Ring Theory

1.1. Definitions and examples

Definition 1.1.1 A ring R is a nonempty set together with two binary operation + and .(called addition and multiplication defined on R) if satisfying the following axioms:

- (1) (R, +) is an abelian group,
- (2) (R, .) is semi-group,
- (3) the distributive law hold in R: for all $a, b, c \in R$, a.(b + c) = a.b + a.c and (a + b).c = a.c + b.c

Example. $(\mathbb{Z}, +, .), (\mathbb{Q}, +, .), (\mathbb{R}, +, .)$ and $(\mathbb{C}, +, .)$ are ring.

Definition 1.1.2. The ring (R, +, .) is called commutative if multiplication is commutative $(a, b = b.a, for all a, b \in R$.

Remark. The identity of the operation + in a ring is usually written 0 and called zero.

Definition 1.1.3. The ring *R* is said to be ring with identity 1_R if $a \cdot 1 = 1$. a = a for all $a \in R$.

Example:

 $(\mathbb{Z}, +, .), (\mathbb{Q}, +, .), (\mathbb{R}, +, .)$ and $(\mathbb{C}, +, .)$ are commutative ring with identity.

Definition 1.1.4. Let *R* be a ring with identity. An element $a \in R$ is called a unit (or an invertible element) if there exists $b \in R$ such that ab = 1 = ba. We denoted the set of all unit elements in *R* by R^* .

Theorem 1.1.5. Let *R* be a ring with identity. Then $(R^*, .)$ is a group. **Proof.** Since $1_R \in R^*$, then R^* is a non-empty set. Now we prove that the axioms of group are satisfies:

1- let $x, y \in R^*$, that is each of x and y has inverse multiplication. Hence $(x,y)(y^{-1},x^{-1}) = x.(y,y^{-1}).x^{-1} = x.1_R.x^{-1} = x.x^{-1} = 1_R$ and $(y^{-1},x^{-1}).(x,y) = y^{-1}.(x^{-1},x).y = y^{-1}.1_R.y = y^{-1}.y = 1_R.$

This implies that y^{-1} . x^{-1} is invers of x, y and $x, y \in R^*$. Hence the set R^* is closed under multiplication.

- 2- associative law are holds because (R, +, .) is ring.
- 3- $1_R \in R^*$ is identity element.
- 4- If $x \in R^*$, then $x \cdot x^{-1} = x^{-1} \cdot x = 1_R \Longrightarrow x^{-1} \in R^*$. (R^* ,.) is group.

Example.(1) In $(Z_6, +_6, \cdot_6)$ we see $(Z_6^* = \{1, 5\} \text{ and } (Z_6^*, \cdot_6)$ is an abelian group.

(2) Let X be a non-empty set. If P(X) is a power set of X, then show that $(P(X), \Delta, \cap)$

Is a commutative ring with identity?

(3) Let $M_2(\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \}$ be the square matrix of \mathbb{R} . Show that $(M_2(\mathbb{R}), +, .)$ a ring with identity.

Definition 1.1.6. Let (R, +, .) be a ring. For all $a \in R$ and for all integer *n* define

$$na = \begin{cases} \underbrace{\underbrace{a+a+\dots+a}_{n-times}}_{(-a)+(-a)+\dots+(-a)} & \text{if } n > 0\\ \underbrace{(-a)+(-a)+\dots+(-a)}_{|n|-times} & \text{if } n < 0\\ 0_R & \text{if } n = 0 \end{cases}$$

and define

$$a^n = \underbrace{a.a...a}_{n-times}$$
 if $n > 0$

If *R* with identity, then $a^0 = 1_{R}$.

If R with identity and a has a multiplicative inverse, then

$$a^n = \underbrace{a^{-1} \cdot a^{-1} \dots a^{-1}}_{|n|-times} \quad if \; n < 0$$

Theorem 1.1.7. Let (R, +, .) be a ring, for $a, b \in R$ and arbitrary integers n and m the following hold:

1- (n + m)a = na + ma, 2- n(a + b) = ma + mb, 3- (nm)a = n(ma).

Theorem 1.1.8. Let (R, +, .) be a ring and 0_R be a zero element. The for all $a, b, c \in R$ the following hold:

1-
$$a \cdot 0_R = 0_R \cdot a = 0_R$$
.
2- $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$.
3- $(-a) \cdot (-b) = a \cdot b$.
4- $a \cdot (b - c) = a \cdot b - a \cdot c$.

Proof. 1- Since $a. 0_R = a. (0_R + 0_R) = a. 0_R + a. 0_R$.

Thus,

$$a0_{R} + a0_{R} = a(0_{R} + 0_{R}) = a0_{R}$$

$$\Rightarrow (a0_{R} + a0_{R}) + (-(a0_{R})) = a0_{R} + (-(a0_{R}))$$

$$\Rightarrow a0 + (a0 + (-(a0))) = 0 \qquad \text{because } a0_{R} + (-(a0_{R})) = 0_{R}$$

$\Rightarrow a0_R + 0_R = 0_R$	because $a0_R + (-(a0_R)) = 0_R$
$\Rightarrow a 0_R = 0_R$	because $a0_R + 0_R = a0_R$.
Similarly, $0_R a = 0_R$.	
2-H.w	

3-By (2) we get (-a).(-b) = -(a.(-b)) = -(-(a.b)) = a.b.

4-H.w

Corollary 1.1.9. Let (R, +, .) be a ring with identity such that $R \neq \{0_R\}$. Then the element 0_R and 1_R are distinct.

Proof. Suppose $R \neq \{0_R\}$, Let $a \in R$ be such that $a \neq 0$. Suppose $0_R = 1_R$. It follows a = a. $1_R = a$. $0_R = 0_R$, a contradiction. Thus, $0_R \neq 1_R$.

Corollary 1.1.10. Let (R, +, .) be a ring with identity such that $R \neq \{0_R\}$. Then for all $a \in R$, the following are hold:

1- (-1). a = -a and 2- (-1). (-1) = 1.

Definition 1.1.11. Let (R, +, .) be a ring and let *S* be a non empty subset of R (*i.e* $\emptyset \neq S \subseteq R$). If (S, +, .) is itself a ring, then (S, +, .) is said to a subring of (R, +, .).

Remark. Every ring (R, +, .) has two trivial subring; for, if 0 denote the zero element of the ring (R, +, .), then both $(\{0\}, +, .)$ and the ring itself are subrings of (R, +, .).

Definition 1.1.12. Let (R, +, .) be a ring and $\emptyset \neq S \subseteq R$. Then (S, +, .) is a subring of (R, +, .) if and only if

1- $a - b \in S$, for all $a, b \in S$ (closed under differences)

2- $a.b \in S$, for all $a, b \in S$ (closed under multiplication)

Examples.

- 1- (Z, +, .) is a subring of (R, +, .) and (Q, +, .).
- 2- $(Z_e, +, .)$ is a subring of (Z, +, .).
- 3- Let R denote the set of all functions f: R[#] → R[#]. The sum f + g and the product f.g of two function f, g ∈ R are defined by
 (f + g)(x) = f(x) + g(x),
 (f.g)(x) = f(x).g(x), x ∈ R[#]
 Suppose (R, +, .) is the commutative ring of function of above. Define
 S = {f ∈ R | f(1) = 0}.

Definition 1.1.13. The center of a ring (R, +, .), denoted by *cent* (R), is the set

 $Cent(R) = \{ c \in R \mid c.x = x.c, for all x \in R \}.$

Remark. If (R, +, .) is comutaive, then cent(R) = R.

Theorem 1.1.14. Let (R, +, .) be a ring. Then (cent (R), +, .) is a subring of (R, +, .). **Proof.** Since $a. 0_R = 0_R. a$, for all $a \in R$, then $0_R \in cent (R)$, hence $cent(R) \neq \emptyset$. Let $x, y \in cent(R)$. To prove that $x - y \in cent(R)$. For all $a \in R$, then (x - y). a = x. a - y. a = a. x - a. y = a(x - y).

Therefore $x - y \in cent(R)$, and (x, y). a = x. (y. a) = x(a. y) = (x. a). y = (a. x). y = a. (x. y).Therefore $x. y \in cent(R)$, hence (cent(R), +, .) is a subring of (R, +, .).

Solve the following problems

- Q1/In a ring (Z, \oplus, \odot) , where $a \oplus b = a + b 1$ and $a \odot b = a + b ab$, for all $a, b \in Z$. Find zero element and identity element.
- Q2/Let R denote the set of all functions $f: \mathbb{R}^{\#} \to \mathbb{R}^{\#}$. The sum f + g and the product f, g of

two function $f, g \in R$ are defined by $(f+g)(x) = f(x) + g(x), \quad (f,g)(x) = f(x), g(x), x \in R^{\#}.$ Show that (R, +, .) is the commutative ring.

- Q3/ Let (R, +, .) be an arbitrary ring. In R define a new binary operation * by a * b = a.b + b.a for all $a, b \in R$. Show that (R, +, *) is a commutative ring.
- Q4/ Show that the multiplicative identity in a ring with unity R is unique.
- Q5/ Suppose that *R* is a ring with unity and that $a \in R$ is a unit of *R*. Show that the multiplicative inverse of *a* is unique.
- Q6/ Let (3Z, +) be an abelian group under usual addition where $3Z = \{3n \mid n \in Z\}$. Show that $(3Z, +, \odot)$ is a commutative ring with identity 3, where $a \odot b = \frac{ab}{3}$, for all $a, b \in 3Z$.
- Q6/ Let (R, +, .) be a ring which has the property that $a^2 = a$ for every $a \in R$. Prove that (R, +, .) is a commutative ring. [Hint: First show a + a = 0, for any $a \in R$].
- Q7/ Prove that a ring *R* is commutative if and only if $a^2 - b^2 = (a + b)a - b$, for all $a, b \in R$. Q8/ Prove that a ring *R* is commutative if and only if

$$(a + b)^2 = a^2 + 2ab + b^2$$
, for all $a, b \in R$.

Q9/ Let *R* be the set of all ordered pairs of nonzero real numbers. Determine whether (R, +, .) is a commutative ring with identity.

(a) (a,b) + (c,d) = (ac,bc+d), (a,b). (c,d) = (ac,bd)

(b) (a,b) + (c,d) = (a+c,b+d), (a,b).(c,d) = (ac,ad+bc).

Q10/ Find all units in the rings

1- $(Z_9, +_9, \times_9)$. 2- $Z \times Z$ 3- $Z_3 \times Z_3$ 4- $Z_4 \times Z_6$.

Q11/ Is Z_2 a subring of Z_6 ? Is $3Z_9$ a subring of Z_9 ?

1.2. Some type of rings.

Definition 1.2.1. A nonzero element a in a ring *R* is called a zero divisor if there exists $b \in R$ such that $b \neq 0$ and ab = 0.

In particular, *a* is a left divisor of zero and *b* is a right divisor of zero.

Definition 1.2.2. An integral domain is a commutative ring with identity which does not have divisors of zero.

Examples. (Z, +, .), (Q, +, .) and $(Z_p, +_p, ._p)$ are integral domain but $(Z_6, +_6, ._6)$ is not integral domain.

Definition 1.2.3. An element *a* of a ring (R, +, .) is said to be a nilpotent if there exists a positive integer n such that $a^n = 0$.

Example. Find nilpotent element in Z_8 and $Z_4 \times Z_6$.

The nilpotent element in Z_8 are 0, 2, 4 and 6.

The nilpotent element in Z_4 are 0 and 2, and the nilpotent element in Z_6 is 0, hence The nilpotent element in $Z_4 \times Z_6$ are (0, 0) and (2, 0).

Theorem 1.2.4. Let (R, +, .) be a commutative ring with identity. Then (R, +, .) is an integral domain if and only if the cancellation law holds for multiplication.

Proof. We suppose that R is an integral domain . Let $a, b, c \in R$ such that $a \neq 0$ and

a.b = a.c. Hence b = c.

Conversely, suppose that the cancellation law holds and b = 0.

If the element $a \neq 0$, then by Theorem 2.1.6 we have a.0 = 0, hence

a.b = 0 = a.0, consequently b = 0. That is *R* has no divisors of zero and *R* commutative with identity, we get *R* is an integral domain.

Corollary 1.2.5. Let (R, +, .) be an integral domain. Then the only solution of the equation $a^2 = a$ are a = 0 and a = 1.

Proof. Clearly 0 is the solution of the equation $a^2 = a$.

Now, if $a^2 = a$ and $a \neq 0$, since a = a. 1 and a. $a = a^2 = a = a$. 1, hence by cancellation law we get a = 1.

Definition 1.2.6. A ring (R, +, .) is said to be a division ring(skew field) if it is a ring with identity in which every nonzero element has a multiplicative inverse.

Definition 1.2.7. A field is a commutative ring with identity in which each nonzero element has an inverse under multiplication.

Examples:

- (Q, +,.), (R, +,.) and (C, +,.) are field(field of rational numbers, field of real numbers, field of Complex numbers).
- 2- $(Z_n, +_n, .., n)$ is a field if and only if n is a prime number.
- 3- (Z, +, .) is an integral domain but not a field.

Theorem 1.2.8. Every field is an integral domain.

Proof. Let (R, +, .) be a field. Then R is a commutative ring with identity.

Let $a, b \in R$ and a, b = 0 with $a \neq 0$.

Since R is a field, then the element a has an inverse.. The hypothesis a.b =0 yields

$$a^{-1}(a,b) = a^{-1} 0 \implies (a^{-1},a), b = 0 \implies b = 0.$$

That is *R* contains no divisors of zero. Hence *R* is an integral domain.

Theorem 1.2.9. Any finite integral domain is a field.

Proof. Let (R, +, .) be an integral domain contains n distinct elements say $x_1, x_2, ..., x_n$.

Let $x \neq 0$ be any element of *R*, consider the elements $x.x_1, x.x_2, ..., x.x_n \in R$. These products are all distinct because

If $x. x_i = x. x_j$, for $i \neq j \Longrightarrow x. (x_i - x_j) = 0$, but $x \neq 0 \Longrightarrow x_i - x_j = 0 \Longrightarrow x_i = x_j$, which is contradiction to $x_1, x_2, ..., x_n$ are all distinct.

Since $1 \in R$, then $x \cdot x_k = 1$ for some k and $x \cdot x_k = x_k \cdot x = 1 \implies x$ has multiplicative inverse and $x^{-1} = x_k$. That is (R, +, .) is a field.

Theorem 1.2.10. The ring $(Z_n, +_n, \cdot_n)$ of integers modulo n is a field if and only if n is a prime number. **Proof.** Suppose that *R* is a field. To prove that *n* is a prime number.

If *n* is not prime, then n = a.b where 0 < a < n and 0 < b < n. It follows

$$[a]_{n}[b] = [a,b] = [n] = [0].$$

Since $[a] \neq [0]$, $[b] \neq [0]$. This means that the system $(Z_n, +_n, \cdot_n)$ is not an integral domain and hence not a field.

Conversely suppose that n is a prime number. To prove that $(Z_n, +_n, ._n)$ is a field, enough to show that is an integral domain.

Let $[a], [b] \in Z_n$ and $[a]_{\cdot n} [b] = [0] \Rightarrow [a, b] = [0] = [n]$ $\Rightarrow a. b \equiv 0 \pmod{n} \Rightarrow a. b = kn, for some integer k$ $\Rightarrow n \, divides \, a. b \Rightarrow p \, divides \, a \, or p \, dividea \, b \Rightarrow$ $a \equiv 0 \pmod{n} \text{ or } b \equiv 0 \pmod{n} \Rightarrow [a] = [0] \text{ or } [b] = [0]$

Hence $(Z_n, +_n, \cdot_n)$ has no divisors of zero, that is $(Z_n, +_n, \cdot_n)$ is an integral domain.

Definition 1.2.11. Let (R, +, .) be a ring. If there exists a positive integer *n* such that na = 0 for all $a \in R$, then the smallest such integer is called the characteristic of the ring. If no such positive integer exists, then we say (R, +, .) has characteristic zero.

Example. The rings Z, Q, R, C have characteristic 0.

Theorem 1.2.12.: Let (R, +, .) be a ring with identity. Then(R, +, .) has characteristic n > 0 if and only if *n* is the least positive integer for which $n \cdot 1 = 0$.

Proof: If the ring (R, +, .) is of characteristic n > 0, it follows that $n \cdot 1 = 0$.

Where m. 1 = 0, where 0 < m < n, then

m.a = m.(1.a) = (m.1).a = 0.1 = 0 for every $a \in R$. This mean The characteristic of (R, +, .) is less than n, which is contradiction.

Conversely, Let *n* be the least positive integer in which $n \cdot 1 = 0$. Let $a \in R$, $a \neq 0$.

n.a = n.(1.a) = (n.1).a = 0.a = 0

Then (R, +, .) has characteristic n > 0.

Corollary 1.2.13. The characteristic of an integral domain (R, +, .) is either zero or a prime. **Proof.** Let (R, +, .) be a positive characteristic n and assume that n is not a prime Then n can be written as n = a. b with 1 < a, b < n. By Theorem 1.2.12 we have 0 = n. 1 = (a.b). $1^2 = (a.1)$. (b.1). Since by hypothesis (R, +, .) is without zero divisors, then either a. 1 = 0 or b. 1 = 0. But this contradicts the choice of n as the least positive integer such that n. 1 = 0. Hence the characteristic of (R, +, .) must be prime.

Example. Show that the characteristic of the ring $(P(X), \Delta, \cap)$ is equal two. Since \emptyset is the zero element of the ring $(P(X), \Delta, \cap)$. Now for all $A \in P(X)$, then $2A = A \Delta A = (A - A) \cup (A - A) = \emptyset$. From the definition of characteristic, then the characteristic of $(P(X), \Delta, \cap)$ is 2.

Solve the following problems

Q1/ Give an example of a division ring which is not a field.

- Q2/ Prove that $T = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$ is a subring of $M_2(\mathbb{R})$. Q3/ In $(Z_{12}, +_{12}, \times_{12})$, find (i) $(2)^2 +_{12} (9)^{-2}$.
- Q4/ Suppose that *a* and *b* belong to a commutative ring and *ab* is a zero-divisor. Show that either *a* or *b* is a zero-divisor.
- Q5/ Complete the operation tables for the ring $R = \{a, b, c, d\}$:

					-						
+	а	b	С	d			а	b	С	d	
	а	b	С	d	-	а	а	а	а	а	
b	b	а	d	С	-	b	а	b			
С	С	d	а	b	-	С	а			а	
d	d	С	b	а	-	d	а	b	С		

Is *R* a commutative ring? Does it have a unity? What is its characteristic? Hint. c.b = (b + d).b; c.c = c.(b + d); etc.

Q6/ Let R and S be commutative rings. Prove or disprove the following statements.

- (a) An element $(a, b) \in R \times S$ is nilpotent if and only if a nilpotent in R and b is nilpotent in S.
- (b) An element (a, b) ∈ R × S is a zero divisor if and only if a is a zero divisor in R and b is a zero divisor in S.

Q7/ Show that $Q[\sqrt{2}] = \{a + b\sqrt{2} \in R \mid a, b \in Q\}$ is a subfield of the field R.

1.3. Ideals and Quotient rings.

Definition 2.3.1. A subring (I, +, .) of the ring (R, +, .) is an ideal of (R, +, .) if $r \in R$ and $a \in I$ imply both $r.a \in I$ and $a.r \in I$.

if and only

Definition 2.3.2. Let (R, +, .) be a ring. Let *I* be a nonempty subset of *R*. (i) *I* is called a left ideal of *R* if for all $a, b \in I$ and for all $r \in R, a - b \in I, ra \in I$. (ii) *I* is called a right ideal of *R* if for all $a, b \in I$ and for all $r \in R, a - b \in I, ar \in I$. (iii) I is called a (two-sided) ideal of R if I is both a left and a right ideal of R.

Remark. In a commutative ring , every right ideal is left ideal. **Examples.**

- 1) The subring $(\{0,2,4\},+_{6,6})$ is an ideal of $(Z_6,+_{6,6})$.
- 2) The trivial subrings (R, +,.) and ({0}, +,.) of the ring (R, +,.) are both ideals.
 Any ideal different from (R, +,.) is called proper ideal.
- 3) In the ring (Z, +, .), $I = \langle a \rangle = \{na | n \in Z\}$ for a fixed integer . Then *I* is an ideal of (Z, +, .) because $na ma = (n m)a \in I$ and $m(na) = (mn)a \in$, where $n, m \in Z$.
- 4) (Z, +, .) is not ideal of (Q, +, .) but (Z, +, .) is a subring of (Q, +, .). Since $1 \in Z$ and $\frac{1}{2} \in Q$, then $1, \frac{1}{2} = \frac{1}{2} \notin Z$. Then (Z, +, .) is not ideal of (R, +, .).
- 5) Let $(M_2(R), +, .)$ be the square matrix ring over the field of real number. Then (cent(R), +, .) is not an ideal.

Definition 2.3.3. A ring which contains no ideals except trivial ideals is said to be a simple ring.

Definition 2.3.4. Let (R, +, .) be a commutative ring with identity. An ideal (I, +, .) is called a principal ideal of the ring (R, +, .) if generated by a single element *a* and denoted by $I = (a) = \{r. a \mid r \in R\}$.

Example. In the ring (Z, +, .) the ideal $(2) = \{2, r | r \in Z\} = 2Z$ is a principal ideal generated by 2 and $(3) = \{3, r | r \in Z\} = 3Z$ is a principal ideal generated by 3.

Theorem 2.3.5. If (I, +, .) is an ideal of the ring (Z, +, .), then I = (n) for some nonnegative integer n. **Proof.** If I = (0), then the theorem is true.

Suppose then that $I \neq (0)$, that is there exists $0 \neq m \in I$. Since I is an ideal, then $-m \in I$, so I contains positive integers.

Let *n* be the least positive integer in *I*. We claim I = (n).

Since $n \in I$ and (I, +, .) is an ideal of (Z, +, .), then $kn \in I$, for all $k \in Z$, that is $(n) \subseteq I$.

On the other hand, any integer $k \in I$. By division Algorithm there exists $q, r \in Z$ such that k = qn + r, where $0 \le r < n$.

Since *k* and *qn* are members of *I*, it follows that $k - qn = r \in I$. Our *n* be a least integer implies r = 0, and consequently $k = qn \implies k \in (n)$ Therefore I = (n). **Definition 2.3.6.** Let (R, +, .) be a commutative ring with identity. A ring (R, +, .) is called a principal ideal ring if every ideal is principal.

Theorem 2.3.7. Let (R, +, .) be a ring with identity element and *I* be an ideal of *R* containing identity element. Then I = R.

Proof. Since *I* is an ideal of *R*, then $I \subseteq R$.

Let $\in R$, then $r = r.1 \in I$ (because *I* is an ideal of *R*) $\Rightarrow r \in I \Rightarrow R \subseteq I \Rightarrow I = R$.

Theorem 2.3.8. If (I, +, .) is a proper ideal of a ring (R, +, .) with identity, then no element of I has a multiplicative inverse; that is $\cap R^* = \emptyset$.

Proof. Suppose to the contrary that there is $0 \neq a \in I$ such that a^{-1} exists.

Since *I* is an ideal, then 1 = a. $a^{-1} \in I \implies I = R$, contradiction the hypothesis that *I* is a proper subset of *R*

ITheorem 2.3.9. If $(I_1, +, .)$ and $(I_2, +, .)$ are two ideals of the ring (R, +, .), then $(I_1 \cap I_2, +, .)$ is also an ideal.

Proof. Since $(I_1, +, .)$ and $(I_2, +, .)$ are ideals of the ring (R, +, .), then $0 \in I_1$ and $0 \in I_2$, hence $0 \in I_1 \cap I_2$. This implies that $I_1 \cap I_2 \neq \emptyset$.

Suppose $a, b \in I_1 \cap I_2$ and $r \in R$. Then $a, b \in I_1$ and $a, b \in I_2$.

As the $(I_1, +, .)$ and $(I_2, +, .)$ are ideals of the ring (R, +, .), it follows from definition

 $a - b \in I_1$, $ar \in I_1$ and $ra \in I_1$, and also $a - b \in I_2$, $ar \in I_2$ and $ra \in I_2$.

Hence $a - b \in I_1 \cap I_2$, $ar \in I_1 \cap I_2$ and $ra \in I_1 \cap I_2$, which implies that $(I_1 \cap I_2, +, .)$ is an ideal of (R, +, .).

Theorem 3.2.10. Let (R, +, .) be a commutative ring with identity. Then (R, +, .) is a field if and only if (R, +, .) has no nontrivial ideals.

Quotient rings

We now give the analogue of quotient groups for rings. Let *R* be a ring and *I* an ideal of *R*. Let $x \in R$. Let x + I denote the set $x + I = \{x + a \mid a \in I\}$.

The set x + I is called a coset of I. For $x, y \in R$, By Theorem 6.1, x + I = y + I if and only if $x - y \in I$.

Let R/I denote the set $R/I = \{x + I \mid x \in R\}$. Because $I = 0 + I \in R/I$, R/I is a nonempty set. Define the operations + and \cdot on R/I as follows:

for all x + I, $y + I \in R/I$

(x + I) + (y + I) = (x + y) + I, and $(x + I) \cdot (y + I) = xy + I$.

We leave it as an exercise for verify that + and \cdot are binary operations on R/I.

Under these binary operations $(R/I, +, \cdot)$ satisfies the properties of a ring.

Let us verify some of these properties.

Let $x + I, y + I, z + I \in R/I$. Now

$$(x+I) + ((y+I) + (z+I)) = (x+I) + ((y+z)+I) = (x + (y + z)) + I$$
$$= ((x + y) + z) + I,$$
$$= ((x + y) + I) + (z + I) = ((x + I) + (y + I)) + (z + I).$$

This shows that + is associative in /I. Similarly, + is commutative. Next, note that 0 + I = I is the additive identity and for $+I \in R/I$, (-x) + I is the additive inverse of x + I. As in the case of the associativity for +,

we can show that \cdot is associative.

Next, let us verify one of the distributive law. Now

$$(x + 1) \cdot ((y + 1) + (z + 1)) = (x + 1) \cdot ((y + z) + 1) = (x(y + z)) + 1$$
$$= (xy + xz) + 1 = (xy + 1) + (xz + 1)$$
$$= ((x + 1) \cdot (y + 1)) + ((x + 1) \cdot (z + 1)).$$

In a similar manner, we can verify the right distributive property.

Theorem 2.3.10. If (I, +, .) is an ideal of (R, +, .), then the ring (R/I, +, .) is ring, known as the quotient ring of *R* by *I*.

Definition 2.3.11. An ideal (I, +, .) of the ring (R, +, .) is a prime ideal if for all $a, b \in R, a. b \in I$ implies either $a \in I$ or $b \in I$.

Example.(1) The ideal ((3), +, .) of the ring (Z, +, .) is a prime ideal. (2) A commutative ring with identity is an integral domain if and only if the zero ideal is a prime ide

Theorem 2.3.12. Let (I, +, .) be a proper ideal of the ring (R, +, .). Then (I, +, .) is a prime ideal if and only if the quotient ring (R/I, +, .) is an integral domain.

Proof. First, take (I, +, .) to be a prime ideal of (R, +, .). Since (R, +, .) is a

commutative ring with identity, so is the quotient ring (R/I, +, .). It remains to show (R/I, +, .) has no divisor of zero. For this, assume that

 $(a + I).(b + 1) = I \Longrightarrow a \cdot b + I = I \Longrightarrow a.b \in I$. Since (I, +, .) is a prime ideal, hence $a \in I$ or $b \in I \Longrightarrow a + I = I$ or b + I = I, hence (R/I, +, .) is without zero divisors. To prove the converse, suppose (R/I, +, .) is an integral domain and $a.b \in I$. Then we have $a.b + I = I \Longrightarrow (a + I).(b + I) = I$. By hypothesis, (R/I, +, .) contains no divisors of zero, that either

 $a + I = I \text{ or } b + I = I \Longrightarrow a \in I \text{ or } b \in I$. That is (I, +, .) is a prime ideal.

Theorem 2.3.13. Let (Z, +, .) be the ring of integers and n > 1. Then the principal ideal ((n), +, .) is prime if and only if n is a prime number.

Prool. First, suppose ((n), +, .) is a prime ideal of (Z, +, .). If the integer *n* is not prime, then n = p.q, where 1 < p, q < n. This implies the $p.q \in (n)$ and such that ((n), +, .)

Is a prime ideal, this implies $p \in (n)$ or $q \in (n)$ and this contradiction to the hypothesis of p and q are less than n, therefore n must be a prime number.

Conversely, suppose *n* is a prime number and *a*, *b* two integers such that $a.b \in (n)$ with $a \notin (n)$.

Since $a, b \in (n) \Rightarrow n | a, b$ and sine n is a prime number implies that $n \nmid a \rightarrow n | b \Rightarrow b \in (n)$, therefore ((n), +, .) is a prime ideal.

Definition 2.3.14. An ideal (I, +, .) of the ring (R, +, .) is a maximal ideal provided $I \neq R$ and whenever (J, +, .) is an ideal of (R, +, .) with $I \subset J \subseteq R$, then J = R.

Remark. An element is invertible is not belongs to maximal ideal.

Definition 2.3.14. An ideal (I, +, .) of the ring (R, +, .) is a maximal ideal provided $I \neq R$ and whenever (J, +, .) is an ideal of (R, +, .) with $I \subset J \subseteq R$, then J = R.

Remark. An element is invertible is not belongs to maximal ideal.

2-((6), +, .) is not a maximal ideal since (6) \subset (3) \subset Z

3-(2*Z* × {0}, +, .) is a prime ideal of the ring (*Z* × *Z*, +, .) but is not a maximal ideal since 2*Z* × {0} ⊂ 2*Z* × 2*Z* ⊂ *Z* × *Z*.

4- $(\{0\}, +, .)$ is a prime ideal of the ring (Z, .) but not a maximal ideal.

Theorem 2.3.15. Let (I, +, .) be approper ideal of the commutative ring with identity (R, +, .). Then (I, +, .) is a maximal ideal if and only if the quotient ring (R/I, +, .) is a field.

Proof. Let (I, + ...) be a maximal ideal of (R. +, ..). Since (R, +, ...) is a commutative ring with identity, then the quotient ring (R/I, +, ...) is also a commutative ring with identity. It remains to show that every non-zero elemnt in R/I has inverse.

 $a + I \in R/I$ such that $a + I \neq I \Longrightarrow a \notin I$.

Since ((a), +, .) is an ideal of (R, +, .), the ((a) + I, +, .) is an ideal of (R, +, .) and $a \notin I \implies I \subset (a) + I$. By suppose (I, +, .) is a maximal ideal, then (a) + I = R.

 $R = ((a), I) = \{a. r + b \mid b \in I, r \in R\}.$

Since $1 \in R \implies 1 \in (a) + I \implies 1 = a.r + b, r \in R$, $b \in I \implies b = 1 - a.r \in I$.

That is $1 - a \cdot r \in I \implies 1 + I = a \cdot r + I = (a + I) \cdot (r + I)$.

Therefore a + I has an inverse, consequently (R/I, +, .) is a field.

Conversely, suppose (R/I, +, .) is It field and (J. +, .) is any ideal of (R, +, .) such that $I \subset J \subseteq R$. Since $I \subset J$, then there exist an element $a \in J$ and $a \notin I \Rightarrow a + I \neq I$.

Since (R/I, +, .) is a field, then a + I has an inverse say b + I, therefore

 $(a + I). (b + I) = 1 + I \Longrightarrow a. b + I = 1 + I \Longrightarrow 1 - a. b \in I \subset J \Longrightarrow 1 - a. b \in J$ Since $a. b \in J \Longrightarrow 1 \in J \Longrightarrow J = R$. Hence (I, +, .) is a maximal ideal.

Definition 2.3.16. A ring (R, +, .) is called a local ring if has only one maximal ideal.

Definition 2.3.17. The **radical** of a ring (R, +, .), denoted by *rad* R, is the set $rad(R) = \bigcap \{M : (M, +, .) is a amximal ideal of ring <math>(R, +, .)\}$. If $rad(R) = \{0\}$, then we say (R, +, .) is a ring without radical or is a semi-

simple ring.

Example. In $(Z_{12}, +_{12}, \cdot_{12})$, find $rad(Z_{12})$

Remark. (rad(R), +, .) is an ideal of (R, +, .).

Definition 2.3.18. An ideal (I, +, .) of a ring (R, +, .) is said to be a **primary ideal** if $a. b \in I$ with $a \notin I$ implies $b^n \in I$ for some positive integer n.

Example. An ideal ((4), +, .) of (Z, +, .) is a primary.

Definition 2.3.19. An element *a* of a ring (R, +, .) is said to be a nilpotent if there exists a positive integer n such that $a^n = 0$.

Theorem 2.3.19. Let (I, +, .) be an ideal of a ring (R, +, .). Then (I, +, .) is a primary if and only if every zero divisor of the quotient ring (R/I, +, .) is nilpotent.

Proof. Suppose (I, +, .) is a primary ideal and a + I is a zero divisor in R/I.

That is there exists a npnzero element b + I such that

$$(a+I)$$
. $(b+I) = I \implies a.b+I = I \implies a.b \in I$.

Since $b \notin I$ and (I, +, .) is a primary, then there exists a positive integer n such that $a^n \in I \implies a^n + I = I \implies (a + I)^n = I$. Hence a + I is nilpotent element in R/I.

Conversely, suppose every zero divisor is nilpotent.

Let $a, b \in R$ such that $a, b \in I$ with $a \notin I$. We must to sow that $b^n \in I$, for some $n \in Z^+$.

If $b \in I$, it is trivial.

If $b \notin I \implies b + I \neq I$. Since (a + I). (b + I) = a. b + I = I, hence b + I is divisor of zero.

By hypothesis b + I is a nilpotent element, that is there exist a positive integer n such that $b^n + I = (b + I)^n = I \Longrightarrow b^n \in I$, consequently (I, +, .) is primary.

2.4. Homomorhpisms

Definition 2.4.1. Let (R, +, .) and (R', +', .') be two rings and f a function from R into R'; in symbols, $f: R \rightarrow R'$. Then f is said to be a (ring) homomorphism from (R, +, .) into (R', +', .') if and only if 1- f(a + b) = f(a) + 'f(b), 2- $f(a \cdot b) = f(a).' f(b)$ for every $a, b \in R$. **Example**. Let $f: (R, +, .) \rightarrow (R', +', .')$ be the function defined by

$$f(a) = 0', for all a \in R$$

$$f(a + b) = 0' = 0' + 0' = f(a) + f(b),$$

$$f(a \cdot b) = 0' = 0'.' 0' = f(a).' f(b), a.b \in R$$

Hence *f* is a ring homomorphism.

Example. Let
$$f: (Z, +, .) \rightarrow (Z_e, +, .)$$
 be the function defined by
 $f(a) = 2a$, for all $a \in R$
 $f(a + b) = 2(a + b) = 2a + 2b = f(a) + f(b)$,
 $f(a \cdot b) = 2(a \cdot b) = 2a \cdot b \neq f(a) \cdot f(b)$, $a \cdot b \in R$

Hence f is not a ring homomorphism.

Definition. A homomorphism f from the ring (R, +, .) in to ring (R', +', .') is called an isomorphism if f is one to one and onto.

If there exist an isomorphism function between two rings, then is said an isomorphic and denoted by $(R, +, .) \cong (R', +', .')$.

Theorem 2.4.2. Let *f* be a homomorphism from the ring (R, +, .) into the ring (R', +', .'). Then the following hold: . 1) f(0) = 0', where 0' is the zero element of (R', +', .'). 2) f(-a) = -f(a) for all $a \in R$. 3) The triple (f(R), +', .') is a subring of (R', +', .'). If, in addition, (R, +, .) and (R', +', .'). are rings with identity elements 1 and 1', respectively, and f(R) = R', then 4) f(1) = 1', 5) $f(a^{-1}) = f(a)^{-1}$ for each invertible element $a \in R$.

Proof. Similar of Theorem 8.4

Theorem .

- 1- Let $f: (R, +, .) \to (S, +, .)$ and $g: (S, +, .) \to (T, +, .)$ be two homomorphisms. Then $g \circ f: (R, +, .) \to (T, +, .)$ is also a homomorphism.
- 2- Let $f : (R, +, .) \to (S, +, .)$ be a homomorphism. Then Let $f^{-1} : (S, +, .) \to (R, +, .)$ Is also homomorphism.

Proof. 1. Let $x, y \in R$. Then

$$g \circ f(x + y) = g(f(x + y)) = g(f(x) + f(y)) = g(f(x)) + gf(y)) = g \circ f(x) + g \circ f(y), \text{ and}$$
$$g \circ f(x, y) = g(f(x, y)) = g(f(x), f(y)) = g(f(x)), gf(y)) = g \circ f(x), g \circ f(y).$$

Hence $g \circ f$ is a homomorphism.

Proof. 2. Since f is a one to one and onto function, then so is f^{-1} .

Let $x, y \in S$. Then there exists $r, t \in R$ such that f(r) = x and f(t) = y.

Since x + y = f(r) + f(t) = f(r + t), thus we get

 $f^{-1}(x + y) = r + t = f^{-1}(x) + f^{-1}(y).$

and $x \cdot y = f(r) \cdot f(t) = f(r, t)$, thus we get

 $f^{-1}(x, y) = r \cdot t = f^{-1}(x) \cdot f^{-1}(y)$.

Therefore f^{-1} is a homomorphism.

Theorem 2.4.3. Let f be a homomorphism from the ring (R, +, .) into the ring (R', +', .'). Then

1- If (S, +, .) is a subring of (R, +, .), then (f(S), +', .') is a subring of (R', +', .').

- 2- If (S', +', .') is a subring of the ring (R', +', .'), then $(f^{-1}(S), +, .)$ is a subring of (R, +, .).
- 3- If (I, +', .') is an ideal of the ring (S, +', .'), then $(f^{-1}(I), +, .)$ is an ideal of (R, +, .).

4- If f(R) = S and (J, +, .) is an ideal of (R, +, .), then (f(J), +', .') is an ideal of (S, +', .'). **Proof. 1-** $f(S) = \{f(x): x \in S\}$

Since $e \in S$, then $f(e) \in f(S) \Longrightarrow f(S) \neq \emptyset$.

Let f(x), $f(y) \in f(S)$, for $x, y \in S$.

Now $f(x) - f(y) = f(x - y) \in f(S)$, Since $x - y \in S$, and

 $f(x).f(y) = f(x.y) \in f(S)$, Since $x.y \in S$

Therefore by Definition 2.1.12, we get f(S) is a subring of R'.

3- By part (2) $(f^{-1}(I), *)$ is a subring of (R, +, .). To show that $(f^{-1}(I), +, .)$ is an ideal of (R, +, .), such that $f^{-1}(I) = \{r \in R: f(r) \in I\}$ Now suppose $x, y \in f^{-1}(I) \Rightarrow f(x), f(y) \in I$. Since f is a homomorphism and (I, +', .') is a subring of (R', +', .'), then we have $f(x - y) = f(x) - f(y) \in I$, Since (I, +', .') is an ideal of (R', +', .'). Therefore $x - y \in f^{-1}(I)$, and Let $r \in R \Rightarrow f(r) \in R'$ and $x \in f^{-1}(I) \Rightarrow f(x) \in I$. Since (I, +', .') is an ideal of (R', +', .'), then $f(r).'f(x), f(x).'f(r) \in I$. Hence since f is a homomrphism, we get $f(r.x) = f(r).'f(x) \in I \implies r.x \in f^{-1}(I)$ and $f(x.r) = f(x).'f(r) \in I \implies x.r \in f^{-1}(I)$ Therefore $(f^{-1}(I), +, .)$ is an ideal of (R, +, .).

Example. $f: (\mathbb{Q}, +, .) \to (\Re, +, .)$ defined by f(x) = x, for all $x \in \mathbb{Q}$ is a homomorphism and $f(\mathbb{Q}) = \mathbb{Q}$ but $(\mathbb{Q}, +, .)$ is not an ideal of $(\Re, +, .)$.

Definition 2.4.4. Let f be a homomorphism from the ring (R, +, .) into the ring (R', +', .'). Then **kerenel** of f, denoted by *ker* f, is the set

ker $f = \{x \in R : f(x) = e'\}.$

Theorem 2.4.5. If f is a homomorphism from the ring (R, +, .) into the ring (R', +', .'), then (ker f, +, .) is an ideal of (R, +, .).

Proof. Since $(\{e'\}, +', .')$ is an ideal (R', +', .') and ker $f = f^{-1}(\{e'\})$, then by Theorem 2.4.3 (ker f, +, .) is an ideal of the ring (R, +, .).

Theorem 2.4.5. Let f be a homomorphism from the field (F, +, .) on to the field (F', +', .'). Then either f is the trivial homomorphism or else (F, +, .) and (F', +', .') are isomorphic. **Proof.** By The Theorem 2.4.4 (*ker* f, +, .) is an ideal of the field (F, +, .).

Since (F, +, .) is a field has no ideal other than (F, +, .) itself and $(\{0\}, +, .)$.

Hence either the set $ker f = \{0\}$ or else ker (f) = F.

If ker(f) = F, then f(x) = 0, for all $x \in F$ and this contradication for f(1) = 1, hence ker $f = \{0\}$ and this implies that f is one-to-one. Therefore f is an isomorphism, consequently $(F, +, .) \cong (F', +', .')$.

Definition 2.4.6. We said that (F', +, .) is a subfield of the field (F, +, .) is meant any subring of (F, +, .) which is itself a field.

Example. The ring $(\mathbb{Q}, +, .)$ of rational numbers is a subfield of the field $(\mathfrak{R}, +, .)$.

Is equivalent to The triple (F', +, .) will be a subfield of the field (F, +, .) provided (1) (F', +) is a subgroup of the additive group (F, +) and (2) $(F' - \{0\}, \cdot)$ is a subgroup of the multiplicative group $(F - \{0\}, \cdot)$.

Definition 2.4.7. A ring (R, +, .) is imbedded in a ring (R', +', .') if there exists some subring (S, +', .') of (R', +', .') such that $(R, +, .) \cong (S, +', .')$.

The field of quotient of an integral domain.

Let *D* be an integral domain.

 $D \times D = \{(a, b) : a, b \in D\}$. Let *S* be the subset of $D \times D$ given by $S = \{(a, b) : a, b \in D, b \neq 0\}$. Define a relation on *S* as follows: Two elements (a, b) and (c, d) in *S* are equivalent (denoted by $(a, b) \sim (c, d)$) if ad = bc.

Lemma 2.4.8. The relation \sim is an equivalence relation. **Proof**.

- (1) Reflexive: $(a, b) \sim (c, d)$, since multiplication in *D* is commutative.
- (2) Symmetric: Suppose that $(a,b) \sim (c,d)$, then ad = bc. Hence cb = da, consequently $(c,d) \sim (a,b)$.

 \leftrightarrow $(a, b) \sim (e, f)$. From (1), (2) and (3) we get that ~ is an equivalence

relation.

Hence it gives a partition of S in to equivalence class. We write the equivalence class of (a, b) by [(a, b)].

Let $F = \{[(a, b)]: (a, b) \in S\}$. Define addition and multiplication on F as follows:

$$[(a,b)] + [(c,d)] = a.d + b.c,b.d]$$
 and

$$[(a,b)].`[(c,d)] = [(a.c,b.d)].$$

Now we show that the operations defined above is well-defined.

First note that if [(a, b)] and $[(c, d)] \in F$, then $b \neq 0$ and $d \neq 0$. Since D is an integral domain, then $bd \neq 0$, so both [(a.d + b.c, b.d)] and $[(a.c, b.d)] \in F$.

To show that the multiplication (.) is well-defined, suppose that

$$(a, b) \sim (a_1, b_1)$$
 and $(c, d) \sim (c_1, d_1)$. We have two show that $[(a, b)] [(c, d)] = [(a_1, b_1)] [(c_1, d_1)]$

 $ab_1 = a_1b$ and $cd_1 = c_1d \rightarrow ab_1 cd_1 = b_1a d_1c \rightarrow ab_1 cd_1 = b_1a d_1c$. This means that

 $(a_1 c_1, b_1 d_1) \sim (ac, bd)$ which means that the multiplication is well-defined.

Theorem 2.4.9. Let D be an integral domain and $S = \{(a, b) : a, b \in D, b \neq 0\}$.

Define a relation on S as follows: $(a, b) \sim (c, d)$ if ad = bc. Then

 $F = \{[(a,b)]: (a,b) \in S\}$ is a field with addition and multiplication defined as follows: [(a,b)] + [(c,d)] = [(ad + bc,bd)] and [(a,b)][(c,d)] = [(ac,bd)].

Proof.

(1) + is a commutative :

[(a,b)] + [(c,d)] = [(ad + bc,bd)] = [(cd + da,db)] = [(c,d)] + [(a,b)].

(2) It is easy to show that + is a associative

(3) [(0,1)] is identity for addition in F:[(a,b)] + [(0,1)] = [(a+0,b)] = [(a,b)]

(4) [(-a, b)] is an additive inverse of [(a, b)] in F:

 $[(a,b)] + [(-a,b)] = [(ab - ba, b^2)] = [(0,b^2)] = [(0,1)]$ (since $(0,b^2) \sim (0,1)$ because $0.1 = 0.b^2$) Thus [(a,b)] + [(-a,b)] = [(0,1)].

- (5) It is easy to show that multiplication is a associative.
- (6) [(1,1)] is identity for multiplication in F:

[(a,b)] + [(1,1)] = [(a 1,b 1)] = [(a,b)]

- (7) Multiplication is commutative
- (8) The distributive law hold in F

(9) Let $[(a, b)] \in F$ and $[(a, b)] \neq [(0,1)]$ hence $a \neq 0$ because if a = 0, then

 $a \ 1 = b \ 0 = 0$, so $(a, b) \sim (0, 1)$, consequently [(a, b)] = [(0, 1)] which is a contradiction.

Thus a is a non zero element in F. Now $[(a,b)][(b,a)] = [(ab,ba)] = [(1,1)] \Leftrightarrow [(b,a)]$ is a multiplicative inverse of [(a,b)]. Hence F is a field. This field called the field of quotients of R. the quotient field of an integral domain (D,+,.) is the smallest field containing D as a subring.

Example. The field of quotients of Z, is the ring of integers is Q

Theorem 2.4.10. The integral domain (R, +, .) can be imbedded in its of quotients

(F, +', .').

Proof. Consider the subset F' of F consisting of all elements of the form [a, 1], where 1 is the multiplicative identity of (R, +, .):

 $F' = \{ [a, 1] : a \in R \}$. Now it is must be show that (F', +', .') is a subring.

Let $f : R \to F'$ be onto mapping defined by f(a) = [a, 1], for each $a \in R$. Since the condition [a, 1] = [b, 1] implies $a \cdot 1 = b \cdot 1$ or a = b, we see f is one to one. Now we show that f is homomorphism:

f(a + b) = [a + b, 1] = [a, 1] + '[b, 1] = f(a) + 'f(b) and $f(a \cdot b) = [a \cdot b, 1] = [a, 1] \cdot '[b, 1] = f(a) \cdot 'f(b)$ Accordingly $(R, +, .) \cong (F', +', .').$

Theorem 2.4.11. (First isomorphism theorem)

If f is a homomorphism from the ring (R, +, .) onto the ring (R', +', .'). Then

$$\left(\frac{R}{\ker f}, +, '\right) \cong (R', +', .').$$

Proof. Put ker f = K. We define a function $\varphi: {R/}_K \to R'$ by

 $\varphi(x+K) = f(x), \text{ for } x \in R.$

We must show that *R* is well defined, suppose $x + K = y + K \Longrightarrow x - y \in K = \ker f$. Therefore f(x - y) = e'. But f is homomorphism, then

$$f(x) - f(y) = e' \Longrightarrow f(x) = f(y) \Longrightarrow \varphi(x+K) = \varphi(y+K).$$

Hence φ is well defined.

Now to show that φ is a homomorphism, suppose that

$$\varphi((x+K) + (y+K)) = \varphi((x+y) + K)$$

$$= f(x+y)$$

$$= f(x) + 'f(y)$$

$$= \varphi(x+K) + '\varphi(y+K).$$

$$\varphi((x+K).(y+K)) = \varphi((x,y) + K)$$

$$= f(x,y)$$

$$= f(x).'f(y)$$

$$= \varphi(x+K).'\varphi(y+K).$$

Hence φ is a homomorphism.

Let $\varphi(x + K) = \varphi(y + K) \Longrightarrow f(x) = f(y) \Longrightarrow f(x) - f(y) = e'$. Since f is a homomorphism, therefore $f(x) - f(y) = e' \Longrightarrow f(x - y) = e' \Longrightarrow x - y \in K \Longrightarrow x + K = y + K$. Hence φ is one-to-one. Finally, for all $z \in R'$ there exists $y \in R$ such that $z = f(y) = \varphi(y + K)$. Hence φ is onto. Therefore φ is an isomorphism and $\binom{R}{K}, +, \cdot \cong \binom{R'}{K}, +', \cdot'$. **Remark.** If f is not onto, then $\binom{R}{Kerf}, +, \cdot \cong \binom{f(R)}{K}, +', \cdot'$.

Theorem 2.4.12. (second isomorphism theorem)

If (S, +, .) is a subring of the ring (R, +, .) and (I, +, .) is an ideal of (R, +, .), then $S + I/I \cong S/S \cap I$. **Proof.** Similarly to prove Theorem 9.3

Theorem 2.4.13. (Third isomorphism theorem)

If (I, +, .) and (J, +, .) are two ideals of the ring (R, +, .) and $I \subset J$, then (J/I, +, .) is an ideal of the ring (R/I, +, .) and $\frac{R/I}{J/I} \cong R/J$. **Proof.** Similarly to prove Theorem 9.4.

Chapter Three Polynomial rings

The polynomial ring R[x] in indeterminate x with coefficients from R is the set of all formal sums $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ with $n \ge 0$ and $a_i \in R$, That is $R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 : n \ge 0 \text{ and } a_i \in R \}.$

If $a_n \neq 0$, then the polynomial is of degree n , $a_n x^n$ is the leading term, and a_n the leading coefficient. Addition of polynomial is component wise

 $\sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i + b_i) x^i$ (where a_n and b_n may be zero in order for addition of polynomials of different degree to be defined).

Multiplication performed by first defined a x^i b $x^i = ab x^{i+j}$ and then extended to all polynomials by distributive law, in general

 $(\sum_{i=0}^{n} a_i x^i) \times (\sum_{i=0}^{n} b_i x^i) = \sum_{i=0}^{n+m} (\sum_{i=0}^{k} (a_i b_{k-i}) x^k).$

Two polynomials $p(x) = a_0 + a_1x + ... + a_nx^n$ and $q(x) = b_0 + b_1x + ... + b_nx^n$, are equal if $a_i = b_i$ for each i. The ring R appears in R[x] as the constant polynomials.

If g(x) is a polynomial over a ring R, then degree g(x) denoted deg g(x).

If R[x] has unity 1 and you must have x(x = (0, 1, 0, 0, ...))

 $2+x^2$ in Z[x] (i.e (2, 0, 1, 0, 0, ...)).

If R is a ring with two determinates, then we can form (R[x])[y] = R[x, y]

The ring $R[x_1, x_2, ..., x_n]$ of polynomials in the n indeterminate x with coefficients in R.

Theorem 3.1. The triple (R[x], +, .) forms a ring, known as the ring of polynomials over R.

Examples. (1) Let $f(x) = 1+3x+2x^5$ a polynomial, then the leading coefficient of f(x) = 2, deg f(x) = 3.

(2) In Z₂[x]. If f(x) = x + 1, then we have (x + 1) + (x + 1) = 2x + 2 = 0, and (x+1)² = x² + 2x + 1 = x² + 1

Remark . Let R be a ring.

(1) If R is a commutative , then so is R[x].

- (2) If R is a ring with identity 1_R , then R[x] is a ring with identity and the identity element is $1_{R[x]} = 1_R + 0_R + ...$
- (3) don't write 1_R when appear as coefficient for a polynomial, as follows: $x^3 + x^2 + 2x + 2 (1.x^3 + 1.x^2 + 2x + 2).$
- (4) In general if f(x) and g(x) are two polynomials over a ring R, then
- (1) deg(f(x) + g(x)) $\leq \max \{ \deg f(x), \deg g(x) \}.$
- (2) deg $(f(x) . g(x)) \le deg f(x) + deg g(x)$.

Example. Let $f(x) = 1+5x+2x^4$ and $g(x) = 1+4x^2$ be two polynomials in $Z_8[x]$. The leading coefficient of f(x) = 2, deg f(x) = 4 and deg g(x) = 2. f(x). $g(x) = 1+4x^2+5x+4x^3+2x^4$ $\rightarrow deg((f(x)+deg g(x))=7 \neq deg((f(x). deg g(x))=4, and$ $f(x) + g(x) = 2+5x+4x^2+2x^4, deg (f(x) + g(x)) = 4.$

Theorem 2.3. Let (R, +, .) be an integral domain and f(x), g(x) be two nonzero elements of (R[x], +, .) then : deg (f(x).g(x)) = deg f(x) + deg g(x).

Proof : suppose f(x), $g(x) \in R[x]$ with deg f(x) = n and deg g(x) = m, so that

 $f(x) = a_0 + a_1 x + \ldots + a_n x^n \qquad , a_n \neq 0$

 $g(x) = b_o + b_1 x + \ldots + b_m x^m \qquad , \ b_m \neq 0$

from the definition of multiplication

 $f(x) \cdot g(x) = a_0 \cdot b_0 + (a_0 \cdot b_1 + a_1 \cdot b_0) x + \dots + (a_n \cdot b_m) x^{n+m}$

since $a_n \not= 0$ and $b_m \not= 0$ and R is an integral domain , then $\ a_n$. $b_m \not= 0$

accordingly, $f(x) \cdot g(x) \neq 0$ and deg(f(x).g(x)) = n+m = deg f(x) + deg g(x)

Corollary 2.4. Let (R, +, .) be an integral domain. Then (R[x], +, .) is an integral domain.

proof. We have if (R, +.) is a commutative ring with identity, then so is (R[x], +, .). To see that (R, +, .) has no divisors, let $f(x) \neq 0$, $g(x) \neq 0$ in R[x]. Then deg (f(x).g(x)) =deg f(x) +deg g(x) > 0, hence the product cannot be the zero polynomial

Theorem 2.5. (Division algorithm)

Let (R, +, .) be a commutative ring with identify and let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ and $g(x) = b_m x^m + b_{n-1} x^{m-1} + ... + b_0$, be two elements in R[x], with both a_n , b_n non zero elements of R and m > 0 and the leading coefficient of g(x) is invertible. Then there are unique polynomials q(x) and r(x) in R[x] such that f(x)=q(x) g(x) + r(x), with r(x) = 0 or degree r(x) < degree g(x).

Examples.

(1) Consider $f(x) = x^4 - 3x^3 + x^{2-} 3x + 1$ in $Z_5[x]$ and let $g(x) = x^2 + 2x - 6$. To find q(x) and r(x), divide f(x) by g(x),

$$\begin{array}{r} x^{2} - x - 3 \\ \hline x^{2} - 2x + 3 \end{array} \\ \hline x^{4} - 3x^{3} + 2x^{2} \\ + x^{4} - 2x^{3} + 3x^{2} \\ - x^{3} - x^{2} + 4x \\ \hline - x^{3} + 2x^{2} - 3x \\ \hline - 3x^{2} + 2x - 1 \\ \hline - 3x^{2} + x - 4 \\ \hline x + 3 \end{array}$$

So $x^4 - 3x^3 + x^2 - 3x + 1 = (x^2 - 2x + 3)(x^2 - 3x + 3) + (3x + 5)$, remembering that the coefficients are in Z₅. Then $q(x) = x^2 - 3x + 3$, and r(x) = 3x + 5.

(2)Consider $f(x) = x^4 + 3x^3 + 2x + 4$ in $Z_5[x]$ and let g(x) = x - 1. To find q(x) and r(x), divide f(x) by g(x),

Definition 2.6. Let (R, +, .) be a ring with identity and $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 \in R[x]$. Then if $r \in R$ we define f(r) by $f(r) = a_n r^n + a_{n-1} r^{n-1} + ... + a_0 \in R$.

Example. Let $f(x) = x^3 + 4x^2 + 3 \in Q(x)$. Then f(2) = 8 + 4(4) + 3 = 27

Definition 2.7. Let R be a commutative ring and f(x) a polynomial over R. Any element $r \in R$ such that f(r) = 0 is a zero of f(x) in R(or r is a root of f(x)).

Definition 2.8. Let R be a commutative ring with identity and f(x), g(x) be non zero polynomials in R[x]. Then g(x) is said to be a factor of f(x), if there exists a non zero polynomial $h(x) \in R[x]$ such that f(x) = h(x) g(x).

Example. Let f(x) = (x-1)(x+5) be a polynomial of Z[x]. Then (x-1) is a factor of f(x).

Proposition 2.9. Let f(x) be a polynomial over a commutative ring with identity and a be an element in R. Then a is a root of f(x) if and only if (x-a) is a factor of f(x).

Proof. Suppose (x-a) is a factor of f(x). Then there exists a polynomial q(x) such that f(x) = q(x) (x-a). Then f(a) = q(a) 0 which implies f(a) = 0, and a is a root of f(x).

Conversely, suppose f(a) = 0. By division algorithm, there exist q(x) and r(x) in R[x] such that f(x) = q(x)(x-a)+ r(x), deg r(x) < deg (x-a) or r(x) = 0.

Since deg (x-a) = 1, then r(x) is a constant polynomial.

But 0 = f(a) = q(a)(a - a) + r(a) = r(a). Hence r(x) = 0, consequently f(x) = q(x) (x-a).

Definition 2.10. The element r is a root of multiplicity m of f(x) if $(x-a)^m | f(x)$ but $(x-a)^{m+1} \nmid f(x)$. A zero of multiplicity 1 is called simple zero.

Theorem 2.11. (Fundamental theorem of algebra):

If f(x) is a non constant polynomial over the field of complex numbers, then f(x) has at least one root in C.

Theorem 2.12. Let R be an integral domain, f(x) be a non zero polynomial over R. If deg f(x) = n, then f(x) has at most n distinct roots R.

Proof. We proved by induction on the degree of f(x). When deg f(x) = 0, then there exists $0 \neq a_0 \in \mathbb{R}$ such that $f(x) = a_0$. This means f(x) has no root in \mathbb{R} .

If deg f(x) = 1, then there exists $0 \neq a_1 \in R$ such that $f(x) = a_0 + a_1 x$. This means f(x) has at most one root in R; indeed, if a_1 is invertible, $-a_1^{-1} \cdot a_0$ is the only root of f(x). Now, suppose the theorem is true for all polynomials of degree $n-1 \ge 1$, and let deg f(x) = n.

If r is a root of f(x), then there exists $q(x) \in R[x]$ such that f(x) = (x-r)q(x), where q(x) of degree n-1.

Any root t of f(x) distinct from r must be a root of q(x), by substitution, we have

f(t) = (r - t)q(t) = 0. Since R has no zero divisors, then q(t) = 0. From hypotheses , q(x) has at most n-1 distinct roots. As the only roots of f(x) are r and those of q(x).

That is f(x) cannot have more than n distict roots in R.

The following example shows that the condition that R is an integral domain is the last theorem is necessary.

Example. Consider the ring $R = Z_2 \times Z_2$. Clearly R is not an integral domain.

Now consider the polynomial $f(x) = x^2 + x$.

It is not difficult to show that every element of $Z_2 \times Z_2$ is a root of f(x), where

 $Z_2 \times Z_2 = \{(0, 0), (1, 0), (0, 1), (1, 1)\}$. So f(x) has four roots.