$6^{\text {th }}$ ICSHS
International Conference on Scientific and Humanitarian


```
                                    الأتحاد الاولي للمبدعين في العراق
المؤتمر الدولي اللمادسلللار اسات التُعلمية والأنسانية
```


On Permutation G-sets with their Basic Characteristics

Abstract

The behavior of permutation G-set, permutation G-equivariant map, permutation retraction, permutation sub-object, permutation quotient object, and permutationco-retractions in the category of permutation G-sets is investigated in this research. In addition, various unique objects are described, resulting in the clas sification of permutation G-sets as permutation for balanced/ well-powered/co-well-powered.

Keywords: Symmetric groups, permutation, cycles, monomorphis ms
MSC: 20G05, 18A05, 20 D 06.

1. Introduction

In 2014, the permutations in symmetric groups are studied by Mahmood [1] to consider nonclassical set. Next, the permutations in symmetric groups are studied as non-calsical sets [2-5], where in the last years the non-classical sets are became so important because they have many applications in our life like, nano sets [6], fuzzy sets [7], soft sets [8], neutrosophic sets [9], and others. Eilenberg and MacLane [10] proposed categories, functors, and natural transformations in 1945. However, it was not evident in this work that the principles of category theory would be more than a convenient language, so it stayed unpublished for about fifteen years. In 1969, Lawvere proposed an axiomatization of the category of categories [11]. In 1972, the concept was developed and applied in a variety of ways [12]. Finally, category theory has occupied a
significant role not only in contemporary mathematics but also in theoretical computer science, where it has deep roots and contributes to the development of programming semantics and new logical systems, among other things ([13], [14]). G-set is, in reality, a permutation on a set extended to a group action on a set. G-sets are derived from the concept of groups with operators, which was explored in [15] and has been used to define permutation orbits and prove Sylow theorems for groups. We investigate various features of a structural category, i.e. a category of permutation G-sets, in this paper. We will merely cover the fundamental ideas of permutation G-sets here to avoid unnecessary length.

2. Preliminaries

Here, we will recall basic ideas and results that are necessary in this research.

Definition 2.1: [1]
For any permutation $\beta=\prod_{i=1}^{c(\beta)} \delta_{i}$ in a symmetric group S_{n}, where $\left\{\delta_{i}\right\}_{i=1}^{c(\beta)}$ is a composite of pairwise disjoint cycles $\left\{\delta_{i}\right\}_{i=1}^{c(\beta)}$ where $\delta_{i}=\left(t_{1}^{i}, t_{2}^{i}, \ldots, t_{\alpha_{i}}^{i}\right), 1 \leq i \leq c(\beta)$, for some $1 \leq \alpha_{i}, c(\beta) \leq n$. If $\delta=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is k-cycle in S_{n}, we define β-set as $\delta^{\beta}=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ and is called β-set of cycle λ. So the β-sets of $\left\{\delta_{i}\right\}_{i=1}^{c(\beta)}$ are defined by $\left\{\delta_{i}^{\beta}=\left\{t_{1}^{i}, t_{2}^{i}, \ldots, t_{\alpha_{i}}^{i}\right\} \mid 1 \leq i \leq c(\beta)\right\}$.

Definition 2.2:[1]
Let β be permutation in S_{n} with $\beta=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$. We say β has single β-set $\{a\}$, where $a=\delta^{\beta}$ and $\left|\delta^{\beta}\right|=n$.

Definition 2.3[1]

Let $\delta_{i}^{\beta}, \delta_{j}^{\beta} \subseteq \Omega=\{1,2,3, \ldots, n\}$ be two β-sets. Define \wedge and \vee by:

$$
\delta_{i}^{\beta} \wedge \delta_{j}^{\beta}=\left\{\begin{array}{c}
\delta_{i}^{\beta}, \text { if } \sum_{k=1}^{\sigma} t_{k}^{i}<\sum_{k=1}^{\nu} t_{k}^{j} \\
\delta_{j}^{\beta}, \text { if } \sum_{k=1}^{\sigma} t_{k}^{i}>\sum_{k=1}^{\nu} t_{k}^{j} \\
\delta^{\beta}, \text { if } \delta_{i}^{\beta}=\delta_{j}^{\beta}=\delta^{\beta} \\
\phi, \text { if } \delta_{i}^{\beta} \& \delta_{j}^{\beta} \text { are disjoint }
\end{array} \quad \text { and } \delta_{i}^{\beta} \vee \delta_{j}^{\beta}=\left\{\begin{array}{c}
\delta_{i}^{\beta}, \text { if } \sum_{k=1}^{\sigma} t_{k}^{i}>\sum_{k=1}^{\nu} t_{k}^{j} \\
\delta_{j}^{\beta}, \text { if } \sum_{k=1}^{\sigma} t_{k}^{i}<\sum_{k=1}^{\nu} t_{k}^{j} \\
\delta^{\beta}, \text { if } \delta_{i}^{\beta}=\delta_{j}^{\beta}=\delta^{\beta} \\
\Omega, \text { if } \delta_{i}^{\beta} \& \delta_{j}^{\beta} \text { aredisjoint }
\end{array}\right.\right.
$$

3. Permutation G-set

In this section, we will give new notion is called a permutation G-sets and study some of their basic properties.

Definition 3.1: Let $X=\left\{\delta_{i}^{\beta}\right\}_{i=1}^{c(\beta)}$ be a collection of β-sets, where β is a permutation in symmetric group $G=S_{n}$. Then X is said to be a permutation G-set if there exists a mapping * : $X \times G \longrightarrow G$ such that the following conditions:
a) $\delta_{i}^{\beta} * a b=\left(\delta_{i}^{\beta} * a\right) * b$,
b) $\delta_{i}^{\beta} * e=\delta_{i}$, for all $a, b \in G$ and $\delta_{i}^{\beta} \in X$, where e is the identity of G and it is denoted by X_{G}^{*}.

Example 3.2:

Let $\left(S_{12}, o\right)$ be a symmetric group and $\beta=\left(\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8 & 9 & 12 & 11 & 10\end{array}\right)$ be a permutation in S_{12}. Since $\beta=\left(\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 2 & 1 & 4 & 5 & 6 & 7 & 8 & 9 & 12 & 11 & 10\end{array}\right)=$
(1 3) (2) (4)(5) (6) (7) (8)(9)(11)(10 12). Therefore, we have $X=\left\{\delta_{i}^{\beta}\right\}_{i=1}^{10}=\{\{1,3\},\{2\},\{4\}$, $\{5\},\{6\},\{7\},\{8\},\{9\},\{11\},\{10,12\}\}$. Define $*: X \times S_{12} \rightarrow S_{12}$ by $*\left(\delta_{i}^{\beta}, a\right)=\delta_{i}$ o a , where δ_{i} is a cycle for δ_{i}^{β} and $a \in S_{12}$. Then $X_{S_{12}}^{o}$ is a permutation G-set.

Definition 3.3: Let X_{G}^{*} be a permutation G-set. Then a subset A of X_{G}^{*} is called a permutation G subset of X if A_{G}^{*} is also a permutation G-set.

Definition 3.4: Define $\#: X \times G \rightarrow X$ by $\#\left(\delta_{i}^{\beta}, a\right)=\delta_{i}^{\beta} \vee\left\{\widehat{i=1}_{c(a)}^{\lambda_{i}^{a}}\right\}$, where $a=\prod_{i=1}^{c(a)} \lambda_{i}$ is a permutation in group G and each λ_{i}^{a} is a-set of cycle λ_{i}, for all $1 \leq i \leq c(a)$.

Definition 3.5: Let X_{G}^{*} and Y_{G}^{*} be two permutation G-sets. Then a mapping $f: X_{G}^{*} \rightarrow Y_{G}^{*}$ is called a permutation G-equivariant map if $f(x \# a)=f(x) \# a$ for all $a \in G$ and $x \in X_{G}^{*}$.

Remark 3.6:

a) Let $\alpha=\left\{\delta^{\beta}\right\}$ be a single set, we define a mapping $\phi:\left\{\delta^{\beta}\right\} \times G \rightarrow G$ by $\phi\left(\delta^{\beta}, m\right)=\delta$ for each $m \in G$. So, α_{G}^{*} is a permutation G-set.
b) The empty set is a permutation G-set and dented by \emptyset_{G}^{*}.
c) The image of a permutation G-equivariant is a permutation G-set.
d) The composition of two permutation G-equivariants is a permutation G-equivariant, i.e. if $f: X_{G}^{*} \rightarrow Y_{G}^{*}$, and $g: Y_{G}^{*} \rightarrow Z_{G}^{*}$, then $(g \circ f)(x \# a)=((g \circ f)(x)) \# a$.
e) The identity map $I_{X_{G}^{*}}^{*}: X_{G}^{*} \rightarrow X_{G}^{*}$ is a permutation G-equivariant.

Example 3.7: Let $X=\left\{\delta_{1}^{\beta}, \delta_{2}^{\beta}\right\}$ be a family of β-sets and $g: X \times G \longrightarrow G$ be a mapping, where X is a subset of group G and h defined by

$$
g(x, m)=\left\{\begin{array}{lll}
\delta_{1} & \text { if } & x=\delta_{1}^{\beta} \\
\delta_{2} & \text { if } & x=\delta_{2}^{\beta}
\end{array}\right.
$$

for all $m \in G, x \in X$. Then X is a permutation G-set.
Also, define $h: X \times G \rightarrow X$ by

$$
h(x, m)=\left\{\begin{array}{lll}
\delta_{1}^{\beta} & \text { if } & x=\delta_{1}^{\beta} \\
\delta_{2}^{\beta} & \text { if } & x=\delta_{2}^{\beta}
\end{array}\right.
$$

for all $m \in G, x \in X$. Then h is a permutation G-equivariant.

Lemma 3.8: Assume that X_{G}^{*} and Y_{G}^{*} are two permutation G-sets. Then,
a) $X_{G}^{*} \wedge Y_{G}^{*}$ is a permutation G-set,
b) $X_{G}^{*} \times Y_{G}^{*}$ permutation G-set,
c) Disjoint union of X_{G}^{*} and Y_{G}^{*} is a permutation G-set.

Note: Since the composition of permutation G-equivariant is again a permutation G-equivariant and every identity mapping is a permutation G-equivariant, therefore we can construct a category by taking the class of all permutation G-sets as the class of objects of such category and the class of all permutation G-equivariant as the class of permutation equivariant of the category. It is called the category of permutation G-sets.

Proposition 3.9: A permutation G-equivariant $p: X_{G}^{*} \longrightarrow Y_{G}^{*}$ of permutation G-sets is injective if and only if it is left cancellable.

Proof: Suppose that $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ is an injective permutation equivariant in permutation \mathbb{G}-sets. For any Z_{G}^{*} permutation G-set, suppose there are two permutation G-equivariants $h, k: Z_{G}^{*} \rightarrow X_{G}^{*}$ such that $p \circ h=p \circ k$. Then for any $z \in Z_{G}^{*}$, we have

$$
(p \circ h)(z)=(p \circ k)(z)
$$

Then, $\quad p(h(z))=p(k(z))$
Therefore, $\quad h(z)=k(z) \quad$ (as p is injective)
Hence, $h=k$
Implies that p is left cancellable.
Conversely, let p be left cancellable and $p\left(x_{1}\right)=p\left(x_{2}\right)$ for $x_{1}, x_{2} \in X_{G}^{*}$. Consider the set $C_{G}^{*}=\{c\}$ and define two permutation equivariants $h, k: C_{G}^{*} \rightarrow X_{G}^{*}$ with $h(c)=x_{1}$ and $h(c)=$ x_{2}. So, h and k are permutation G-equivariants. Hence we get

$$
C_{G}^{*} \xrightarrow{h} X_{G}^{*} \xrightarrow{p} Y_{G}^{*}=C_{G}^{*} \xrightarrow{k} X_{G}^{*} \xrightarrow{p} Y_{G}^{*}
$$

Then

$$
p \circ h=p \circ k
$$

Therefore,

$$
h=k \quad \text { (as } p \text { is left cancellable) }
$$

Hence,

$$
h(c)=k(c), \forall c \in C_{G}^{*}
$$

Which implies that $x_{1}=x_{2}$ and hence p is injective.
Corollary 3.10: A permutation equivariant in the category \mathbb{G}-sets is a monomorphism if and only if it is an injective.

Proof: By proposition (3.9), the proof is obvious.
Proposition 3.11: A permutation equivariant $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ in permutation \mathbb{G}-sets is surjective if and only if it is right cancellable.

Proof: Assume $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ is a surjective permutation equivariant in \mathbb{G}-sets. For any Z_{G}^{*} permutation G-set, suppose there are two permutation equivariants $h, k: Y_{G}^{*} \rightarrow Z_{G}^{*}$ in permutation \mathbb{G}-sets with $h \circ p=k \circ p$. Since p is surjective, for every $y \in Y_{G}^{*}$ there exists $x \in X_{G}^{*}$ satisfies $y=p(x)$. Thus we get

$$
\begin{aligned}
h(y) & =h(p(x)) \\
& =(h \circ p)(x) \\
& =(k \circ p)(x) \\
& =k(p(x))
\end{aligned}
$$

$$
=k(y), \forall y \in Y_{G}^{*}
$$

implying that $h=k$, therefore p is right cancellable.
Conversely, assume that p is right cancellable. Define two permutation G-equivariants $h, k: Y_{G}^{*} \longrightarrow\left\{\delta_{1}^{\beta}, \delta_{2}^{\beta}\right\} \vee \operatorname{Im}(p)$, by
$h(y)=\left\{\begin{array}{cc}y & \text { if } y \in \operatorname{Im}(p) \\ \delta_{1}^{\beta} & \text { if } y \notin \operatorname{Im}(p)\end{array}\right.$ and $k(y)=\left\{\begin{array}{cc}y & \text { if } y \in \operatorname{Im}(p) \\ \delta_{2}^{\beta} & \text { if } y \notin \operatorname{Im}(p)\end{array}\right.$, where β is a member in G.

By Example 3.7, and Remark 3.6-(c), we get $\left\{\delta_{1}^{\beta}, \delta_{2}^{\beta}\right\}$ and $\operatorname{Im}(p)$ are permutation G-sets respectively.

In other side to show that h and k are permutation G-equivariant, we show that of $y \in$ $\operatorname{Im}(p)$, then $y \# a \in \operatorname{Im}(p), \forall a \in G$. To substantiate this, let $y \in \operatorname{Im}(p)$, then
$p(x)=y \quad$ for some $x \in X_{G}^{*}$
Thus,

$$
\begin{aligned}
& p(x) \# a=y \# a \\
& p(x \# a)=y \# a
\end{aligned}
$$

Hence,
Which yields $y \# a \in \operatorname{Im}(p)$. Thus we have

$$
\begin{aligned}
& h(y \# a)=y \# a \\
& =h(y) \# a
\end{aligned}
$$

Next, we show that if $y \notin \operatorname{Im}(p)$, then $y \# a \notin \operatorname{Im}(p)$ for all $a \in G$. Suppose, on contrary that $y \notin \operatorname{Im}(p)$ that is to say $y \# a \in \operatorname{Im}(p)$, then

$$
p(x)=y \# a, \text { for some } x \in X_{G}^{*}
$$

Thus,

$$
(p(x)) \# a^{-1}=y
$$

So,

$$
p\left(x \# a^{-1}\right)=y
$$

Implying that $y \in \operatorname{Im}(p)$ which is a contradiction. Thus,

$$
h(y \# a)=\delta_{1}^{\beta}
$$

$$
\begin{aligned}
& =\delta_{1}^{\beta} \# a \quad(\text { from Example 3.7) } \\
& =(h(y)) \# a .
\end{aligned}
$$

Therefore, h is a permutation G-equivariant. Similarly, we can show that k is also a permutation G-equivariant. Hence h, k are elements of permutation G-sets.

Now, for any $x \in X_{G}^{*}$, we have

$$
(h \circ p)(x)=h(p(x))
$$

$=p(x) \quad($ from definition of $h)$

$$
=k(p(x)) \quad(\text { from definition of } k)
$$

Implies $h \circ p=k \circ p$ which gives $h=k$ (since p is right cancellable). Suppose $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ is not surjective, then there exists some $y \in Y_{G}^{*}$ such that $y \notin \operatorname{Im}(\alpha)$. Thus, we have $\delta_{1}^{\beta}=h(y)=$ $k(y)=\delta_{1}^{\beta}$ which is a contradiction and the results follows.

Corollary 3.12: A permutation G-equivariant in the category G-sets is an epimorphism if and only if it is surjective.

Definition 3.13: A permutation equivariant $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ in permutation G-sets is called permutation co-retraction (permutation section) if and only if there exists a permutation equivariants $\vartheta: Y_{G}^{*} \rightarrow X_{G}^{*}$ in permutation \mathbb{G}-sets such that $\vartheta \circ \alpha=I_{X_{G}^{*}}$.

Definition 3.14: A permutation equivariant $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ in permutation G-sets is called permutation retraction if and only if there exists a permutation equivariants $\vartheta: Y_{G}^{*} \rightarrow X_{G}^{*}$ in permutation \mathbb{G}-sets such that $\alpha \circ \vartheta=I_{Y_{G}^{*}}$.

Theorem 3.15: A permutation equivariant $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ in permutation G-sets is a monomorphism if and only if it is a permutation section(permutation co-retraction).

Proof: Let X be a permutation G-set with a fixed element $w \in X_{G}^{*}$ such that $a w=w$ for all $a \in$ G and let $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ be a monomorphism in permutation \mathbb{G}-sets. For any $y \in Y_{G}^{*}$, define a mapping $\vartheta: Y_{G}^{*} \rightarrow X_{G}^{*}$ by

$$
\vartheta(y)=\left\{\begin{array}{lc}
x & \text { if } y \in \operatorname{Im}(p) \text { and } p(x)=y \text { for some } x \in X_{G}^{*} \\
w & \text { otherwise } .
\end{array}\right.
$$

To show that ϑ is well defined, suppose $y=y^{\prime}$ for all $y, y^{\prime} \in Y_{G}^{*}$. Then either both $y, y^{\prime} \in$ $\operatorname{Im}(p)$ or both $y, y^{\prime} \notin \operatorname{Im}(p)$. If $y, y^{\prime} \notin \operatorname{Im}(p)$, then $\vartheta(y)=w=\vartheta\left(y^{\prime}\right)$.

Suppose, $y, y^{\prime} \in \operatorname{Im}(p)$, then there exist unique $x, x^{\prime} \in X_{G}^{*}$ such that $p(x)=y$ and $p\left(x^{\prime}\right)=y^{\prime}$ implying thereby $\vartheta(y)=x$ and $\vartheta\left(y^{\prime}\right)=x^{\prime}$. Then ϑ is well defined, for if

$$
y=y^{\prime}
$$

Therefore,

$$
\begin{aligned}
p(x) & =p\left(x^{\prime}\right) \\
x & =x^{\prime}
\end{aligned}
$$

Then,

$$
x=x^{\prime} \quad(\text { since } p \text { is injective })
$$

Thus,

$$
\vartheta(y)=\vartheta\left(y^{\prime}\right)
$$

In order to prove that ϑ is a permutation G-equivariant, we show that if $y \notin \operatorname{Im}(p)$, then $y^{\prime} \# a \notin \operatorname{Im}(p)$ for all $a \in G$. Suppose on a contrary note that $y^{\prime} \notin \operatorname{Im}(p)$ implying thereby $y \in$ $\operatorname{Im}(p)$ which in turn yields

$$
p(x)=y \# a, \text { for some } x \in X_{G}^{*}
$$

Thus,

$$
(p(x)) \# a^{-1}=y
$$

Thus,

$$
p\left(x \# a^{-1}\right)=y
$$

Which implies that $y \in \operatorname{Im}(p)$ a contradiction.
Therefore, we have

$$
\begin{aligned}
\vartheta(y \# a) & =w \\
& =w \# a \\
& =(\vartheta(y)) \# a, \quad \text { for all } y^{\prime} \notin \operatorname{Im}(p)
\end{aligned}
$$

Again we show that if $y \in \operatorname{Im}(p)$, then $y \# a \in \operatorname{Im}(p)$ for all $a \in G$. If $y \in \operatorname{Im}(p)$, then

$$
p(x)=y, \text { for some } x \in X_{G}^{*}
$$

Then,

$$
(p(x)) \# a=y \# a
$$

Thus,

$$
p(x \# a)=y \# a, \text { for all } y \# a \in \operatorname{Im}(p)
$$

Which implies $y \# a \in \operatorname{Im}(p)$.
Now, if $y \in \operatorname{Im}(p)$, then we have

Then,

$$
p(x)=y, \text { for some } x \in X_{G}^{*}
$$

Thus,

$$
(p(x)) \# a=y \# a
$$

Implying thereby $\vartheta(y \# a)=x \# a=(\vartheta(y)) \# a$ which means that ϑ is a permutation G equivariant.

Lastly, we show that $\vartheta \circ p=I_{X_{G}^{*}}$.
Let $x^{\prime} \in X_{G}^{*}$ and $p\left(x^{\prime}\right)=y^{\prime}$ for some $y^{\prime} \in Y_{G}^{*}$. Then $\vartheta\left(y^{\prime}\right)=x^{\prime}$ by definition of ϑ. Thus, we have

$$
\begin{aligned}
(\vartheta \circ p)\left(x^{\prime}\right) & =\vartheta\left(p\left(x^{\prime}\right)\right) \\
& =\vartheta\left(y^{\prime}\right) \\
& =x^{\prime} \\
& =I_{X_{G}^{*}}\left(x^{\prime}\right), \quad \text { for all } x^{\prime} \in X_{G}^{*}
\end{aligned}
$$

Which gives $\vartheta \circ p=I_{X_{G}^{*}}$ and henceforth α is a permutation section.
Conversely, suppose that $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ is a permutation section, then there exists a permutation equivariant $\vartheta: Y_{G}^{*} \rightarrow X_{G}^{*}$ such that $\vartheta \circ p=I_{X_{G}^{*}}$ which means that p is an injective and by Corollary 3.12, it is a monomorphism.
Proposition 3.16: A permutation equivariant $\alpha: X_{G}^{*} \rightarrow Y_{G}^{*}$ in permutation \mathbb{G}-sets is an epimorphism if and only if it is a permutation retraction.

Proof: Assume $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ is an epimorphism in permutation category G-sets. Then for every $y \in Y_{G}^{*}$ there exists $x \in X_{G}^{*}$ such that $p(x)=y$. For each $y \in Y_{G}^{*}$ choose by the axiom of choice and fix such an element x, say x_{y}, where $x_{y} \in p^{-1}(y)$. Therefore, we define a mapping $q: Y_{G}^{*} \rightarrow$ X_{G}^{*} by $q(y)=x_{y}$ for all $y \in Y_{G}^{*}$.

We show that q is a permutation G-equivariant.
Since,

$$
x_{y} \in p^{-1}(y)
$$

Hence,

$$
p\left(x_{y}\right)=y
$$

Thus,

$$
p\left(x_{y}\right) \# a=y \# a, \quad \text { for all } a \in G
$$

So,

$$
p\left(x_{y} \# a\right)=y \# a
$$

Then,

$$
x_{y} \# a \in p^{-1}(y \# a)
$$

Thus,

$$
q(y \# a)=x_{y} \# a
$$

Therefore,

$$
q(y \# a)=(q(y)) \# a
$$

Which show that q is a permutation equivariant in G-sets.
Next, for any $y \in Y_{G}^{*}$, we have

$$
\begin{aligned}
(p \circ q)(y) & =p(q(y)) \\
& =p\left(x_{y}\right) \\
& =y
\end{aligned}
$$

Which implies that $p \circ q=I_{Y_{G}^{*}}$ and so p is a permutation retraction.
Conversely, suppose that $p: X_{G}^{*} \rightarrow Y_{G}^{*}$ is a permutation retraction, then there exists a permutation equivariant $\vartheta: Y_{G}^{*} \rightarrow X_{G}^{*}$ such that $p \circ \vartheta=I_{Y_{G}^{*}}$ which means that p is surjective and from Corollary 3.12, it is a epimorphism.

Proposition 3.17: The permutation category G-sets is balanced.
Proof: Since in the permutation category G-sets, every bimorphism is an isomorphism, therefore the permutation G-sets is balanced.

Definition 3.18: Let X_{G}^{*} be a permutation G-set. Then, a permutation G-subset Y_{G}^{*} of X_{G}^{*} together with inclusion equivariant $i: Y_{G}^{*} \rightarrow X_{G}^{*}$ is called the permutation sub-object of X_{G}^{*} in permutation G-sets.

Definition 3.19: Let X_{G}^{*} be a permutation G-set and let \sim_{G} be a permutation G-equivalence relation on X_{G}^{*}. Then, the quotient set X_{G}^{*} / \sim_{G} together with natural projection $p: X_{G}^{*} \rightarrow X_{G}^{*} / \sim_{G}$ is called a permutation quotient object of X_{G}^{*} in permutation \mathbb{G}-sets.

Trivially, \emptyset_{G}^{*} forms a permutation G-set, that is., \emptyset_{G}^{*} in permutation G-sets and for any other object $X_{G}^{*} \in G$-sets, there is only one equivariant from \emptyset_{G}^{*} to X_{G}^{*} with no assignment, that is, $\operatorname{Hom}\left(\emptyset_{G}^{*}, X_{G}^{*}\right)$ is singleton. Thus, we have the following proposition:

Proposition 3.20: The permutation category \mathbb{G}-sets has initial object.
Also, from Remark 3.6, every singleton set $\{w\}$ forms a permutation G-set, that is $\{w\} \in$ \mathbb{G}-sets and for any other object $X_{G}^{*} \in G$-sets, there is only one equivariant from X_{G}^{*} to $\{w\}$, that is, $\operatorname{Hom}\left(X_{G}^{*},\{w\}\right)$ is singleton. Thus, we have the following proposition:

Proposition 3.21: The permutation category G-sets has terminal object.
Remark 3.22: the permutation category G-sets has no zero object.

```
المؤتمر الدولي السادس للاراسات العلمية والأنسانية
```

Proposition 3.23: The permutation category \mathbb{G}-sets is well powered.
Proof: Since for any permutation G-set X_{G}^{*}, the collection of all sub-objects of X_{G}^{*} is permutation equivariant to the collection of all subsets $P\left(X_{G}^{*}\right)$, the power set of X. But $P\left(X_{G}^{*}\right)$ is a set. Hence, G-sets is well powered.

Proposition 3.24: The permutation category \mathbb{G}-sets is co-well powered.

4. Conclusion

Some new notions of non-classical sets by using permutation sets in symmetric group are given and discussed their basic properties. In future work, we will use other classes of non-classical sets to investigate and study new classes of G-sets. Moreover, we will study permutation sets in other groups like Alternating, Dihedral, Mathieu, and others.

REFERENCES

[1] S. Mahmood, The Permutation Topological Spaces and their Bases, Basrah Journal of Science, 32(1), (2014), 28-42.
[2] S. M. Khalil and F. Hameed, Applications on Cyclic Soft Symmetric Groups, IOP Conf. Series: Journal of Physics, 1530 (2020) 012046, doi:10.1088/17426596/1530/1/012046.
[3] S. M. Khalil and N. M. Abbas, Applications on New Category of the Symmetric Groups, AIP Conference Proceedings 2290, 040004 (2020).
[4] S. M. Khalil and F. Hameed, An algorithmfor generating permutations in symmetric groups using s paces with general study and basic properties of permutations spaces. J Theor Appl InformTechnol, 96(9), (2018), 2445-2457.
[5] S. M. Khalil, E. Suleiman and N. M. Ali Abbas, "New Technical to GeneratePermutation Measurable Sp aces," 2021 1st Babylon International Conference on Information Technology and Science (BICITS), 2021, pp. 160-163, doi: 10.1109/BICITS51482.2021.9509892.
[6] S. M. Khalil and N. M. A. Abbas, On Nano with Their Applications in Medical Field, AIP Conference Proceedings 2290, 040002 (2020); https://doi.org/10.1063/5.0027374
[7] S. Khalil, A. Hassan A, AlaskarH, Khan W,Hussain A.Fuzzy Logical Algebra and Study of the Effec tiveness of Medications for COVID-19. Mathematics, 9 (22),(2021),28-38. https://doi.org/10.3390/math 9222838
[8]S. Mahmood, Decision making using algebraic operations on soft effectmatrix as new categ ory of similarity measures and study their application in medicaldiagnosis problems, Journal of Intelligent \& Fuzzy Syste ms, 37, (2019), 1865-1877, doi:10.3233/JIFS-179249.
[9] A.R. Nivetha, M. Vigneshwaran, N. M. Ali Abbas, S. M. Khalil, On $N_{* g \alpha}$ continuous in topological spaces of neutrosophy, Journal of Interdisciplinary Mathematics, 24(3), (2021), 677-685. doi.org/10.1080/09720502.2020.1860288
[10] S. Eilenberg and S. MacLane, Generaltheory of naturalequivalence, Trans. Amer. Math. Soc. 58(1945), 231294.
[11] Diagonal arguments and cartesian closed categories, Lecture Notes in Mathematics, 92 (1969), 134-145.
[12] H. Schubert, Categories, Springer-Verlag, New York 1972.
[13] B. Plotkin, Algebra, categories and databases, Handbook of Algebra, Elsevier (2000), 79-148.
[14] P.J. Scott, Some as pects of categories in computer science, Handbook of Algebra, North Holland (2000), 3-77.
[15] A.M. Pitts, Categorical logic, Handbook of Logic in Computer Science, Oxford University Press, Oxford (2000), 39-128.

