{,{ aAIntandeaAIntYeaAletYeacaa XYY    

Separated Set 

Definition: Let (X,  ) be a t.s. two non-empty subset A & B of X are said to be  -

separated iff  A∩ B = Ø  and  A ∩B= Ø . 

Or equivalent we say (A∩ B ) ( A  ∩B)= Ø . 

Note : Every separated set are disjoint but the converse not true in general  

Example: Let A= (-∞,0) and B=[0,∞) of R .  A & B are disjoint which is not separated .  

A =(-∞,0] and A ∩B=(-∞,0] ∩[0,∞)={0}≠Ø  

Theorem(1) : Let (Y, Y ) be a subspace pf a t.s. (X,  ) and Let A , B be two subset of Y , 

then A , B are   –separated iff  Y-separated . 

Proof: since CLY A =CLXA∩Y and  CLYB=CLx B∩Y 

Now (CLYA∩B) U (CLYB∩A)=  

= (CLXA∩Y) ∩B] U [(CLXB∩Y) ∩A]  

=(CLXA∩B) U (CLXB∩A)   [since A,BY ] 

Hence [ (CLY A∩B)  U (CLYB∩A)= Ø iff   (CLXA∩B)  U (CLXB∩A)= Ø  ] . 

It follows that A,B are   –separated iff   Y-separated 

Theorem(2) : Two closed (open)subset A,B of a t.s (X,  ) are separated iff subset are 

disjoint  

Proof: Since any two separated sets are disjoint , we need only to prove that two disjoint 

closed (open) sets are separated if A& B are both disjoint and closed , than A∩B=Ø 

A= A  and B= B  so that  

A ∩B=A∩ B = Ø and A∩B= A ∩B= Ø 

Showing that A&B are separated  

If A and B are both disjoint and open then cc BandA  are both closed so that  

cccc BclBandAclA  . Also 
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.separatedBareandA

AclBandBclA

AclAclBandBclBclA

ABandBABA

cccc

cc

















 

 

Connected and disconnected sets 

Definition: Let (X,  ) be t.s A subset A of X is said to be  -disconnected iff it is the 

union of two non-empty  -separated sets iff there exist two non-empty sets C and D 

.such that C∩D= and C∩D= , A=C U D , A is  - connected if is not  -disconnected . 

 

Note: two points a and b of a t.s X are said to be connected iff they are contained in a 

connected subsets of X. 

Theorem(3): At.s X is disconnected iff s a non empty proper subset which is both open 

and closed. 

Proof: let A be a non empty proper subset we have to prove that X is disconnected  

Let B=A
c
 , then B is a non empty set moreover  X=A B and A B=  

Since A is both open and closed  , hence A =A and  B =B , it follows that A B =   and  

A  B=  , thus X can be expressed as the union of two non-empty separated sets so X is 

disconnected  

Conversely: let X be a disconnected set thens  a non empty subset A and B of X such 

that A B =   , A  B=  , and X=A B. 

Since A A  , A  B=  A B=    , hence A=B
c
 and B is non –empty  

A is proper subset of X  

Now A B =X    ,[ A B=X and B B , so A B  X  and A B X] always  

Also  A B =  A=( B )
c
  and simillery B=( A ) 

c
   

Since A and B  are closed so A&B are open , since A= B
c 
therefore A is closed thus A is a 

non-empty proper subset of X  

Which both open and closed     
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Continuity in a topological space 

Let (X, ) and (Y, ) be a topological space . A function f(X, )→(Y, ) is said to be 

continuous iff for every  -nbd M of f(x) s a  -nbd N of x s.t f(N)3M. 

Also f is said to be continuous or ( -  continuous ) iff it is continuous at each point of 

X. 

It follows that from the definition that f is continuous at x0 iff for every  -open set H 

containing f(x0) s an  -open set G containing x0 s.t f(G)H.  

 

Ex: X={a,b,c,d} and Y={1,2,3,4} ι={ ,X,{a},{b,a},{a,b,c}}  ={ ,Y,{1,2,3},{1,2}} 

And f :X→Y defined by f(a)=4 , f(d)=1,f(b)=2 , f(c0=3 . discuss the continuity X. 

Solution : since aX and f(a)=4 f(a)=4Y  , HY is  -open . {a}=G   , f({a})={4}Y      

f(G)H  

  f is continuous at a .  

Since bX f(b)=2   

The  -open set containing 2 are {1,2},{1,2,3} and Y. 

The  -open set containing b are {a,b},{a,b,c],X . 

F(b)=2{1,2}     b{a,b}     f({a,b})={2,4}{1,2}    b{a,b,c}  

F({a,b,c})={2,4,3{1,2}           f is not continuous at b .    

cX ,f(c)=3    the  -open set containing f(c)=3 are {1,2,3} and Y . 

The  -open set containing c are {a,b,c}and X.      

F({a,b,c})={1,2,3}{1,2,3}    ,  f(X)=Y{1,2,3} f is not  -  continuous.  

f is not continuous at c . f is not continuous at X . 

A , f(d)=1 ,  -open set ={1,2},{1,2,3},Y      f :Y→X ,  -open set = X .  

 F(X)=Y{1,2}      f is not continuous at d . 

 

Theorem(4) : let X and Y be a topological space A function f :X→Y is continuous iff the 

inverse image under f of every open set in Y is open in x.  
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Proof : let f be continuous , and let H be an  -open set.  

We have to prove that f
-1

(H) is open .   

 if f
-1

(H)=  there is nothing to prove  

if f
-1

(H)≠  and let xf
-1

(H) so that f(x)H. 

by continuity of f ,   an open set G  containing  x in X and f(G) H that is xG  f
-

1
(H), f

-1
(H) is an open . 

conversely : suppose that v is an open set for every open set H in Y  

we shall show that f is continuous  

let H be an open set Y containing  f(x) , xf
-1

(H)  but  f
-1

(H)  is an open set by 

hypothesis .  

there for f
-1

(H)  is an open set in X containing x.  

put G = f
-1

(H)→f(G)=f( f
-1

(H))H  

 f(G) H , f is continuous ( by def) . 

 

Theorem(5) : let X and Y be a topological space  A function f :X→Y is continuous iff the 

inverse image under f of every closed set Y is closed in X . 

Proof : let f be a function and FY is closed . f
-1

(F)  is closed  

Since F is closed in Y then Y\F is open in Y  

By theorem f
-1

(Y\F)=X\ f
-1

(F)  is open in X  

 f
-1

(F)  is closed in X  

Conversely : to show that f is continuous  , let f
-1

(F)  be any closed subset in X for every 

FY is closed .  let G be any open set in Y ……….  

Theorem(6): let X and Y be any t.s then a function f :X→Y is continuous iff the inverse 

image of every sub base for Y is open in X .  

Proof : suppose f is continuous , and B* be a sub base for Y , since each member of B* 

is open in Y it follows from ((theorem 1)) that f
-1

(D)  is open in X for every DB*   

Conversely : let f
-1

(D) be an open set in X for every DB* to show that f is continuous , 

let H be any open set for Y . let B , so that B is abase for Y , 
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If  BB then   D1,D2,D3, . . . ,Dn (n finite) in B* s.t B=D1 D2 … Dn   

f
-1

(D)= f
-1

{D1 D2 … Dn}= f
-1

(D1) f
-1

(D2) f
-1

(D3) …  f
-1

(Dn) by hypothesis 

each of f
-1

(Di) i=1,2,…,n are open set in X , and there for f
-1

(B)  is an open set in X . 

since B is abase for Y , H  {B;BGB} , f
-1

(H)   f
-1

( {B;BB}=99{ f
-1

(B);BB} 

 f
-1

(H1)  is an open set in X , so by (theorem 1. ) f is continuous.  

Theorem(7):let X and Y be an t .s and f :X→Y is continuous iff the inverse image of 

every member base for Y is an open set in X . 

 

Theorem(8):A function f from a space X in the another space Y is continuous iff 

f(clA) clfA), 00X. 

Proof: let f be a continuous function and let AX , )(Af is closed set in Y  

 f
-1

(clf(A)) is closed in X . by theorem 2 , and there for clf
-1

(clf(A))=f
-1

(clf(A))---(*) 

Now f(A)  clf(A)[ A A ]  

A f
-1

(f(A))  f
-1

(clf(A)) 

clA f
-1

(clf(A)) 

A f
-1

(clf(A)) 

clA  f
-1

(clf(A)) 

F(clA) f(f
-1

(clf(A)) clf(A)  

 f(clA) clf(A). 

Conversely : suppose that f(clA) clf(A) 00AX , to show that f is continuous  

Let F be any closed subset of Y , that is clF=F . 

f
-1

(F) subset X so that by hypotheses    f
-1

(clf(F)) cl f f
-1

(F) clF=F  

there for fclf
-1

(F)F . 

clf
-1

(F) f
-1

(F)----(1)  

but f
-1

(F) clf
-1

(F)----(2) always by [A clA] 

from  1 and 2 we get f
-1

(F=cl f
-1

(F) , it follows that f
-1

(F) is closed subset of X  

hence f is continuous by theorem 2   
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theorem(9):A function f from a space X in the another space Y is continuous iff  cl f
-

1
(B) f

-1
(clB) BY. 

proof: let f be a continuous function and let BY , since clB is a closed subset of Y , 

then f
-1

(clB) is a closed subset in X (bythe2) cl f
-1

(clB)= f
-1

(clB)---(1) 

now B clB→ f
-1

(B) f
-1

(clB)  

 cl f
-1

(B) cl f
-1

(clB)= f
-1

(clB). 

cl f
-1

(B) f
-1

(clB)  

conversely : let the condition hold let F be any closed subset in Y . so that clF=F . by 

hypothesis  cl f
-1

(F) f
-1

(clF)= f
-1

(F) 

f
-1

(F) cl f
-1

(F) always  

 f
-1

(F)= cl f
-1

(F)  

 f
-1

(F) is closed in X . 

 

Ex: let  and   be two topology for R . find whether the function f: R →R , define by 

f(x)=1   xR  is  -  continuous  

Solution : let H be any  -open set , if 1H then  f
-1

(H)=R and  if 1H then f
-1

(H)=Ф  

Since each of R and Ф, are open set in  , so f is continuous  

Example: let f and g be a function from R to R defined as follows: 

 (a) f(x)=x
2
 , xR               (b) g(x)= x  , xR 

Find whether each of these function is : 

i- -   continuous .                       ii-S-  continuous  

iii-I -   continuous                        iv- D-  continuous  

solution : since the set of all interval (a,b) with a<b form a base for   it is enough to see 

whether f
-1

((a,b)) , g
-1

(a,b) are open w.r.t the given topology for R  

   

                  b 
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  - b         a          b              

 

  f
-1

(G)= (- b , b )         

                     Φ                                           if    a<b≤0 

f
-1

(G)=        (- b , b )                                 if    a<0<b   

 (- b ,- a )U( a , b )               if     0< a < b  

i- as show above the inverse image of every interval (a,b) is  -open . 

    f is  -   continuous .  

ii- since S is finer then   [ that is every  -open is S-open ] so that f is S-U-continuous  

iii- If we take (a,b)=(1,2)   then f
-1

(1,2)= (- 2 ,-1) (1, 2 )  which is not I-open   

      so f is not I-U continuous . 

iv- since the inverse image of every open interval is D-open hence the space is D-U                             

continuous . 

Q1: let f be a function of R into R defined as f(x)= x  , x R . find whether f is   

      I-U continuous          U-U  continuous        D-U continuous       S-U continuous  

Example: let f be a function of R in to R defined by  

                                  1/x          x≠0 

                     F(x)=            

0 x=0   

    find whether f is U-U , I-U , S-U  and D-U continuous .  

solution :consider the open interval (-1,1) where  f
-1

(-1,1)= f
-1

{(-1,0)  {0} (0,1)} 

                                                                               = f
-1

(-1,0)  f
-1

{0}  f
-1

 (-1,0) 

                                                              =( 1, )  {0} (1, ) 
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Homomorphism 

Definition : let (X, ) and (Y, ) be two topological spaces and let f be a function from 

X in to Y .. then   

i-f is open function(interior function) iff f(G) is  -open for every  -open set G.  

ii- f is closed function iff f(F) is  -closed for every  -closed set F. 

iii- f is bicontinuous iff f is continuous and open function .  

       iff [ f and f
-1

 is continuous ]  

iv- f is homomorphism iff                    

1- f is bijective  [ 1-1 and onto ]  

2-f is continuous  

     3- f is open [or f is closed or f
-1

 is continuous ]  

Definition : A space X is said to be homomorphism to another space Y if    a 

homomorphism from X in to Y . and Y is said to be homeomorphic image of X we 

write (X, )  (Y,  ) .  

Definition : A property of a topological space  X is said to be a topological property 

if each  homeomorphism of  X has that property whenever X has that property . 

[ The image of every open set is open ]  

[The image of every closed set is closed ]  

Example: consider  ={ ,{a},{a,b},X} , X={a,b,c} , Y={r,p,q}, 

 ={ ,{r},{p,q},Y} 

F(a)=f(b)=f(c)=r , find whether f is  continuous , open , closed , continuous              

and homomorphism . 

Solution : since f
-1

 ( )=     , f
-1

({x})=X    , f
-1

({p,q})=     , f
-1

(Y)=X    

Are -open hence f is continuous also since f( ) , f({a})={r} , f({a,b})={r}   , 

f(x)={r}  

Which  –open so f is open .  

Since every  -open (and  –open) sets are  -closed and  –closed function . 
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F is continuous  and open so f is continuous . 

F is bijective    so f  isn't  homomorphism . 

Example : show that the function f:R→R defined by   

 

                                            X        where  x<1 

                            F(x)=       1         where  x[1,2] 

 X
2
/4     where x>2  

Discuses the continuity and opens of   f .               (a,b)       if   a<b<1 

 Solution : let (a,b) be any open interval then f
-1

[(a,b])=    (a,2 b )  if  a<1<b  

                                                                                             (2 a ,2 b )    if  1<a<b  

Since the inverse image of every  -open set is  –open  hence the function f is 

continuous.  

 open:let G be any open set containing x , let G=(1.5,1.9) , f(G)={1} which is not open  

theorem(10):let (X, ) and (Y, ) be two t.s the mapping f:X→Y is open iff 

f(IntA) Int(f(A), 

proof : let f be an open function and let AX , IntA is an open set in X , f(IntA) is  -

open since f is open  , since IntAA " always" 

f(IntA) f(A) ,  

again since f(IntA) is  -open there for f is an open function , then Int f(IntA)=f(IntA)---

1 

also  f(IntA) f(A)   , Int f(IntA)=f(IntA) Int f(A)    

 hence f(IntA) Int f(A)   . 

conversely: 

 suppose that the hypothesis hold , to show that f is open , let G be an  -open set  so Int 

G=G  

f(G)=f(IntG) Intf(G) by hypothesis  

 f(G) Int f(G)   , but  Int f(G) f(G) always  
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 Int f(G)=f(G) which implies that f(G) is open . 

Definition : A property of a topological space is said to be hereditary if every subspace 

of the space has that property . 

Separation Axioms 

T0-space (KOLOMOGORV) 

Def: the space (X, ) is said to be a T0-space iff for every two distinct point of X   an 

open set G which contain one of them but not other . 

Ex: the (X,I) is not T0-space , (X,D) is T0-space . 

Theorem(11) : A t.s (X, ) is T0-space iff for all x,yX , x≠y then { x }≠{ y }.  

Proof : suppose that (X, ) is T0-space and , Let , x≠y we wont to show that{ x }≠{ y }  

(X, ) is a T0-space , then   x≠y, an open set G containing x but not y . i.e xG but 

yG. 

yG
c
 , then { y }G

c
  

Since xG  , xG
c 
, that x{ y } , but x{ x } , hence { x }≠{ y }. 

Conversely :Let x≠y and { x }≠{ y }, we have to show that (X, )  is T0-space  

Since { x }≠{ y },   an element zX  s.t z{ y } but z{ x }. 

Suppose that x{ y }then{ x } { y }= { y }which implies that z{ y }which is 

contradiction 

 x{ y } (x{ y })
c
 =X\{ y }  

{ y }
c
 is open set containing x but not containing y since y { y } 

(X, )  is T0. 

Theorem(12):. Every subspace of a T0-space is a T0-space. And hence the property is 

hereditary. 

Proof :.let(X, )  be a T0-space and let (y, y) be any subspace of (X, )  .we have td 

show that (y, y) is a T0-space. 
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let y1,y2 be any two distinct  point of Y , since YX, so y1,y2 are two distinct point in X . 

but (X, ) is a T0-space , so an open set G . s.t containing one of them (say) y1 but not y2 

then G Y is an open set in Y  

therefore  G Y is a y–open set containing y1 but not y2 it follows that (y, y) is a T0-

space. 

Theorem(13): the property of space being a T0-space is preserved under 1-1 , onto 

open function and hence is a topological property . 

Proof : let (X, ) a T0-space and let f be a 1-1 , onto open function from(X, )  to another 

topological space (Y,  ) we have to show that (Y,  )  is a T0-space  

Let y1,y2 be any two distinct point in Y .  

Since f is 1-1 , onto function , x1,x2X , s.t  f(x1)=y1 and f(x2)=y2 ,  x1≠x2 . 

Since (X, )is a T0-space,a -open set G containing one of them(say) x1 but not x2  

Since f is open function , so f(G)  is  -open set containing f(x1)=y1,but not f(x2)=y2 .  

Hence(y,  )is a T0-space.  

T1-space :"Frechet space " 

Definition :A t.s. (X, )is said to be aT1-space iff for every two distinct points x and y of 

x.  two open set. G and H s.t. xG but yG and yH  but xH. 

Note: T1  T0; that is every T1-space is a to- space but the converse may not be true in 

general . 

For example: let x be any set and ax , a is an arbitrary element : Z={ ,every subset 

containing a}                  

(X, )is a T0-space , but(X, )is not T1-space . 

Since every open set containing b contains a also :where a≠b . 

 Example : IS (R,U) is a T1- space . 

Solu: let x,ybe any two distinct real numbers . and let y >x , let y-x=k then  

G={(x-k/4,x=x+k/4)}and  H={(y-k/4,y+k/4)}are  –open , s.t.xG but xH and yH 

but yG . hence (R,u)is T1-space  

Theorem(14): the space (X, ) is T1-space iff every singleton on subset of x is closed .  



48 

 

 48 

Proof: suppose that every singleton subset of x is closed ,to show that(X, )is 

 aT1-space 

Let x, yX and x ≠ y ,{x}and {y}are closed set . 

y{x}then y{x}
c
 

{x}
c
is an open set containing y but not x. and {y}

c 
is an open

 
set containing x but not y 

(X, ) is a T1-space . 

Conversely: Let (X, ) be a T1-space and let x X ,we have two show that {x}is closed , 

Since (X, )is a T1- space  

yX , and x ≠ y.  

an open set G containing y but not x.  

xGy {x}   

{x}
c
 is the union of all open set containing y . { x}

c
 is open ,{x}is closed  

 

Theorem(15): the property of a space being  a T1- space preserved under 1-1 ,on to 

open function and hence is a topological property .  

Proof : let (X, ) be a T1-space and let f be 1-1 ,open function of (X, ) on to another t.s. 

(y,  )is we shall show that (y,  ) is a T1- space . 

Let y1,y2 be any two distinct points of y, since f is 1-1 and on to,a distances points x1, 

x2 X,  s.t. y1=f (x1)and y2=f (x2)  

since (X, ) is a T1-space , T1-open set G and H  s.t x1G,x1H and x2H but x2G  

since f is an open function . f(G)and f(H)are  -open subset in y .such that y1=f(x1)f(G) 

but y2=f(x2)f(G) . and  y1=f (x1)f(H) but y2 =f(x2)f(H).  

hence (y,  ) is a T1-space . 

EXersises: 

1- show that every finite T1-space is discreet . 

2- show that a t.s (X, ) is T1-space iff  –contains a co-finite topology on X  

3- show that every topology finer than T1-topology on any set X is a T1-topology .  

4- prove that for any set X ,s a unique smallest topology  –set (X,  ) is a T1-space  
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5- prove that a finite subset of a T1-space has no a accumulation points.  

T2-space : Hausdoff space 

 Definition : a t.s (X, ) is said to be a T2-space iff for every two disjoint points x1,x2 

,disjoint open set G1,G2 s.t , x1G1 and x2G2 , that is x1,x2X , x1≠x2 ,   two open 

set G1,G2 , G1 G2=  , and x1G1 , x2G2. 

Example: show that (R,U) and (R,S) are T2-space . 

Solution: let a,b be any tow distinct points in R , and a>b so ba  =ζ  then  

(a- ζ /4 , a+ζ /4)=G and (b-ζ  /4,b+ζ  /4) =H  are tow W-open set containing    a &b 

respectively and G H=  , so the space is T2-space . 

Example: Consider the co-finite topology on an infinite set X , show that it is not T2-

space . 

Solution: For this topology no two open set can be disjoint , suppose if possible that 

G,H are tow disjoint open subsets of X so that G H= . 

Then     (G H)
c
 =

 c
 

              G
 c
  H

 c
 =

 c
 = X   ( De Morgan )            

G
 c
  H

 c
= X  

But G
 c
 and H

 c 
are finite [by definition of co finite then G

 c
  H

 c
 is finite also which is 

contradiction . 

Theorem(16): let (X, ) be a t.s and let (Y, ) be a housdorff space , let f:XY be a 1-

1 , onto and continuous function then X is also housdorff . 

Proof: let x1,x2 be any tow distinct point of X , since f is 1-1 , and x1≠x2 then f(x1)≠f(x2). 

Let y1=f(x1) , y2=f(x2) so that x1=f
-1

(y1)  , x2=f
-1

(y2) . 

Then y1,y2Y s.t y1≠y2  

Since (Y,  ) is ahousdorff space ,  s a -open set G and H s.t y1G1 , y2G2 and 

G H=   , Since f is continuous , f
-1

 (G) and f
-1

 (H) are  –open set  

Now  f
-1

 (G)  f
-1

 (H)= f
-1

 (G H)= f
-1

( )=  

 And  y1G  f
-1

(y1) f
-1

(G)  x1 f
-1

(G) 
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           Y2H  f
-1

(y2) f
-1

(H)  x2 f
-1

(H)  

Hence the space is housdorff . 

Theorem(17): every subspace of T2-space is a T2-space .  

Proof: let (X, )  be a T2-space and let(Y,  )  be any subspace of X ,  

Let y1,y2 be any tow distinct points of y ,  

Since YX , then y1,y2 are tow distinct point in X but (X, ) is T2-space , so  tow open 

set H,G s.t y1G , y2H and G H=  

But by def , G Y and Y H are  y–open sets and  

(G Y) (H Y)= (G H) Y=  Y=  

Thus G Y, H Yare tow disjoint y–open sets , Hence the subspace (Y1, y)  is   T2-

space. 

Theorem(18): Each singleton subset of a T2-space is closed . 

Proof : Let X be a housdorff space , Let xX  

To show that {x} is closed , Let y be an arbitrary point of X distinct from x . Since the 

space is T2-space , an open set G containing y , xG it follows that y is not an 

accumulation points of {x} , so D({x})=  . 

Hence { x }={x} it follows that {x} is closed set . 

Theorem(19): Every T2-space is a T1-space but the converse is not true in general  

Proof: let(X, ) be a T2-space and let y1,y2 be any two distinct point of X , since the 

space X is a T2-space so , tow open set G , H s.t y1G , y2H and G H =  this implies 

that y1G but y1H and y2G but y2H . 

Hence the space is a T2-space . 

But the converse in above example of co-finite topology on an infinite set X , is not T2-

space , but it is T1-space  since for if x is an arbitrary  point of , then by Def of    X/{x} 

is open {be any the finite set } and consequently {x} is closed  

The every singleton subset of X is closed and hence the space is T1-space   .  
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Example: Let (X, )   be a t.s and Let(Y,  )  be a housdorff space . if f and g are 

continuous function from X in to Y , show that the set A={xX; f(x)=g(x)} is closed  

Solution: we shall  show that X\A is open set . 

Now X\A={xX; f(x)≠g(x)}------(1) , Let p be an arbitrary point of X\A .  

Put y1=f(p) and y2=g(p),we have y1≠y2 , thus y1,y2 are tow distinct point in a housdorff 

space, two -open sets G and H s.t y1=f(p)G,y2=g(p)H and G H=  

 

p f
-1

 (G), p g
-1

 (H), p  f
-1

 (G)  g
-1

 (H)=V ,  

since f , g are continuous function  

 f
-1

 (G) , g
-1

 (H) are open set,  Hence is open set We have to show that VX\A  

Let yV= f
-1

 (G)  g
-1

 then y f
-1

 (G)and  y g
-1

 (H)  

                  f(y) G and g(y)H , since G H=  it follows that f(y) ≠g(y) and by(1) 

yX\A , thus we shown that to each arbitrary point yV, also yX\A ,  

hence VX\A 

X\A is an open set  

There for A is closed   

Regular and T3-space 

Def:A t.s (X, ) is said to be a regular space iff for every closed set F and every point 

pF, Tow open sets G and H s.t pG,FG and G H=   

The regular space which is also T1-space is called a T3-space  

Example: Let X={a,b,c} , and Let  ={ ,{a},{b,c},X}  

                                          
c 
={,X{b,c},{a}, }  

Example: show that (R,U) is a T3-space . 

Solution: let F be a U-closed subset and let xR, s.t xF……. 

 

Theorem(20): A t.s X is regular iff for every point xX and every nbd N of x 9 a nbd 

M of x such that M  N  . 
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Proof :"The only if part" let N be any nbd of x .then an open set G such that xGN.  

Since G
c
 is closed and xG

c
, 

But the space is regular  two disjoint open set L&M such that G
c
L and xM . 

So that ML
c
 it follows that  

M  Lc =L
c
--------- (*) 

But G
c
L → L

c
 GN-----(**) 

From (*) and (**) we get M N . 

 The"  if part"  let the condition hold . 

 Let f be any closed subset of x .and xF, then xF
c
,  

Since F
c
 is an open set containing  , so by hypothesis an open set M such that xM  

and M F
c
 →F  ( M )

 c
 then ( M )

 c
 is an open set , containing F also 

M∩M
c
=Ø,M∩( M )

c
=Ø 

:. The space is regular  

 

Example: Every T3-space is a T3-space 

 Solu :let (X,  )be a T9-space , and let x,y be any two distinct point.  

Now by definition  of X , the space  is R T1 and so {x} is a closed set also y{x}.  

Since X is regular .  two open set G&H such that yG ,{x}H & G∩H=Ø ,but x{x} 

H, hence the space is T2. 

Theorem(21): Every compact housdorf space is a T3-space  

Proof //let (X, )be compact housdorff  space  

To show that (X, )is a T3-space   

since X is housdorff , so X is a T1-space ,  it  suffices to show that (X, )is a regular , let 

F be a closed subset of X and let pX such that pF  

so pX\F , since (X,  ) is a housdorff space so for every xF ,there must exist two open 

sets G(x)∩H(x) =Ø…(*) 

The collection C={H(x) ; xF } is open cover of F.  

Since F is a closed subset of a compact space X, so that F is compact (by theorem )  
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Hence s a finite numbers  of points  x1,x2,..,xn in F such that  F{H(xi),i=1,2,...,n},let 

H=U{H(xi),i=1,2,...,n} 

And G =∩{G(xi), i=1,...,n } 

Then pG , since pG(xi) for each xi also G∩H=Ø, 

[other wise G (xk)∩H (xk) ≠Ø for some xkF this contradict(*)]  

hence the space is regular  . 

Normal +T3 =T4   

Normal space and T4 –space  

Definition : At.s.(X,  ) is said  to be normal iff for every pair of disjoint -closed subset 

L and M of x , s  - open sets G and H such that LG , MH and G∩H=Ø.  

A normal space   which T1 –space is called a T4–space  

Example :lets X={a,b,c}, T={Ø,X,{a},{b,c}}since the only disjoint closed subsets are 

{a} ,{b,c} which is also are  -open sets. 

The space is normal. 

But   is not a T1-space . 

Since b≠c ,there does not exist an open set containing  one of them but not the other . 

 

Theorem(22);A t.s (X, ) is normal iff for any closed set F , and open set G
*
 

containing F,  an open set V such that FH
*
 and H

*
G

*
    

Proof // the "only if part "let X be a normal space , and let F be any closed set and G be 

an open set containing F. 

G is open G
c
 is closed , and F∩G

c
=Ø , since the space  is normal  two disjoint open 

set H
*
 and G

*
 such that  FH

*
, G

c
G

*
 and H

*
∩G

*
=Ø so that H

*
G

*
 

But H
*
G

*c
 *H   *cG  =G

*c
  ……. 1  

Also G
c
G

*
→G

*c
   G  ……… 2  

From 1 and 2 we get *H G  

 The "if part "suppose the hypothesis is hold and to show that the space (X,  ) is normal 

.  



54 

 

 54 

Let L and M be any two disjoint closed subset of X . that is L∩M=Ø then LM
c
 ,[L is 

closed , M
c
 is an open set containing  by hypothesis  an open set H

*
such that LH

*
 , 

and *H M
c
 which implies that also H

*
∩( *H )

c
=Ø thus the space is normal  

Theorem(23): normality is topological property  

Theorem(24): every closed subset of a normal space is normal space is normal . 

Proof :let(X, ) be a normal space , and  let (Y, y) be any closed subspace of X we 

have to show that (Y, y ) is normal  

Let L
*
, M

*
be any two disjoint closed subset of Y, then  a subset L,M of X such that 

L
*
=L∩Y,M

*
=M ∩Y since Y is closed it follows that L

*
and M

*
are  -closed subset in X.  

Since X is normal ,  two  -open set G and H such that L
* 
H ,  

M
*
G and H∩G= Ø .  

So L
*
H and L

*
 Y → L

*
 H∩Y

 
  

M
*
G and M

*
Y → M

*
G∩Y

 
  

And (H∩Y)∩(G∩Y)=(H∩G)∩Y=Ø∩Y=Ø 

L
*
 H∩Y

 
 , M

*
G∩Y

 
 and (H∩Y)∩(G∩Y)= Ø, hence the space is normal . 

Example: show that if the space is normal. 

Let L,M be any U-closed subset of R   s.t     L∩M=Ø  

Let rL then rM and so rR\M since R\M  is U – open ,  ζ >0 such that  

(r-ζ , r +ζ)R\M, therefore (r-ζ,r +ζ )∩M=Ø 

Let G=U{ (r –ζ /3, r+ζ /3) ; rL  then LG . similarly it can be shown that for each 

mM ,  s >0 such that  ( m-  ,m+ )∩L =Ø, and let H=U{(m- /3, m+ /3) ; mM} 

therefore mH,thus G,H  are two open set such that LG,MH  

we have two show that  G∩H=Ø. 

Suppose is possible that xG∩H so xG and xH . then x  (r-ζ /3 ,ζ/3)for some 

 rL and x(m-ζ/3 , m+ζ) for some mM  we then have /r-x/<ζ/3 and /m-x /<ζ/3 hence 

/ r-m /=/r-x+x-m/ ≤ /r-x/ +/m-x / <ζ/3 +ζ/3 if ζ<  then /r-m/ <ζ and so r  (m-ζ/3,m+ζ) 

which is C!  

if  <ζ then \r-m\ <ζ, and m  (r-ζ/3 , r+ζ/3 )which is contradiction  
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it follows that G∩H=Ø hence the space is normal  

Urysohn's lemma 

 let F1,F2 be any pair of disjoint closed set in a normal space X,a continuous function  

F:X→ [o,1] s.t f(x) =o for xF1, and f (x)=1 for xF2  

Completely regular space and tychonoff space . 

Def: A topological space X is said to be completely regular iff for every closed subset F 

of X and every point xX\F , a continuous function f of X in to the subspace [0,1] of 

R . s.t f(x)=0 and f(F)=1  

A tychonoff space (or T3-1/2space ) is completely  regular and T1-space .    

Theorem(25): A t.s(X, )is completely regular iff for every xX and every open set G 

containing x  s a continuous function f of X in to [0,1] such that f(x)=0 and f(y)=1   

  yX\G  

Proof: Let (Y, ) be a completely regular space and G be an open set containing x , such 

that xX\G then X\G is a closed set which dose not containing x . 

By definition of completely regular a continuous function f from (X, ) in to a subset 

[0,1] such that f(x)=0 , f(y)=1 for all yX\G . 

Conversely : Let the condition is hold  

Let F be any closed subset of X and x be a point of X such that xF . then xX\F and 

since F is closed so X\F is an open set containing x  

By hypothesis s a continuous function f from (X, ) into a subset [0,1] s.t f(x)=0 , f(y)= 

1 for all yX{X\F}=F  

Hence the space is C.R 

Theorem(26): Every completely regular space is regular . Hence every tychonoff 

space is a T3-space . 

Proof: Let X be a completely regular, Let F be a closed subset of X , and let x be a point 

of X such that xF since the space is completely regular .   a continuous function f 

from(X, ) into subset [0,1] such that f(x)=0, f(F)={1} .  

Also we can see that the space [0,1] with the relative usual topology  is a T2-space  
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Hence  open sets G and H of [0,1] s.t 0G and 1H  and G∩H=Ø since f is a 

continuous then f
-1

(G) and  f
-1

(H) are open set in (X, ) s.t   

f
-1

(G) ∩f
-1

(H)= f
-1

(G∩H)= f
-1

(Ø)=Ø  

Further f(x)=0G →xf
-1

(G) and f(F)={1}H→F f
-1

(H)  

Hence the space is regular  

Theorem(27): Every T4-space is a tychonoff space.  

Proof: Let (X, ) be a T4-space by definition T4=normal+T1 

To show that the space is tychonoff space it suffices to show that the space is C.R, 

So Let F be a closed subset of X , and let x be a point of X  s.t  xF ,  

since the space (X, )is a T1- so {x} is closed subset of X  ,  

thus {x} and F are two disjoint closed subset of a normal space  

So by ((Urshon's Lemma ))   a continuous function f from (X, ) in to the set [0,1] s.t 

f({x})=0 i.e f(x)=0 and f(F)={1} 

 it follows that the space is C.R .  

 

 

 

 


