Ring Theory

1.1. Definitions and examples

Definition 1.1.1 A ring R is a nonempty set together with two binary operation + and .(called addition and multiplication defined on R) if satisfying the following axioms:
(1) $(R,+)$ is an abelian group,
(2) $(R,$.$) is semi-group,$
(3) the distributive law hold in R: for all $a, b, c \in R$,

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(a+b) \cdot c=a \cdot c+b \cdot c
$$

Example. $(\mathbb{Z},+,),.(\mathbb{Q},+,),.(\mathbb{R},+,$.$) and (\mathbb{C},+,$.$) are ring.$

Definition 1.1.2. The ring $(R,+,$.$) is called commutative if multiplication is commutative (a . b=$ b. a, for all $a, b \in R$.

Remark. The identity of the operation + in a ring is usually written 0 and called zero.
Definition 1.1.3. The ring R is said to be ring with identity 1_{R} if $a .1=1 . a=a$ for all $a \in R$.

Example:

$(\mathbb{Z},+,),.(\mathbb{Q},+,),.(\mathbb{R},+,$.$) and (\mathbb{C},+,$.$) are commutative ring with identity.$

Definition 1.1.4. Let R be a ring with identity. An element $a \in R$ is called a unit (or an invertible element) if there exists $b \in R$ such that $a b=1=b a$. We denoted the set of all unit elements in R by R^{*}.

Theorem 1.1.5. Let R be a ring with identity. Then ($\left.R^{*},.\right)$ is a group.
Proof. Since $1_{R} \in R^{*}$, then R^{*} is a non-empty set.
Now we prove that the axioms of group are satisfies:
1- let $x, y \in R^{*}$, that is each of x and y has inverse multiplication. Hence

$$
\begin{aligned}
& (x \cdot y)\left(y^{-1} \cdot x^{-1}\right)=x \cdot\left(y \cdot y^{-1}\right) \cdot x^{-1}=x \cdot 1_{R} \cdot x^{-1}=x \cdot x^{-1}=1_{R} \text { and }\left(y^{-1} \cdot x^{-1}\right) \cdot(x \cdot y)= \\
& y^{-1} \cdot\left(x^{-1} \cdot x\right) \cdot y=y^{-1} \cdot 1_{R} \cdot y=y^{-1} \cdot y=1_{R} \cdot
\end{aligned}
$$

This implies that $y^{-1} \cdot x^{-1}$ is invers of $x . y$ and $x . y \in R^{*}$. Hence the set R^{*} is closed under multiplication.

2- associative law are holds because ($R,+,$.) is ring.
3- $1_{R} \in R^{*}$ is identity element.
4- If $x \in R^{*}$, then $x \cdot x^{-1}=x^{-1} \cdot x=1_{R} \Rightarrow x^{-1} \in R^{*}$. $\left(R^{*},.\right)$ is group.

Example.(1) In $\left(Z_{6},+_{6}, \cdot 6\right)$ we see $\left(Z_{6}^{*}=\{1,5\}\right.$ and $\left(Z_{6}^{*}, \cdot 6\right)$ is an abelian group.
(2) Let X be a non-empty set. If $P(X)$ is a power set of X, then show that $(P(X), \Delta, \cap)$ Is a commutative ring with identity?
(3) Let $M_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right\}$ be the square matrix of \mathbb{R}. Show that $\left(M_{2}(\mathbb{R}),+,.\right)$ a ring with identity.

Definition 1.1.6. Let $(R,+,$.$) be a ring. For all a \in R$ and for all integer n define

$$
n a= \begin{cases}\underbrace{a+a+\cdots+a}_{n-\text { times }} & \text { if } n>0 \\ \underbrace{(-a)+(-a)+\cdots+(-a)}_{|n| \text {-times }} & \text { if } n<0 \\ 0_{R} & \text { if } n=0\end{cases}
$$

and define

$$
a^{n}=\underbrace{a \cdot a \ldots a}_{n \text {-times }} \quad \text { if } n>0
$$

If R with identity, then $a^{0}=1_{R}$.
If R with identity and a has a multiplicative inverse, then

$$
a^{n}=\underbrace{a^{-1} \cdot a^{-1} \ldots a^{-1}}_{|n| \text {-times }} \quad \text { if } n<0
$$

Theorem 1.1.7. Let $(R,+,$.$) be a ring, for a, b \in R$ and arbitrary integers n and m the following hold:
1- $(n+m) a=n a+m a$,
2- $n(a+b)=m a+m b$,
3- $(n m) a=n(m a)$.
Theorem 1.1.8. Let $(R,+,$.$) be a ring and 0_{R}$ be a zero element. The for all $a, b, c \in R$ the following hold:

1- $a \cdot 0_{R}=0_{R} \cdot a=0_{R}$.
2- $a .(-b)=(-a) \cdot b=-(a . b)$.
3- $(-a) \cdot(-b)=a . b$.
4- $a .(b-c)=a . b-a . c$.
Proof. 1- Since $a .0_{R}=a .\left(0_{R}+0_{R}\right)=a .0_{R}+a .0_{R}$.
Thus,

$$
\begin{aligned}
& a 0_{R}+a 0_{R}=a\left(0_{R}+0_{R}\right)=a 0_{R} \\
& \Rightarrow\left(a 0_{R}+a 0_{R}\right)+\left(-\left(a 0_{R}\right)\right)=a 0_{R}+\left(-\left(a 0_{R}\right)\right) \\
& \Rightarrow a 0+(a 0+(-(a 0)))=0 \quad \text { because } a 0_{R}+\left(-\left(a 0_{R}\right)\right)=0_{R}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow a 0_{R}+0_{R}=0_{R} & \text { because } a 0_{R}+\left(-\left(a 0_{R}\right)\right)=0_{R} \\
\Rightarrow a 0_{R}=0_{R} & \text { because } a 0_{R}+0_{R}=a 0_{R} .
\end{array}
$$

Similarly, $0_{R} a=0_{R}$.
2-H.w
3-By (2) we get $(-a) .(-b)=-(a .(-b))=-(-(a . b))=a . b$.
4-H.w
Corollary 1.1.9. Let $(R,+,$.$) be a ring with identity such that R \neq\left\{0_{R}\right\}$. Then the element 0_{R} and 1_{R} are distinct.

Proof. Suppose $R \neq\left\{0_{R}\right\}$. Let $a \in R$ be such that $a \neq 0$. Suppose $0_{R}=1_{R}$. It follows $a=a .1_{R}=a .0_{R}=0_{R}$, a contradiction. Thus, $0_{R} \neq 1_{R}$.

Corollary 1.1.10. Let $(R,+,$.$) be a ring with identity such that R \neq\left\{0_{R}\right\}$. Then for all $a \in R$, the following are hold:

1- $(-1) \cdot a=-a$ and
$2-(-1) \cdot(-1)=1$.
Definition 1.1.11. Let $(R,+,$.$) be a ring and let S$ be a non empty subset of R (i.e $\emptyset \neq S \subseteq R$). If $(S,+,$.$) is itself a ring, then (S,+,$.$) is said to a subring of (R,+,$.$) .$

Remark. Every ring $(R,+,$.$) has two trivial subring; for, if 0$ denote the zero element of the ring $(R,+,$.$) , then both (\{0\},+,$.$) and the ring itself are subrings of (R,+,$.$) .$

Definition 1.1.12. Let $(R,+,$.$) be a ring and \emptyset \neq S \subseteq R$. Then $(S,+,$.$) is a subring of (R,+,$.$) if and only$ if

1- $\quad a-b \in S$, for all $a, b \in S$ (closed under differences)
2- $a . b \in S$, for all $a, b \in S$ (closed under multiplication)

Examples.

1- $(Z,+,$.$) is a subring of (R,+,$.$) and (Q,+,$.$) .$
2- $\left(Z_{e},+,.\right)$ is a subring of $(Z,+,$.$) .$
3- Let R denote the set of all functions $f: R^{\#} \rightarrow R^{\#}$. The sum $f+g$ and the product $f . g$ of two function $f, g \in R$ are defined by
$(f+g)(x)=f(x)+g(x)$,
$(f . g)(x)=f(x) . g(x), x \in R^{\#}$
Suppose $(R,+,$.$) is the commutative ring of function of above. Define$

$$
S=\{f \in R \mid f(1)=0\} .
$$

Definition 1.1.13. The center of a ring $(R,+,$.$) , denoted by cent (\boldsymbol{R})$, is the set
$\operatorname{Cent}(R)=\{c \in R \mid c . x=x . c$, for all $x \in R\}$.
Remark. If $(R,+,$.$) is comuutaive, then \operatorname{cent}(R)=R$.
Theorem 1.1.14. Let $(R,+,$.$) be a ring. Then (\operatorname{cent}(R),+,$.$) is a subring of (R,+,$.$) .$
Proof. Since $a .0_{R}=0_{R}$. a, for all $a \in R$, then $0_{R} \in \operatorname{cent}(R)$, hence $\operatorname{cent}(R) \neq \emptyset$.
Let $x, y \in \operatorname{cent}(R)$. To prove that $x-y \in \operatorname{cent}(R)$.
For all $a \in R$, then

$$
(x-y) \cdot a=x \cdot a-y \cdot a=a \cdot x-a \cdot y=a(x-y) .
$$

Therefore $x-y \in \operatorname{cent}(R)$, and
$(x \cdot y) \cdot a=x \cdot(y \cdot a)=x(a \cdot y)=(x \cdot a) \cdot y=(a \cdot x) \cdot y=a .(x \cdot y)$.
Therefore $x . y \in \operatorname{cent}(R)$, hence $(\operatorname{cent}(R),+,$.$) is a subring of (R,+,$.$) .$

Solve the following problems

Q1/ In a ring (Z, \oplus, \odot), where $a \oplus b=a+b-1$ and $a \odot b=a+b-a b$, for all $a, b \in Z$. Find zero element and identity element.

Q2/ Let R denote the set of all functions $f: R^{\#} \longrightarrow R^{\#}$. The sum $f+g$ and the product $f \cdot g$ of two function $f, g \in R$ are defined by $(f+g)(x)=f(x)+g(x), \quad(f . g)(x)=f(x) . g(x), x \in R^{\#}$.
Show that $(R,+,$.$) is the commutative ring.$
Q3/ Let $(R,+,$.$) be an arbitrary ring. In \mathrm{R}$ define a new binary operation * by $a * b=a . b+b . a$ for all $a, b \in R$. Show that $(R,+, *)$ is a commutative ring.
Q4/ Show that the multiplicative identity in a ring with unity R is unique.
Q5/ Suppose that R is a ring with unity and that $a \in R$ is a unit of R. Show that the multiplicative inverse of a is unique.

Q6/ Let $(3 Z,+)$ be an abelian group under usual addition where $3 Z=\{3 n \mid n \in Z\}$. Show that $(3 Z,+, \odot)$ is a commutative ring with identity 3 , where $a \odot b=\frac{a b}{3}$, for all $a, b \in 3 Z$.
Q6/ Let $(R,+,$.$) be a ring which has the property that a^{2}=a$ for every $a \in R$. Prove that $(R,+,$.$) is a commutative ring. [Hint: First show a+a=0$, for any $a \in R$].

Q7/ Prove that a ring R is commutative if and only if

$$
\left.a^{2}-b^{2}=(a+b) a-b\right), \text { for all } a, b \in R
$$

Q8/ Prove that a ring R is commutative if and only if

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}, \text { for all } a, b \in R .
$$

Q9/ Let R be the set of all ordered pairs of nonzero real numbers. Determine whether $(R,+,$.$) is$ a commutative ring with identity.
(a) $(a, b)+(c, d)=(a c, b c+d), \quad(a, b) \cdot(c, d)=(a c, b d)$
(b) $(a, b)+(c, d)=(a+c, b+d),(a, b) .(c, d)=(a c, a d+b c)$.

Q10/ Find all units in the rings

$$
1-\left(Z_{9},+_{9}, \times_{9}\right) . \quad 2-Z \times Z \quad 3-Z_{3} \times Z_{3} \quad 4-Z_{4} \times Z_{6}
$$

Q11/ Is Z_{2} a subring of Z_{6} ? Is $3 Z_{9}$ a subring of Z_{9} ?

1.2. Some type of rings.

Definition 1.2.1. A nonzero element a in a ring R is called a zero divisor if there exists $b \in R$ such that $b \neq 0$ and $a b=0$.
In particular, a is a left divisor of zero and b is a right divisor of zero.
Definition 1.2.2. An integral domain is a commutative ring with identity which does not have divisors of zero.

Examples. $(Z,+,),.(Q,+,$.$) and \left(Z_{p},+_{p}, \cdot P\right)$ are integral domain but $\left(Z_{6},+_{6}, \cdot 6\right)$ is not integral domain.

Definition 1.2.3. An element a of a ring $(R,+,$.$) is said to be a nilpotent if there exists a positive integer$ n such that $a^{n}=0$.

Example. Find nilpotent element in Z_{8} and $Z_{4} \times Z_{6}$.
The nilpotent element in Z_{8} are $0,2,4$ and 6.
The nilpotent element in Z_{4} are 0 and 2, and the nilpotent element in Z_{6} is 0 , hence The nilpotent element in $Z_{4} \times Z_{6}$ are $(0,0)$ and $(2,0)$.

Theorem 1.2.4. Let $(R,+,$.$) be a commutative ring with identity. Then (R,+,$.$) is an integral domain if$ and only if the cancellation law holds for multiplication.

Proof. We suppose that R is an integral domain. Let $a, b, c \in R$ such that $a \neq 0$ and $a . b=a . c$. Hence $b=c$.

Conversely, suppose that the cancellation law holds and $. b=0$.
If the element $a \neq 0$, then by Theorem 2.1.6 we have $a .0=0$, hence
$a . b=0=a .0$, consequently $b=0$. That is R has no divisors of zero and R commutative with identity, we get R is an integral domain.

Corollary 1.2.5. Let $(R,+,$.$) be an integral domain. Then the only solution of the equation a^{2}=a$ are $a=0$ and $a=1$.

Proof. Clearly 0 is the solution of the equation $a^{2}=a$.
Now, if $a^{2}=a$ and $a \neq 0$, since $a=a .1$ and $a . a=a^{2}=a=a .1$, hence by cancellation law we get $a=1$.

Definition 1.2.6. A ring $(R,+,$.$) is said to be a division ring(skew field) if it is a ring with identity in$ which every nonzero element has a multiplicative inverse.

Definition 1.2.7. A field is a commutative ring with identity in which each nonzero element has an inverse under multiplication.

Examples:

1- $(Q,+,),.(R,+,$.$) and (\mathbb{C},+,$.$) are field(field of rational numbers, field of real numbers, field of$ Complex numbers).

2- $\left(\mathrm{Z}_{\mathrm{n}},+_{\mathrm{n}},, \mathrm{n}\right)$ is a field if and only if n is a prime number.
3- $(Z,+,$.$) is an integral domain but not a field.$

Theorem 1.2.8. Every field is an integral domain.
Proof. Let $(R,+,$.$) be a field. Then \mathrm{R}$ is a commutative ring with identity.
Let $a, b \in R$ and $a . b=0$ with $a \neq 0$.
Since R is a field, then the element a has an inverse.. The hypothesis a.b $=0$ yields

$$
a^{-1} \cdot(a \cdot b)=a^{-1} \cdot 0 \Rightarrow\left(a^{-1} \cdot a\right) \cdot b=0 \Rightarrow b=0
$$

That is R contains no divisors of zero. Hence R is an integral domain.
Theorem 1.2.9. Any finite integral domain is a field.
Proof. Let $(R,+,$.$) be an integral domain contains \mathrm{n}$ distinct elements say $x_{1}, x_{2}, \ldots, x_{n}$.

Let $x \neq 0$ be any element of R, consider the elements $x . x_{1}, x, x_{2}, \ldots, x, x_{n} \in R$. These products are all distinct because
If $x . x_{i}=x . x_{j}$, for $i \neq j \Rightarrow x$. $\left(x_{i}-x_{j}\right)=0$, but $x \neq 0 \Rightarrow x_{i}-x_{j}=0 \Rightarrow x_{i}=x_{j}$,
which is contradiction to $x_{1}, x_{2}, \ldots, x_{n}$ are all distinct.
Since $1 \in R$, then $x . x_{k}=1$ for some k and $x \cdot x_{k}=x_{k} \cdot x=1 \Rightarrow x$ has multiplicative inverse and $x^{-1}=$ x_{k}. That is $(R,+,$.$) is a field.$

Theorem 1.2.10. The ring $\left(Z_{n},+_{n \cdot n}\right)$ of integers modulo n is a field if and only if n is a prime number. Proof. Suppose that R is a field. To prove that n is a prime number. If n is not prime, then $n=a . b$ where $0<a<n$ and $0<b<n$. It follows

$$
[a]_{\cdot n}[b]=[a . b]=[n]=[0] .
$$

Since $[a] \neq[0],[b] \neq[0]$. This means that the system $\left(Z_{n},+_{n}, \cdot n\right)$ is not an integral domain and hence not a field.
Conversely suppose that n is a prime number. To prove that $\left(\mathrm{Z}_{\mathrm{n}},+_{\mathrm{n}}, . \mathrm{n}\right)$ is a field, enough to show that is an integral domain.
Let $[a],[b] \in Z_{n}$ and $[a]_{\cdot n}[b]=[0] \Rightarrow[a . b]=[0]=[n]$
$\Rightarrow a . b \equiv 0(\bmod n) \Rightarrow a . b=k n$, for some integer k
$\Rightarrow n$ divides $a . b \Rightarrow p$ divides a or p dividea $b \Rightarrow$
$a \equiv 0(\bmod n)$ or $b \equiv 0(\bmod n) \Rightarrow[a]=[0]$ or $[b]=[0]$
Hence $\left(Z_{n},+_{n} \cdot \cdot n\right)$ has no divisors of zero, that is $\left(Z_{n},+_{n}, \cdot n\right)$ is an integral domain.
Definition 1.2.11. Let $(R,+,$.$) be a ring. If there exists a positive integer n$ such that $n a=0$ for all $a \in$ R, then the smallest such integer is called the characteristic of the ring. If no such positive integer exists, then we say $(\mathrm{R},+,$.$) has characteristic zero.$

Example. The rings Z, Q, R, C have characteristic 0.
Theorem 1.2.12. : Let $(R,+,$.$) be a ring with identity. Then (R,+,$.$) has characteristic n>0$ if and only if n is the least positive integer for which $n .1=0$.
Proof: If the ring $(R,+,$.$) is of characteristic n>0$, it follows that $n .1=0$.
Where $m .1=0$, where $0<m<n$, then
$m \cdot a=m \cdot(1 . a)=(m .1) \cdot a=0.1=0$ for every $a \in R$. This mean The characteristic of $(R,+,$.$) is$ less than n, which is contradiction.
Conversely, Let n be the least positive integer in which $n .1=0$.
Let $a \in R, a \neq 0$.

$$
n \cdot a=n \cdot(1 \cdot a)=(n \cdot 1) \cdot a=0 \cdot a=0
$$

Then $(R,+,$.$) has characteristic n>0$.

Corollary 1.2.13. The characteristic of an integral domain $(R,+,$.$) is either zero or a prime.$
Proof. Let $(R,+,$.$) be a positive characteristic \mathrm{n}$ and assume that n is not a prime

Then n can be written as $n=a . b$ with $1<a, b<n$.
By Theorem 1.2.12 we have $0=n .1=(a . b) .1^{2}=(a .1)$.(b.1).
Since by hypothesis $(R,+,$.$) is without zero divisors, then either a .1=0$ or $b .1=0$. But this contradicts the choice of n as the least positive integer such that $n .1=0$.
Hence the characteristic of $(R,+,$.$) must be prime.$

Example. Show that the characteristic of the ring $(P(X), \Delta, \cap)$ is equal two.
Since \emptyset is the zero element of the ring $(P(X), \Delta, \cap)$.
Now for all $A \in P(X)$, then
$2 A=A \Delta A=(A-A) \cup(A-A)=\emptyset$.
From the definition of characteristic, then the characteristic of $(P(X), \Delta, \cap)$ is 2 .

Solve the following problems

Q1/ Give an example of a division ring which is not a field.
Q2/ Prove that $T=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$ is a subring of $M_{2}(\mathbb{R})$.
Q3/ In $\left(Z_{12},+_{12}, \times_{12}\right)$, find (i) $(2)^{2}+_{12}(9)^{-2}$

Q4/ Suppose that a and b belong to a commutative ring and $a b$ is a zero-divisor. Show that either a or b is a zero-divisor.
Q5/ Complete the operation tables for the ring $R=\{a, b, c, d\}$:

+	a	b	c	d
	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

\cdot	a	b	c	d	
a	a	a	a	a	
b	a	b			
c	a			a	
d	a	b	c		

Is R a commutative ring? Does it have a unity? What is its characteristic?
Hint. $c . b=(b+d) . b ; c . c=c .(b+d)$; etc.

Q6/ Let R and S be commutative rings. Prove or disprove the following statements.
(a) An element $(a, b) \in R \times S$ is nilpotent if and only if a nilpotent in R and b is nilpotent in S.
(b) An element $(a, b) \in R \times S$ is a zero divisor if and only if a is a zero divisor in R and b is a zero divisor in S.

Q7/ Show that $Q[\sqrt{2}]=\{a+b \sqrt{2} \in R \mid a, b \in Q\}$ is a subfield of the field R.

1.3. Ideals and Quotient rings.

Definition 2.3.1. A subring $(I,+,$.$) of the ring (R,+,$.$) is an ideal of (R,+,$.
if and only if $r \in R$ and $a \in I$ imply both $r . a \in I$ and $a . r \in I$.

Definition 2.3.2. Let $(R,+,$.$) be a ring. Let I$ be a nonempty subset of R.
(i) I is called a left ideal of R if for all $a, b \in I$ and for all $r \in R, a-b \in I, r a \in I$.
(ii) I is called a right ideal of R if for all $a, b \in I$ and for all $r \in R, a-b \in I, a r \in I$.
(iii) I is called a (two-sided) ideal of R if I is both a left and a right ideal of R .

Remark. In a commutative ring, every right ideal is left ideal.
Examples.

1) The subring $\left(\{0,2,4\},+_{6}, \cdot 6\right)$ is an ideal of $\left(Z_{6},+_{6}, \cdot 6\right)$.
2) The trivial subrings $(R,+,$.$) and (\{0\},+,$.$) of the ring (R,+,$.$) are both ideals.$ Any ideal different from $(R,+,$.$) is called proper ideal.$
3) In the ring $(Z,+,),. I=<a>=\{n a \mid n \in Z\}$ for a fixed integer . Then I is an ideal of $(Z,+,$. because $n a-m a=(n-m) a \in I$ and $m(n a)=(m n) a \in$, where $n, m \in Z$.
4) $(Z,+,$.$) is not ideal of (Q,+,$.$) but (Z,+,$.$) is a subring of (Q,+,$.$) .$

Since $1 \in Z$ and $\frac{1}{2} \in Q$, then $1 . \frac{1}{2}=\frac{1}{2} \notin Z$. Then $(Z,+,$.$) is not ideal of (R,+,$.$) .$
5) Let $\left(M_{2}(R),+,.\right)$ be the square matrix ring over the field of real number. Then (cent $\left.(R),+,.\right)$ is not an ideal.

Definition 2.3.3. A ring which contains no ideals except trivial ideals is said to be a simple ring.

Definition 2.3.4. Let $(R,+,$.$) be a commutative ring with identity. An ideal (I,+,$.$) is called a principal$ ideal of the ring $(R,+,$.$) if generated by a single element a$ and denoted by $I=(a)=\{r . a \mid r \in R\}$.

Example. In the ring $(Z,+,$.$) the ideal (2) =\{2 . r \mid r \in Z\}=2 Z$ is a principal ideal generated by 2 and (3) $=\{3 . r \mid r \in Z\}=3 Z$ is a principal ideal generated by 3 .

Theorem 2.3.5. If $(I,+,$.$) is an ideal of the ring (Z,+,$.$) , then I=(n)$ for some nonnegative integer n. Proof. If $I=(0)$, then the theorem is true.
Suppose then that $I \neq(0)$, that is there exists $0 \neq m \in I$. Since I is an ideal, then $-m \in I$, so I contains positive integers.
Let n be the least positive integer in I. We claim $I=(n)$.
Since $n \in I$ and $(I,+,$.$) is an ideal of (Z,+,$.$) , then k n \in I$, for all $k \in Z$, that is $(n) \subseteq I$.
On the other hand, any integer $k \in I$. By division Algorithm there exists $q, r \in Z$ such that $k=q n+r$, where $0 \leq r<n$.
Since k and qn are members of I, it follows that $k-q n=r \in I$.
Our n be a least integer implies $r=0$, and consequently $k=q n \Rightarrow k \in(n)$
Therefore $I=(n)$.

Definition 2.3.6. Let $(R,+,$.$) be a commutative ring with identity. A ring (R,+,$.$) is called a principal$ ideal ring if every ideal is principal.

Theorem 2.3.7. Let $(R,+,$.$) be a ring with identity element and I$ be an ideal of R containing identity element .Then $I=R$.
Proof. Since I is an ideal of R, then $I \subseteq R$.
Let $\in R$, then $r=r .1 \in I$ (because I is an ideal of R) $\Rightarrow r \in I \Rightarrow R \subseteq I \Longrightarrow I=R$.

Theorem 2.3.8. If $(I,+,$.$) is a proper ideal of a ring (R,+,$.$) with identity, then no element of I has a$ multiplicative inverse; that is $\cap R^{*}=\varnothing$.
Proof. Suppose to the contrary that there is $0 \neq a \in I$ such that a^{-1} exists.
Since I is an ideal, then $1=a \cdot a^{-1} \in I \Rightarrow I=R$, contradiction the hypothesis that I is a proper subset of R

ITheorem 2.3.9. If $\left(I_{1},+,.\right)$ and $\left(I_{2},+,.\right)$ are two ideals of the ring $(R,+,$.$) , then \left(I_{1} \cap I_{2},+,.\right)$ is also an ideal.
Proof. Since $\left(I_{1},+,.\right)$ and $\left(I_{2},+,.\right)$ are ideals of the ring $(R,+,$.$) , then 0 \in I_{1}$ and $0 \in I_{2}$, hence $0 \in I_{1} \cap$ I_{2}. This implies that $I_{1} \cap I_{2} \neq \emptyset$.
Suppose $a, b \in I_{1} \cap I_{2}$ and $r \in R$. Then $a, b \in I_{1}$ and $a, b \in I_{2}$.
As the $\left(I_{1},+,.\right)$ and $\left(I_{2},+,.\right)$ are ideals of the ring $(R,+,$.$) , it follows from definition$
$a-b \in I_{1}, a r \in I_{1}$ and $r a \in I_{1}$, and also $a-b \in I_{2}$, ar $\in I_{2}$ and $r a \in I_{2}$.
Hence $a-b \in I_{1} \cap I_{2}$, ar $\in I_{1} \cap I_{2}$ and $r a \in I_{1} \cap I_{2}$, which implies that ($\left.I_{1} \cap I_{2},+,.\right)$ is an ideal of ($R,+,$. .

Theorem 3.2.10. Let $(R,+,$.$) be a commutative ring with identity. Then (R,+,$.$) is a field if and only if$ ($\mathrm{R},+$, .) has no nontrivial ideals.

Quotient rings

We now give the analogue of quotient groups for rings. Let R be a ring and I an ideal of R. Let $x \in R$.
Let $x+I$ denote the set $x+I=\{x+a \mid a \in I\}$.
The set $x+I$ is called a coset of I.For $x, y \in R$, By Theorem 6.1, $x+I=y+I$ if and only if $x-$ $y \in I$.
Let R / I denote the set $R / I=\{x+I \mid x \in R\}$. Because $I=0+I \in R / I, R / I$ is a nonempty set.
Define the operations + and \cdot on R / I as follows:
for all $x+I, y+I \in R / I$
$(x+I)+(y+I)=(x+y)+I$, and $(x+I) \cdot(y+I)=x y+I$.
We leave it as an exercise for verify that + and \cdot are binary operations on R / I.
Under these binary operations $(R / I,+, \cdot)$ satiesfies the properties of a ring.
Let us verify some of these properties.
Let $x+I, y+I, z+I \in R / I$. Now

$$
\begin{gathered}
(x+I)+((y+I)+(z+I))=(x+I)+((y+z)+I)=(x+(y+z))+I \\
=((x+y)+z)+I, \\
=((x+y)+I)+(z+I)=((x+I)+(y+I))+(z+I) .
\end{gathered}
$$

This shows that + is associative in $/ I$. Similarly, + is commutative. Next, note that $0+I=I$ is the additive identity and for $+I \in R / I,(-x)+I$ is the additive inverse of $x+I$. As in the case of the associativity for + ,
we can show that \cdot is associative.
Next, let us verify one of the distributive law. Now

$$
\begin{gathered}
(x+I) \cdot((y+I)+(z+I))=(x+I) \cdot((y+z)+I)=(x(y+z))+I \\
=(x y+x z)+I=(x y+I)+(x z+I) \\
=((x+I) \cdot(y+I))+((x+I) \cdot(z+I))
\end{gathered}
$$

In a similar manner, we can verify the right distributive property.

Theorem 2.3.10. If $(I,+,$.$) is an ideal of (R,+,$.$) , then the ring (R / I,+, \cdot)$ is ring, known as the quotient ring of R by I.

Definition 2.3.11. An ideal $(I,+,$.$) of the ring (R,+,$.$) is a prime ideal if for all a, b \in R, a . b \in$ I implies either $a \in I$ or $b \in I$.

Example.(1) The ideal $((3),+,$.$) of the ring (Z,+,$.$) is a prime ideal.$
(2) A commutative ring with identity is an integral domain if and only if the zero ideal is a prime ide

Theorem 2.3.12. Let $(I,+,$.$) be a proper ideal of the ring (R,+,$.$) . Then (I,+,$.$) is a prime ideal if and$ only if the quotient ring $(R / I,+,$.$) is an integral domain.$
Proof. First, take $(I,+,$.$) to be a prime ideal of (R,+,$.$) . Since (R,+,$.$) is a$
commutative ring with identity, so is the quotient ring $(R / I,+,$.$) . It remains to show (R / I,+,$.$) has no$ divisor of zero. For this, assume that $(a+I) .(b+1)=I \Rightarrow a \cdot b+I=I \Rightarrow a . b \in I$. Since $(I,+,$.$) is a prime ideal,$ hence $a \in I$ or $b \in I \Longrightarrow a+I=I$ or $b+I=I$, hencc $(R / I,+,$.$) is without zero divisors.$ To prove the converse, suppose $(R / I,+,$.$) is an integral domain and a . b \in I$. Then we have $a . b+I=I \Rightarrow(a+I) .(b+I)=I$.
By hypothesis , $(R / I,+,$.$) contains no divisors of zero, that either$
$a+I=I$ or $b+I=I \Rightarrow a \in I$ or $b \in I$. That is $(I,+,$.$) is a prime ideal.$

Theorem 2.3.13. Let $(Z,+,$.$) be the ring of integers and n>1$. Then the principal ideal $((n) .+,$.$) is$ prime if and only if n is a prime number.
Prool. First, suppose $((n),+,$.$) is a prime ideal of (Z,+,$.$) . If the integer n$ is not prime, then $n=p . q$, where $1<p, q<n$. This implies the $p . q \in(n)$ and such that $((n),+,$.
Is a prime ideal, this implies $p \in(n)$ or $q \in(n)$ and this contradiction to the hypothesis of p and q are less than n, therefore n must be a prime number.

Conversely, suppose n is a prime number and a, b two integers such that $a . b \in(n)$
with $a \notin(n)$.
Since $a . b \in(n) \Longrightarrow n \mid a . b$ and sine n is a prime number implies that $n \nmid a \rightarrow n \mid b \Rightarrow b \in(n)$, therefore $((n),+,$.$) is a prime ideal.$

Definition 2.3.14. An ideal $(I,+,$.$) of the ring (R,+,$.$) is a maximal ideal provided I \neq R$ and whenever $(J,+,$.$) is an ideal of (R,+,$.$) with I \subset J \subseteq R$, then $J=R$.
Remark. An element is invertible is not belongs to maximal ideal.

Definition 2.3.14. An ideal $(I,+,$.$) of the ring (R,+,$.$) is a maximal ideal provided I \neq R$ and whenever $(J,+,$.$) is an ideal of (R,+,$.$) with I \subset J \subseteq R$, then $J=R$.
Remark. An element is invertible is not belongs to maximal ideal.
$2-((6),+,$.$) is not a maximal ideal since (6) \subset(3) \subset Z$
3- $(2 Z \times\{0\},+,$.$) is a prime ideal of the ring (Z \times Z,+,$.$) but is not a maximal ideal since 2 Z \times\{0\} \subset$ $2 Z \times 2 Z \subset Z \times Z$.
4- $(\{0\},+,$.$) is a prime ideal of the ring (Z,,$.$) but not a maximal ideal.$
Theorem 2.3.15. Let $(I,+,$.$) be aproper ideal of the commutative ring with identity (R,+,$.$) . Then$ $(I,+,$.$) is a maximal ideal if and only if the quotient ring (R / I,+,$.$) is a$ field.
Proof. Let $(I,+.$.$) be a maximal ideal of (R .+,$.$) . Since (R,+,$.$) is a commutative ring with identity,$ then the quotient ring $(R / I,+,$.$) is also a commutative ring with identity. It remains to show that every$ non-zero elemnt in R / I has inverse.
$a+I \in R / I$ such that $a+I \neq I \Rightarrow a \notin I$.
Since $((a),+,$.$) is an ideal of (R,+,$.$) , the ((a)+I,+,$.$) is an ideal of (R,+,$.$) and a \notin I \Longrightarrow I \subset$ $(a)+I$. By suppose $(I,+,$.$) is a maximal ideal, then (a)+I=R$.
$R=((a), I)=\{a . r+b \mid b \in I, r \in R\}$.
Since $1 \in R \Rightarrow 1 \in(a)+I \Rightarrow 1=a . r+b, r \in R, b \in I \Rightarrow b=1-a . r \in I$.
That is $1-a . r \in I \Rightarrow 1+I=a . r+I=(a+I) .(r+I)$.
Therefore $a+I$ has an inverse, consequently $(R / I,+,$.$) is a field.$
Conversely, suppose $(R / I,+,$.$) is It field and (J .+,$.$) is any ideal of (R,+,$.$) such that I \subset J \subseteq R$.
Since $I \subset J$, then there exist an element $a \in J$ and $a \notin I \Rightarrow a+I \neq I$.
Since $(R / I,+,$.$) is a field, then a+I$ has an inverse say $b+I$, therefore

$$
(a+I) \cdot(b+I)=1+I \Rightarrow a \cdot b+I=1+I \Rightarrow 1-a \cdot b \in I \subset J \Longrightarrow 1-a \cdot b \in J
$$

Since $a . b \in J \Rightarrow 1 \in J \Rightarrow J=R$. Hence $(I,+,$.$) is a maximal ideal.$

Definition 2.3.16. A ring $(R,+,$.$) is called a local ring if has only one maximal ideal.$
Definition 2.3.17. The radical of a ring $(R,+,$.$) , denoted by \mathrm{rad} R$, is the set $\operatorname{rad}(R)=\cap\{M:(M,+,$.$) is a amximal ideal of \operatorname{ring}(R,+,)$.$\} .$
If $\operatorname{rad}(R)=\{0\}$, then we say $(R,+,$.$) is a ring without radical or is a semi-$

simple ring.

Example. In $\left(Z_{12},+_{12}, \cdot 12\right)$, find $\operatorname{rad}\left(Z_{12}\right)$
Remark. $(\operatorname{rad}(R),+,$.$) is an ideal of (R,+,$.$) .$
Definition 2.3.18. An ideal $(I,+,$.$) of a ring (R,+,$.$) is said to be a primary ideal if a . b \in I$ with $a \notin I$ implies $b^{n} \in I$ for some positive integer n.

Example. An ideal $((4),+,$.$) of (Z,+,$.$) is a primary.$
Definition 2.3.19. An element a of a ring $(R,+,$.$) is said to be a nilpotent if there exists a positive$ integer n such that $a^{n}=0$.

Theorem 2.3.19. Let $(I,+,$.$) be an ideal of a ring (R,+,$.$) . Then (I,+,$.$) is a primary if and only if$ every zero divisor of the quotient ring $(R / I,+,$.$) is nilpotent.$

Proof. Suppose $(I,+,$.$) is a primary ideal and a+I$ is a zero divisor in R / I.
That is there exists a npnzero element $b+I$ such that

$$
(a+I) \cdot(b+I)=I \Rightarrow a \cdot b+I=I \Rightarrow a \cdot b \in I .
$$

Since $b \notin I$ and $(I,+,$.$) is a primary, then there exists a positive integer \mathrm{n}$ such that $a^{n} \in I \Rightarrow a^{n}+I=$ $I \Rightarrow(a+I)^{n}=I$. Hence $a+I$ is nilpotent element in R / I.

Conversely, suppose every zero divisor is nilpotent.
Let $a, b \in R$ such that $a . b \in I$ with $a \notin \mathrm{I}$. We must to sow that $b^{n} \in I$, for some $n \in Z^{+}$.
If $b \in I$, it is trivial.
If $b \notin I \Rightarrow b+I \neq I$. Since $(a+I) .(b+I)=a . b+I=I$, hence $b+I$ is divisor of zero.
By hypothesis $b+I$ is a nilpotent element, that is there exist a positive integer n such that $b^{n}+I=$ $(b+I)^{n}=I \Rightarrow b^{n} \in I$, consequently $(I,+,$.$) is primary.$

2.4. Homomorhpisms

Definition 2.4.1. Let $(R,+,$.$) and \left(R^{\prime},+^{\prime}, . .^{\prime}\right)$ be two rings and f a function from R into R^{\prime}; in symbols, $f: R \rightarrow R^{\prime}$. Then f is said to be a (ring) homomorphism from $(R,+,$.$) into \left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$ if and only if
1- $f(a+b)=f(a)+^{\prime} f(b)$,
2- $f(a \cdot b)=f(a) .^{\prime} f(b)$
for every $a, b \in R$.

Example. Let $f:(R,+,.) \longrightarrow\left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$ be the function defined by

$$
f(a)=0^{\prime}, \text { for all } a \in R
$$

$$
f(a+b)=0^{\prime}=0^{\prime}++^{\prime} 0^{\prime}=f(a)+^{\prime} f(b)
$$

$$
f(a \cdot b)=0^{\prime}=0^{\prime} .^{\prime} 0^{\prime}=f(a) .^{\prime} f(b), a . b \in R
$$

Hence f is a ring homomorphism.
Example. Let $f:(Z,+,.) \longrightarrow\left(Z_{e},+,.\right)$ be the function defined by

$$
\begin{gathered}
f(a)=2 a, \text { for all } a \in R \\
f(a+b)=2(a+b)=2 a+2 b=f(a)+f(b), \\
f(a \cdot b)=2(a . b)=2 a . b \neq f(a) . f(b), a . b \in R
\end{gathered}
$$

Hence f is not a ring homomorphism.

Definition. A homomorphism f from the ring ($\mathrm{R},+,$.) in to ring ($\mathrm{R}^{\prime},+^{\prime}, . .^{\prime}$) is called an isomorphism if f is one to one and onto.
If there exist an isomorphism function between two rings, then is said an isomorphic and denoted by $(R,+,.) \cong\left(R^{\prime},+^{\prime}, .^{\prime}\right)$.

Theorem 2.4.2. Let f be a homomorphism from the ring $(R,+,$.$) into the$ ring $\left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$. Then the following hold: .

1) $f(0)=0^{\prime}$, where 0^{\prime} is the zero element of $\left(R^{\prime},+^{\prime}, . . '\right)$.
2) $f(-a)=-f(a)$ for all $a \in R$.
3) The triple $\left(f(R),+^{\prime}, . .^{\prime}\right)$ is a subring of $\left(R^{\prime},+^{\prime}, . .^{\prime}\right)$.

If, in addition, $(R,+,$.$) and \left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$. are rings with identity elements 1
and 1^{\prime}, respectively, and $f(R)=R^{\prime}$, then
4) $f(1)=1^{\prime}$,
5) $f\left(a^{-1}\right)=f(a)^{-1}$ for each invertible element $a \in R$.

Proof. Similar of Theorem 8.4

Theorem .

1- Let $f:(R,+,.) \longrightarrow(S,+,$.$) and g:(S,+,.) \longrightarrow(T,+,$.$) be two homomorphisms. Then g \circ f:$ $(R,+,.) \longrightarrow(T,+,$.$) is also a homomorphism.$
2- Let $f:(R,+,.) \rightarrow(S,+,$.$) be a homomorphism. Then Let f^{-1}:(S,+,.) \rightarrow(R,+,$.$) Is also$ homomorphism.

Proof. 1. Let $x, y \in R$. Then

$$
\begin{gathered}
g \circ f(x+y)=g(f(x+y))=g(f(x)+f(y))=g(f(x))+g f(y))=g \circ f(x)+g \circ f(y), \text { and } \\
g \circ f(x \cdot y)=g(f(x \cdot y))=g(f(x) \cdot f(y))=g(f(x)) \cdot g f(y))=g \circ f(x) \cdot g \circ f(y)
\end{gathered}
$$

Hence $g \circ f$ is ahomomorphism.
Proof. 2. Since f is a one to one and onto function, then so is f^{-1}.
Let $x, y \in S$. Then there exists $r, t \in R$ such that $f(r)=x$ and $f(t)=y$.
Since $x+y=f(r)+f(t)=f(r+t)$, thus we get

$$
f^{-1}(x+y)=r+t=f^{-1}(x)+f^{-1}(y)
$$

and $x . y=f(r) \cdot f(t)=f(r . t)$, thus we get

$$
f^{-1}(x . y)=r \cdot t=f^{-1}(x) \cdot f^{-1}(y)
$$

Therefore f^{-1} is a homomorphism.

Theorem 2.4.3. Let f be a homomorphism from the ring $(R,+,$.$) into the ring \left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$. Then
1- If $(S,+,$.$) is a subring of (R,+,$.$) , then \left(f(S),+^{\prime}, .^{\prime}\right)$ is a subring of $\left(R^{\prime},+^{\prime}, .^{\prime}\right)$.
2- If $\left(S^{\prime},+^{\prime}, . .^{\prime}\right)$ is a subring of the ring $\left(R^{\prime},+^{\prime}, . .^{\prime}\right)$, then $\left(f^{-1}(S),+,.\right)$ is a subring of $(R,+,$.$) .$
3- If $\left(I,+^{\prime}, .^{\prime}\right)$ is an ideal of the ring $\left(S,+^{\prime}, . .^{\prime}\right)$, then $\left(f^{-1}(I),+,.\right)$ is an ideal of $(R,+,$.$) .$
4- If $f(R)=S$ and $(J,+,$.$) is an ideal of (R,+,$.$) , then \left(f(J),+^{\prime}, .^{\prime}\right)$ is an ideal of $\left(S,+^{\prime}, .^{\prime}\right)$.
Proof. 1- $f(S)=\{f(x): x \in S\}$
Since $e \in S$, then $f(e) \in f(S) \Rightarrow f(S) \neq \emptyset$.
Let $f(x), f(y) \in f(S)$, for $x, y \in S$.
Now $f(x)-f(y)=f(x-y) \in f(S)$, Since $x-y \in S$, and
$f(x) . f(y)=f(x . y) \in f(S)$, Since $x . y \in S$
Therefore by Definition 2.1.12, we get $f(S)$ is a subring of R^{\prime}.
3- By part (2) $\left(f^{-1}(I), *\right)$ is a subring of $(R,+,$.$) .$
To show that $\left(f^{-1}(I),+,.\right)$ is an ideal of $(R,+,$.$) , such that$

$$
f^{-1}(I)=\{r \in R: f(r) \in I\}
$$

Now suppose $x, y \in f^{-1}(I) \Longrightarrow f(x), f(y) \in I$.
Since f is a homomorphism and $\left(I,+^{\prime}, .^{\prime}\right)$ is a subring of $\left(R^{\prime},+^{\prime}, .^{\prime}\right)$, then we have
$f(x-y)=f(x)-f(y) \in I$, Since $\left(I,+^{\prime}, .^{\prime}\right)$ is an ideal of $\left(R^{\prime},+^{\prime}, .^{\prime}\right)$.
Therefore $x-y \in f^{-1}(I)$, and
Let $r \in R \Rightarrow f(r) \in R^{\prime}$ and $x \in f^{-1}(I) \Rightarrow f(x) \in I$.

Since $\left(I,+^{\prime}, . .^{\prime}\right)$ is an ideal of $\left(R^{\prime},+^{\prime}, . .^{\prime}\right)$, then $f(r) . ' f(x), f(x) . ' f(r) \in I$.
Hence since f is a homomrphism, we get
$f(r . x)=f(r) .^{\prime} f(x) \in I \Rightarrow r . x \in f^{-1}(I)$ and
$f(x . r)=f(x) .^{\prime} f(r) \in I \Rightarrow x . r \in f^{-1}(I)$
Therefore $\left(f^{-1}(I),+,.\right)$ is an ideal of $(R,+,$.$) .$
Example. $f:(\mathbb{Q},+,.) \rightarrow(\Re,+,$.$) defined by f(x)=x$, for all $x \in \mathbb{Q}$ is a homomorphism and $f(\mathbb{Q})=$ \mathbb{Q} but $(\mathbb{Q},+,$.$) is not an ideal of (\Re,+,$.$) .$

Definition 2.4.4. Let f be a homomorphism from the ring $(R,+,$.$) into the ring \left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$. Then kerenel of \boldsymbol{f}, denoted by $\operatorname{ker} f$, is the set

$$
\operatorname{ker} f=\left\{x \in R: f(x)=e^{\prime}\right\}
$$

Theorem 2.4.5. If f is a homomorphism from the ring $(R,+,$.$) into the ring \left(R^{\prime},+^{\prime}, . .^{\prime}\right)$, then $(\operatorname{ker} f,+,$.$) is an ideal of (R,+,$.$) .$

Proof. Since $\left(\left\{e^{\prime}\right\},+^{\prime}, . .^{\prime}\right)$ is an ideal $\left(R^{\prime},+^{\prime}, . .^{\prime}\right)$ and $\operatorname{ker} f=f^{-1}\left(\left\{e^{\prime}\right\}\right)$, then by Theorem 2.4.3 $(\operatorname{ker} f,+,$.$) is an ideal of the ring (R,+,$.$) .$

Theorem 2.4.5. Let f be a homomorphism from the field $(F,+,$.$) on to the field \left(F^{\prime},+^{\prime}, .{ }^{\prime}\right)$. Then either f is the trivial homomorphism or else $(F,+,$. and $\left(F^{\prime},+^{\prime}, . .^{\prime}\right)$ are isomorphic.
Proof. By The Theorem 2.4.4 (ker $f,+,$.$) is an ideal of the field (F,+,$.$) .$
Since $(F,+,$.$) is a field has no ideal other than (F,+,$.$) itself and (\{0\},+,$.$) .$
Hence either the set $\operatorname{ker} f=\{0\}$ or else $\operatorname{ker}(f)=F$.
If $\operatorname{ker}(f)=F$, then $f(x)=0$, for all $x \in F$ and this contradication for $f(1)=1$, hence $\operatorname{ker} f=\{0\}$ and this implies that f is one-to-one. Therefore f is an isomorphism, consequently $(F,+,.) \cong$ ($F^{\prime},+^{\prime}, .$,).

Definition 2.4.6. We said that $\left(F^{\prime},+,.\right)$ is a subfield of the field $(F,+,$.$) is meant any subring of$ $(F,+,$.$) which is itself a field.$

Example. The ring $(\mathbb{Q},+,$.$) of rational numbers is a subfield of the field (\mathfrak{R},+,$.$) .$

Is equivalent to
The triple $\left(F^{\prime},+,.\right)$ will be a subfield of the field $(F,+,$.$) provided$
(1) $\left(F^{\prime},+\right)$ is a subgroup of the additive group $(F,+)$ and
(2) $\left(F^{\prime}-\{O\}, \cdot\right)$ is a subgroup of the multiplicative group $(F-\{O\}, \cdot)$.

Definition 2.4.7. A ring $(R,+,$.$) is imbedded in a ring \left(R^{\prime},+^{\prime}, . .^{\prime}\right)$ if there exists some subring $\left(S,+^{\prime}, .{ }^{\prime}\right)$ of $\left(R^{\prime},+^{\prime}, . .^{\prime}\right)$ such that $(R,+,.) \cong\left(S,+^{\prime}, . .^{\prime}\right)$.

The field of quotient of an integral domain.

Let D be an integral domain.
$D \times D=\{(a, b): a, b \in D\}$. Let S be the subset of $D \times D$ given by
$S=\{(a, b): a, b \in D, b \neq 0\}$. Define a relation on S as follows:
Two elements (a, b) and (c, d) in S are equivalent (denoted by $(a, b) \sim(c, d))$ if

$$
a d=b c
$$

Lemma 2.4.8. The relation \sim is an equivalence relation.
Proof.
(1) Reflexive: $(a, b) \sim(c, d)$, since multiplication in D is commutative.

Symmetric: Suppose that $(a, b) \sim(c, d)$, then $a d=b c$. Hence $c b=d a$, consequently $(c, d) \sim(a, b)$.
(3) Transitive: suppose that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. Then $a d=b c$ and $c f=d e$, so
$a f d=f a d=f b c=b f c=b d e=b e d(D$ is commutative $)$
since $d \neq 0$ and D is an integral domain, hence afd $=$ bed $\leftrightarrow a f=b e$ $\leftrightarrow(a, b) \sim(e, f)$. From (1), (2) and (3) we get that \sim is an equivalence relation.

Hence it gives a partition of S in to equivalence class. We write the equivalence class of (a, b) by $[(a, b)]$.

Let $F=\{[(a, b)]:(a, b) \in S\}$. Define addition and multiplication on F as follows:
$[(a, b)]+[(c, d)]=a . d+b . c, b . d]$ and
$[(a, b)] . `[(c, d)]=[(a . c, b . d)]$.
Now we show that the operations defined above is well-defined.
First note that if $[(a, b)]$ and $[(c, d)] \in F$, then $b \neq 0$ and $d \neq 0$. Since D is an integral domain, then $b d \neq 0$, so both $[(a . d+b . c, b . d)]$ and $[(a . c, b . d)] \in F$.

To show that the multiplication (.`) is well-defined, suppose that $(a, b) \sim\left(a_{1}, b_{1}\right)$ and $(c, d) \sim\left(c_{1}, d_{1}\right)$. We have two show that $[(a, b)][(c, d)]=\left[\left(a_{1}, b_{1}\right)\right]\left[\left(c_{1}, d_{1}\right)\right]$. $a b_{1}=a_{1} b$ and $c d_{1}=c_{1} d \rightarrow a b_{1} c d_{1}=b_{1} a d_{1} c \rightarrow a b_{1} c d_{1}=b_{1} a d_{1} c$. This means that $\left(a_{1} c_{1}, b_{1} d_{1}\right) \sim(a c, b d)$ which means that the multiplication is well-defined.

Theorem 2.4.9. Let D be an integral domain and $S=\{(a, b): a, b \in D, b \neq 0\}$.
Define a relation on S as follows: $(a, b) \sim(c, d))$ if $a d=b c$. Then
$F=\{[(a, b)]:(a, b) \in S\}$ is a field with addition and multiplication defined as follows: $[(a, b)]+$ $[(c, d)]=[(a d+b c, b d)]$ and $[(a, b)][(c, d)]=[(a c, b d)]$.

Proof.

(1) + is a commutative :

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)]=[(c d+d a, d b)]=[(c, d)]+[(a, b)]
$$

(2) It is easy to show that + is a associative
(3) $[(0,1)]$ is identity for addition in $\mathrm{F}:[(a, b)]+[(0,1)]=[(a+0, b)]=[(a, b)]$
(4) $[(-a, b)]$ is an additive inverse of $[(a, b)]$ in F :
$[(a, b)]+[(-a, b)]=\left[\left(a b-b a, b^{2}\right)\right]=\left[\left(0, b^{2}\right)\right]=[(0,1)] \quad$ (since $\quad\left(0, b^{2}\right) \sim(0,1)$ because $\left.0.1=0 . b^{2}\right)$ Thus $[(a, b)]+[(-a, b)]=[(0,1)]$.
(5) It is easy to show that multiplication is a associative.
(6) $[(1,1)]$ is identity for multiplication in F :
$[(a, b)]+[(1,1)]=[(a 1, b 1)]=[(a, b)]$
(7) Multiplication is commutative
(8) The distributive law hold in F
(9) Let $[(a, b)] \in F$ and $[(a, b)] \neq[(0,1)]$ hence $a \neq 0$ because if $a=0$, then $a 1=b 0=0$, so $(a, b) \sim(0,1)$, consequently $[(a, b)]=[(0,1)]$ which is a contradiction .
Thus a is a non zero element in F. Now $[(a, b)][(b, a)]=[(a b, b a)]=[(1,1)] \Leftrightarrow[(b, a)]$ is a multiplicative inverse of $[(a, b)]$. Hence F is a field. This field called the field of quotients of R. the quotient field of an integral domain $(D,+,$.$) is the smallest field containing D$ as a subring.

Example. The field of quotients of Z, is the ring of integers is Q
Theorem 2.4.10. The integral domain ($\mathrm{R},+$, .) can be imbedded in its of quotients
(F, + $^{\prime}$, .' $^{\prime}$).
Proof. Consider the subset F' of F consisting of all elements of the form $[a, 1]$, where 1 is the multiplicative identity of $(\mathrm{R},+,$.$) :$

$$
F^{\prime}=\{[a, 1]: a \in R\} \text {. Now it is must be show that }\left(F^{\prime},+^{\prime}, . .^{\prime}\right) \text { is a subring. }
$$

Let $f: R \rightarrow F^{\prime}$ be onto mapping defined by $f(a)=[a, 1]$, for each $a \in R$.
Since the condition $[a, 1]=[b, 1]$ implies $a .1=b .1$ or $a=b$, we see f is one to one.

Now we show that f is homomorphism:
$f(a+b)=[a+b, 1]=[a, 1]+{ }^{\prime}[b, 1]=f(a)+{ }^{\prime} f(b)$ and $f(a \cdot b)=[a \cdot b, 1]=[a, 1] . .^{\prime}[b, 1]=f(a) .^{\prime} f(b)$
Accordingly $(R,+,.) \cong\left(F^{\prime},+^{\prime}, . .^{\prime}\right)$.

Theorem 2.4.11. (First isomorphism theorem)

If f is a homomorphism from the ring $(R,+,$.$) onto the ring \left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$. Then

$$
\left(R / \operatorname{ker} f^{,+}, '\right) \cong\left(R^{\prime},+^{\prime}, .,{ }^{\prime}\right)
$$

Proof. Put ker $f=K$. We define a function $\varphi:{ }^{R} /{ }_{K} \rightarrow R^{\prime}$ by

$$
\varphi(x+K)=f(x), \text { for } x \in R
$$

We must show that R is well defined, suppose $x+K=y+K \Rightarrow x-y \in K=\operatorname{ker} f$.
Therefore $f(x-y)=e^{\prime}$. But f is homomorphism, then

$$
f(x)-f(y)=e^{\prime} \Rightarrow f(x)=f(y) \Rightarrow \varphi(x+K)=\varphi(y+K)
$$

Hence φ is well defined.
Now to show that φ is a homomorphism, suppose that

$$
\begin{aligned}
& \varphi((x+K)+(y+K))=\varphi((x+y)+K) \\
&=f(x+y) \\
&=f(x)+{ }^{\prime} f(y) \\
&=\varphi(x+K)+^{\prime} \varphi(y+K) . \\
& \varphi((x+K) \cdot(y+K))=\varphi((x . y)+K) \\
&=f(x \cdot y) \\
&=f(x) .^{\prime} f(y) \\
&=\varphi(x+K) .^{\prime} \varphi(y+K) .
\end{aligned}
$$

Hence φ is a homomorphism.
Let $\varphi(x+K)=\varphi(y+K) \Longrightarrow f(x)=f(y) \Longrightarrow f(x)-f(y)=e^{\prime}$.
Since f is a homomorphism, therefore
$f(x)-f(y)=e^{\prime} \Rightarrow f(x-y)=e^{\prime} \Rightarrow x-y \in K \Rightarrow x+K=y+K$.
Hence φ is one-to-one.
Finally, for all $z \in R^{\prime}$ there exists $y \in R$ such that $z=f(y)=\varphi(y+K)$.
Hence φ is onto. Therefore φ is an isomorphism and $(R / K,+,.) \cong\left(R^{\prime},+^{\prime}, .{ }^{\prime}\right)$.
Remark. If f is not onto, then $(R / \operatorname{Ker} f,+,.) \cong\left(f(R),+^{\prime}, . .^{\prime}\right)$.

Theorem 2.4.12. (second isomorphism theorem)

If $(S,+,$.$) is a subring of the ring (R,+,$.$) and (I,+,$.$) is an ideal of (R,+,$.$) , then S+I / I \cong S / S \cap I$.
Proof. Similarly to prove Theorem 9.3
Theorem 2.4.13. (Third isomorphism theorem)

If $(I,+,$.$) and (J,+,$.$) are two ideals of the ring (R,+,$.$) and I \subset J$, then $(J / I,+,$.$) is an ideal of the$ $\operatorname{ring}(R / I,+,$.$) and \frac{R / I}{J / I} \cong R / J$.
Proof. Similarly to prove Theorem 9.4.

Chapter Three

Polynomial rings

The polynomial ring $R[x]$ in indeterminate x with coefficients from R is the set of all formal sums $a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}$ with $n \geq 0$ and $a_{i} \in R$, That is $\quad R[x]=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x\right.$ $+\mathrm{a}_{0}: \mathrm{n} \geq 0$ and $\left.\mathrm{a}_{\mathrm{i}} \in \mathrm{R}\right\}$.
If $a_{n} \neq 0$, then the polynomial is of degree $n, a_{n} x^{n}$ is the leading term, and a_{n} the leading coefficient. Addition of polynomial is component wise
$\sum_{i=0}^{n} a_{i} x^{i}+\sum_{i=0}^{n} b_{i} x^{i}=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}\left(\right.$ where a_{n} and b_{n} may be zero in order for addition of polynomials of different degree to be defined).
Multiplication performed by first defined $a x^{i} b x^{i}=a b x^{i+j}$ and then extended to all polynomials by distributive law , in general
$\left(\sum_{i=0}^{n} a_{i} x^{i}\right) \times\left(\sum_{i=0}^{n} b_{i} x^{i}\right)=\sum_{i=0}^{n+m}\left(\sum_{i=0}^{k}\left(a_{i} b_{k-i}\right) x^{k}\right)$.
Two polynomials $p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ and $q(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$, are equal if $a_{i}=b_{i}$ for each i. The ring R appears in $R[x]$ as the constant polynomials.
If $g(x)$ is a polynomial over a ring R, then degree $g(x)$ denoted $\operatorname{deg} g(x)$.
If $R[x]$ has unity 1 and you must have $x(x=(0,1,0,0, \ldots))$
$2+x^{2}$ in $Z[x]$ (i.e $(2,0,1,0,0, \ldots)$).
If R is a ring with two determinates, then we can form $(R[x])[y]=R[x, y]$
The ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of polynomials in the n indeterminate x with coefficients in R.
Theorem 3.1. The triple ($\mathrm{R}[\mathrm{x}],+,$.$) forms a ring, known as the ring of polynomials over \mathrm{R}$.

Examples. (1) Let $f(x)=1+3 x+2 x^{5}$ a polynomial, then the leading coefficient of $f(x)=2, \operatorname{deg} f(x)=3$.
(2) In $Z_{2}[x]$. If $f(x)=x+1$, then we have
$(x+1)+(x+1)=2 x+2=0$, and
$(\mathrm{x}+1)^{2}=\mathrm{x}^{2}+2 \mathrm{x}+1=\mathrm{x}^{2}+1$
Remark. Let R be a ring.
(1) If R is a commutative, then so is $R[x]$.
(2) If R is a ring with identity 1_{R}, then $R[x]$ is a ring with identity and the identity element is $1_{R[x]}=1_{R}$ $+0_{\mathrm{R}}+\ldots$
(3) don't write 1_{R} when appear as coefficient for a polynomial, as follows:

$$
x^{3}+x^{2}+2 x+2\left(1 \cdot x^{3}+1 \cdot x^{2}+2 x+2\right)
$$

(4) In general if $f(x)$ and $g(x)$ are two polynomials over a ring R, then
(1) $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{deg} g(x)\}$.
(2) $\operatorname{deg}(f(x) . g(x)) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)$.

Example. Let $\mathrm{f}(\mathrm{x})=1+5 \mathrm{x}+2 \mathrm{x}^{4}$ and $\mathbf{g}(\mathrm{x})=1+4 \mathrm{x}^{2}$ be two polynomials in $\mathrm{Z}_{8}[\mathrm{x}]$.
The leading coefficient of $f(x)=2, \operatorname{deg} f(x)=4$ and $\operatorname{deg} g(x)=2$.
$f(x) . g(x)=1+4 x^{2}+5 x+4 x^{3}+2 x^{4}$
$\rightarrow \operatorname{deg}((f(x)+\operatorname{deg} g(x))=7 \neq \operatorname{deg}((f(x) . \operatorname{deg} g(x))=4$, and
$f(x)+g(x)=2+5 x+4 x^{2}+2 x^{4}, \operatorname{deg}(f(x)+g(x))=4$.
Theorem 2.3. Let $(\mathrm{R},+$, .) be an integral domain and $f(x), g(x)$ be two nonzero elements of $(R[x],+$, .) then : $\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x)$.

Proof : suppose $f(x), g(x) \in R[x]$ with $\operatorname{deg} f(x)=n$ and $\operatorname{deg} g(x)=m$, so that
$f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \quad, a_{n} \neq 0$
$g(x)=b_{o}+b_{1} x+\ldots+b_{m} x^{m} \quad, b_{m} \neq 0$
from the definition of multiplication
$f(x) \cdot g(x)=a_{0} \cdot b_{o}+\left(a_{o} \cdot b_{1}+a_{1} \cdot b_{o}\right) x+\ldots+\left(a_{n} \cdot b_{m}\right) x^{n+m}$
since $\mathrm{a}_{\mathrm{n}} \neq 0$ and $\mathrm{b}_{\mathrm{m}} \neq 0$ and R is an integral domain, then $\mathrm{a}_{\mathrm{n}} . \mathrm{b}_{\mathrm{m}} \neq 0$
accordingly, $\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}) \neq 0$ and $\operatorname{deg}(\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}))=\mathrm{n}+\mathrm{m}=\operatorname{deg} \mathrm{f}(\mathrm{x})+\operatorname{deg} \mathrm{g}(\mathrm{x})$

Corollary 2.4. Let $(\mathrm{R},+,$.$) be an integral domain. Then (\mathrm{R}[\mathrm{x}],+,$.$) is an integral domain.$
proof. We have if $(R,+$) is a commutative ring with identity, then so is
$(\mathrm{R}[\mathrm{x}],+,$.$) . To see that (\mathrm{R},+,$.$) has no divisors, let \mathrm{f}(\mathrm{x}) \neq 0, \mathrm{~g}(\mathrm{x}) \neq 0$ in $\mathrm{R}[\mathrm{x}]$. Then $\operatorname{deg}(\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x}))=$ $\operatorname{deg} f(x)+\operatorname{deg} g(x)>0$, hence the product cannot be the zero polynomial

Theorem 2.5. (Division algorithm)

Let $(R,+,$.$) be a commutative ring with identify and let f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ and $g(x)=b_{m} x^{m}+$ $b_{n-1} x^{m-1}+\ldots+b_{0}$, be two elements in $R[x]$, with both a_{n}, b_{n} non zero elements of R and $m>0$ and the leading coefficient of $g(x)$ is invertible. Then there are unique polynomials $q(x)$ and $r(x)$ in $R[x]$ such that $f(x)=q(x) g(x)+r(x)$, with $r(x)=0$ or degree $r(x)<$ degree $g(x)$.

Examples.

(1) Consider $f(x)=x^{4}-3 x^{3}+x^{2-} 3 x+1$ in $Z_{5}[x]$ and let $g(x)=x^{2}+2 x-6$. To find $q(x)$ and $r(x)$, divide $f(x)$ by $g(x)$,

$$
\begin{array}{r}
x^{2}-2 x+3 \\
\begin{array}{r}
x^{4}-x-3 \\
+x^{4}-2 x^{3}+2 x^{2}+3 x^{2} \\
-x^{3}-x^{2}+4 x \\
-x^{3}+2 x^{2}-3 x \\
-3 x^{2}+2 x-1 \\
-3 x^{2}+x-4 \\
x+3
\end{array}
\end{array}
$$

So $x^{4}-3 x^{3}+x^{2}-3 x+1=\left(x^{2}-2 x+3\right)\left(x^{2}-3 x+3\right)+(3 x+5)$, remembering that the coefficients are in Z_{5}. Then $q(x)=x^{2}-3 x+3$, and $r(x)=3 x+5$.
(2)Consider $f(x)=x^{4}+3 x^{3}+2 x+4$ in $Z_{5}[x]$ and let $g(x)=x-1$. To find $q(x)$ and $r(x)$, divide $f(x)$ by $g(x)$,

Definition 2.6. Let $(R,+,$.$) be a ring with identity and f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0} \in R[x]$. Then if $r \in$ R we define $f(r)$ by $f(r)=a_{n} r^{n}+a_{n-1} r^{n-1}+\ldots+a_{0} \in R$.

Example. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+4 \mathrm{x}^{2}+3 \in \mathrm{Q}(\mathrm{x})$. Then $\mathrm{f}(2)=8+4(4)+3=27$
Definition 2.7. Let R be a commutative ring and $f(x)$ a polynomial over R.
Any element $r \in R$ such that $f(r)=0$ is a zero of $f(x)$ in $R($ or r is a root of $f(x))$.

Definition 2.8. Let R be a commutative ring with identity and $f(x), g(x)$ be non zero polynomials in $R[x]$. Then $g(x)$ is said to be a factor of $f(x)$, if there exists a non zero polynomial $h(x) \in R[x]$ such that $f(x)$ $=h(x) g(x)$.

Example. Let $f(x)=(x-1)(x+5)$ be a polynomial of $Z[x]$. Then $(x-1)$ is a factor of $f(x)$.
Proposition 2.9. Let $f(x)$ be a polynomial over a commutative ring with identity and a be an element in R. Then a is a root of $f(x)$ if and only if $(x-a)$ is a factor of $f(x)$.

Proof. Suppose ($x-a$) is a factor of $f(x)$. Then there exists a polynomial $q(x)$ such that $f(x)=q(x)(x-a)$. Then $f(a)=q(a) 0$ which implies $f(a)=0$, and a is a root of $f(x)$.

Conversely, suppose $f(a)=0$. By division algorithm, there exist $q(x)$ and $r(x)$ in $R[x]$ such that $f(x)=q(x)$ $(x-a)+r(x), \operatorname{deg} r(x)<\operatorname{deg}(x-a)$ or $r(x)=0$.
Since deg $(x-a)=1$, then $r(x)$ is a constant polynomial.
But $0=f(a)=q(a)(a-a)+r(a)=r(a)$. Hence $r(x)=0$, consequently $f(x)=q(x)(x-a)$.
Definition 2.10. The element r is a root of multiplicity m of $f(x)$ if $(x-a)^{m} \mid f(x)$ but $(x-a)^{m+1} \nmid f(x)$. A zero of multiplicity 1 is called simple zero.

Theorem 2.11. (Fundamental theorem of algebra):

If $f(x)$ is a non constant polynomial over the field of complex numbers, then $f(x)$ has at least one root in C .

Theorem 2.12. Let R be an integral domain, $f(x)$ be a non zero polynomial over R. If $\operatorname{deg} f(x)=n$, then $\mathrm{f}(\mathrm{x})$ has at most n distinct roots R .
Proof. We proved by induction on the degree of $f(x)$. When $\operatorname{deg} f(x)=0$, then there exists $0 \neq a_{0} \in R$ such that $f(x)=a_{0}$. This means $f(x)$ has no root in R.
If $\operatorname{deg} f(x)=1$, then there exists $0 \neq a_{1} \in R$ such that $f(x)=a_{0}+a_{1} x$. This means $f(x)$ has at most one root in R; indeed, if a_{1} is invertible, $-a_{1}^{-1} . a_{0}$ is the only root of $f(x)$. Now, suppose the theorem is true for all polynomials of degree $n-1 \geq 1$, and let $\operatorname{deg} f(x)=n$.
If r is a root of $f(x)$, then there exists $q(x) \in R[x]$ such that $f(x)=(x-r) q(x)$, where $q(x)$ of degree $n-1$.
Any root t of $f(x)$ distinct from r must be a root of $q(x)$, by substitution, we have
$f(t)=(r-t) q(t)=0$. Since R has no zero divisors, then $q(t)=0$. From hypotheses, $q(x)$ has at most $n-1$ distinct roots. As the only roots of $f(x)$ are r and those of $q(x)$.
That is $f(x)$ cannot have more than n distict roots in R.

The following example shows that the condition that R is an integral domain is the last theorem is necessary.
Example. Consider the ring $\mathrm{R}=\mathrm{Z}_{2} \times \mathrm{Z}_{2}$. Clearly R is not an integral domain.
Now consider the polynomial $f(x)=x^{2}+x$.
It is not difficult to show that every element of $Z_{2} \times Z_{2}$ is a root of $f(x)$. where
$\mathrm{Z}_{2} \times \mathrm{Z}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$. So $f(x)$ has four roots.

