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Ring Theory 

1.1. Definitions and examples 
Definition 1.1.1 A ring R is a nonempty set together with two binary operation  + and .(called addition 

and multiplication defined on R) if satisfying the following axioms: 

(1) (𝑅,+) is an abelian group, 

(2) (𝑅, . ) is semi-group, 

(3) the distributive law hold in R:   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏, 𝑐 ∈ 𝑅, 

 𝑎. (𝑏 + 𝑐) = 𝑎 . 𝑏 + 𝑎. 𝑐     and    (𝑎 + 𝑏). 𝑐 =  𝑎. 𝑐 +  𝑏 . 𝑐 

 

Example. ( ℤ, +, . ) , ( ℚ,+, . ) , ( ℝ,+, . ) 𝑎𝑛𝑑 (ℂ, +, . ) are ring. 

 

Definition 1.1.2. The ring (𝑅, +, . )  is called commutative if multiplication is commutative (𝑎. 𝑏 =

𝑏. 𝑎, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑅. 

 

Remark. The identity of the operation + in a ring is usually written 0 and called zero. 

 

Definition 1.1.3. The ring 𝑅 is said to be ring with identity 1𝑅 if 𝑎. 1 = 1. 𝑎 = 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑅. 

 

Example: 

( ℤ, +, . ) , ( ℚ,+, . ) , ( ℝ,+, . ) 𝑎𝑛𝑑 (ℂ, +, . ) are commutative ring with identity. 

 

Definition 1.1.4. Let 𝑅 be a ring with identity.  An element 𝑎 ∈  𝑅 is called a unit (or an invertible 

element) if there exists 𝑏 ∈ 𝑅 such that 𝑎𝑏 = 1 = 𝑏𝑎. We denoted the set of all unit elements in 𝑅 by 𝑅∗. 

 

Theorem 1.1.5. Let 𝑅 be a ring with identity. Then (𝑅∗, . ) is a group. 

Proof. Since 1𝑅 ∈ 𝑅
∗, then 𝑅∗ is a non-empty set. 

Now we prove that the axioms of group are satisfies: 

1- let 𝑥, 𝑦 ∈ 𝑅∗, that is each of 𝑥 𝑎𝑛𝑑 𝑦 has inverse multiplication.  Hence 

(𝑥. 𝑦)(𝑦−1. 𝑥−1) = 𝑥. (𝑦. 𝑦−1). 𝑥−1 = 𝑥. 1𝑅 . 𝑥
−1 = 𝑥. 𝑥−1 = 1𝑅 and (𝑦−1. 𝑥−1). (𝑥. 𝑦) =

𝑦−1. (𝑥−1. 𝑥). 𝑦 = 𝑦−1. 1𝑅 . 𝑦 = 𝑦
−1. 𝑦 = 1𝑅 .  

This implies that 𝑦−1. 𝑥−1 is invers of 𝑥. 𝑦 and 𝑥. 𝑦 ∈ 𝑅∗.  Hence the set 𝑅∗ is closed under 

multiplication. 

2- associative law are holds because (𝑅, +, . )is ring.  

3- 1𝑅 ∈ 𝑅
∗ is identity element. 

4- If 𝑥 ∈ 𝑅∗, then 𝑥. 𝑥−1 = 𝑥−1. 𝑥 = 1𝑅 ⟹ 𝑥−1 ∈ 𝑅∗. 

(𝑅∗, . ) is group. 

Example.(1)  In (𝑍6, +6, .6 ) we see (𝑍6
∗ = {1, 5} and (𝑍6

∗, .6 ) is an abelian group. 
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(2) Let 𝑋 be a non-empty set. If 𝑃(𝑋) is a power set of 𝑋, then show that (𝑃(𝑋), ∆,∩) 

      Is a commutative ring with identity? 

(3) Let 𝑀2(ℝ) = {(
𝑎 𝑏
𝑐 𝑑

) ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}be the square matrix of ℝ. Show that (𝑀2(ℝ),+, . ) a ring 

with identity.  

Definition 1.1.6. Let (𝑅,+, . ) be a ring. For all 𝑎 ∈ 𝑅 and for all integer 𝑛 define  

𝑛𝑎 =

{
 
 

 
 
𝑎 + 𝑎 +⋯+ 𝑎⏟        

𝑛−𝑡𝑖𝑚𝑒𝑠

                            𝑖𝑓 𝑛 > 0 

(−𝑎) + (−𝑎) + ⋯+ (−𝑎)⏟                
|𝑛|−𝑡𝑖𝑚𝑒𝑠

      𝑖𝑓 𝑛 < 0

0𝑅                                                𝑖𝑓 𝑛 = 0

      

and define  

𝑎𝑛 = 𝑎. 𝑎 …𝑎⏟    
𝑛−𝑡𝑖𝑚𝑒𝑠

        𝑖𝑓 𝑛 > 0 

If 𝑅 with identity, then 𝑎0 = 1𝑅.  

If 𝑅 with identity and a has a multiplicative inverse, then 

 𝑎𝑛 = 𝑎−1. 𝑎−1…𝑎−1⏟        
|𝑛|−𝑡𝑖𝑚𝑒𝑠

      𝑖𝑓 𝑛 < 0 

Theorem 1.1.7. Let (𝑅,+, . ) be a ring, for 𝑎, 𝑏 ∈ 𝑅 and arbitrary  integers n 𝑎𝑛𝑑  𝑚 the following hold: 

1- (𝑛 + 𝑚)𝑎 = 𝑛𝑎 +𝑚𝑎, 

2- 𝑛(𝑎 + 𝑏) = 𝑚𝑎 +𝑚𝑏, 

3- (𝑛𝑚)𝑎 = 𝑛(𝑚𝑎). 

Theorem 1.1.8. Let (𝑅,+, . ) be a ring and 0𝑅 be a zero element. The for all 𝑎, 𝑏, 𝑐 ∈  𝑅 the following 

hold: 

1- 𝑎. 0𝑅 = 0𝑅 . 𝑎 = 0𝑅 . 

2- 𝑎. (−𝑏) = (−𝑎). 𝑏 = −(𝑎. 𝑏). 

3- (−𝑎). (−𝑏) = 𝑎. 𝑏. 

4- 𝑎. (𝑏 − 𝑐) = 𝑎. 𝑏 − 𝑎. 𝑐. 

Proof. 1- Since 𝑎. 0𝑅 = 𝑎. (0𝑅 + 0𝑅) = 𝑎. 0𝑅 + 𝑎. 0𝑅 . 

Thus, 

                             𝑎0𝑅 +  𝑎0𝑅  =  𝑎(0𝑅  +  0𝑅)  =  𝑎0𝑅 

                       ⇒ (𝑎0𝑅  +  𝑎0𝑅)  +  (−(𝑎0𝑅))  =  𝑎0𝑅  +  (−(𝑎0𝑅)) 

                       ⇒ 𝑎0 + (𝑎0 + (−(𝑎0)))  =  0           because 𝑎0𝑅  + (−(𝑎0𝑅))  =  0𝑅 
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                       ⇒ 𝑎0𝑅 + 0𝑅  =  0𝑅                              because 𝑎0𝑅  + (−(𝑎0𝑅))  =  0𝑅 

                       ⇒ 𝑎0𝑅  =  0𝑅                                        because 𝑎0𝑅  + 0𝑅  =  𝑎0𝑅. 

Similarly, 0𝑅𝑎 =  0𝑅. 

2-H.w 

3-By (2) we get  (−𝑎). (−𝑏) = −(𝑎. (−𝑏)) = −(−(𝑎. 𝑏)) = 𝑎. 𝑏. 

4-H.w 

Corollary 1.1.9. Let (𝑅,+, . ) be a ring with identity such that 𝑅 ≠ {0𝑅}. Then the element 0𝑅 and 1𝑅 are 

distinct. 

Proof. Suppose 𝑅 ≠ {0𝑅},. Let 𝑎 ∈  𝑅 be such that 𝑎 ≠  0. Suppose 0𝑅 = 1𝑅.  

It follows 𝑎 = 𝑎. 1𝑅 = 𝑎. 0𝑅 = 0𝑅, a contradiction. Thus, 0𝑅 ≠ 1𝑅 . 

 

Corollary 1.1.10. Let (𝑅, +, . ) be a ring with identity such that 𝑅 ≠ {0𝑅}. Then for all 𝑎 ∈ 𝑅, the 

following are hold: 

1- (−1). 𝑎 = −𝑎 and  

2- (−1). (−1) = 1. 

Definition 1.1.11.  Let (𝑅,+, . ) be a ring and let 𝑆 be a non empty subset of  𝑅 ( 𝑖. 𝑒 ∅ 𝑆𝑅). If 

(𝑆, +, . ) is itself a ring, then (𝑆, +, . ) is said to a subring of (𝑅,+, . ). 

Remark. Every ring (𝑅,+, . ) has two trivial subring; for, if 0 denote the zero element of the ring 

(𝑅,+, . ), then both ({0},+, . ) and the ring itself are subrings of (𝑅,+, . ). 

Definition 1.1.12. Let (𝑅, +, . ) be a ring and ∅ 𝑆𝑅. Then (𝑆, +, . ) is a subring of (𝑅,+, . ) if and only 

if  

1-  𝑎 –  𝑏𝑆, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏𝑆( closed under differences) 

2-  𝑎. 𝑏𝑆 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏𝑆 ( closed under multiplication) 

Examples. 

1- (𝑍,+, . ) is a subring of (𝑅, +, . ) and (𝑄,+, . ). 

2- (𝑍𝑒 , +, . ) is a subring of (𝑍,+, . ). 

3-  Let R denote the set of all functions 𝑓: 𝑅# ⟶𝑅#. The sum 𝑓 + 𝑔 and the product 𝑓. 𝑔 of two 

function 𝑓, 𝑔 ∈  𝑅 are defined by  

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥),  

(𝑓. 𝑔)(𝑥) = 𝑓(𝑥). 𝑔(𝑥), 𝑥 ∈ 𝑅#  

Suppose (𝑅,+, . ) is the commutative ring of function  of above. Define  

𝑆 = {𝑓 ∈ 𝑅 |  𝑓(1) = 0}. 

Definition 1.1.13. The center of a ring (𝑅, +, . ), denoted by 𝒄𝒆𝒏𝒕 (𝑹), is the set  
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𝐶𝑒𝑛𝑡(𝑅) =  { 𝑐 ∈  𝑅 | 𝑐. 𝑥 =  𝑥. 𝑐, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑅}. 

Remark.  If ( 𝑅, +, . ) is comuutaive, then 𝑐𝑒𝑛𝑡(𝑅) =  𝑅. 

Theorem 1.1.14.  Let (𝑅, +, . ) be a ring. Then (𝑐𝑒𝑛𝑡 (𝑅),+, . ) is a subring of (𝑅,+, . ) . 

Proof.  Since 𝑎. 0𝑅 = 0𝑅 . 𝑎, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑅, then 0𝑅 ∈ 𝑐𝑒𝑛𝑡 (𝑅), hence 𝑐𝑒𝑛𝑡(𝑅) ≠ ∅.  

Let 𝑥, 𝑦𝑐𝑒𝑛𝑡(𝑅). To prove that 𝑥 − 𝑦𝑐𝑒𝑛𝑡(𝑅). 

For all 𝑎 ∈  𝑅, then  

(𝑥 − 𝑦). 𝑎 = 𝑥. 𝑎 − 𝑦. 𝑎 = 𝑎. 𝑥 − 𝑎. 𝑦 = 𝑎(𝑥 − 𝑦). 

Therefore  𝑥 − 𝑦 ∈  𝑐𝑒𝑛𝑡(𝑅), and  

 (𝑥. 𝑦). 𝑎 = 𝑥. (𝑦. 𝑎) = 𝑥(𝑎. 𝑦) = (𝑥. 𝑎). 𝑦 = (𝑎. 𝑥). 𝑦 = 𝑎. (𝑥. 𝑦). 

Therefore  𝑥. 𝑦 ∈  𝑐𝑒𝑛𝑡(𝑅), hence (𝑐𝑒𝑛𝑡 (𝑅), +, . ) is a subring of (𝑅,+, . ). 

 

Solve the following problems 

Q1/ In a ring (𝑍,⊕,⊙), where 𝑎 ⊕  𝑏 =  𝑎 +  𝑏 –  1 and 𝑎 ⊙ 𝑏 =  𝑎 +  𝑏 –  𝑎𝑏,   

      𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 , 𝑏 ∈  𝑍. Find zero element and identity element. 

 

Q2/ Let R denote the set of all functions 𝑓: 𝑅# ⟶𝑅#. The sum 𝑓 + 𝑔 and the product 𝑓. 𝑔 of   

 two function 𝑓, 𝑔 ∈  𝑅 are defined by  

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥),        (𝑓. 𝑔)(𝑥) = 𝑓(𝑥). 𝑔(𝑥), 𝑥 ∈ 𝑅#.  

Show that (𝑅, +, . ) is the commutative ring. 

Q3/  Let (𝑅, +, . ) be an arbitrary ring. In R define a new binary operation * by 

        𝑎 ∗ 𝑏 = 𝑎. 𝑏 + 𝑏. 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑅.  Show that (𝑅,+,∗) is a commutative ring. 

Q4/ Show that the multiplicative identity in a ring with unity 𝑅 is unique.  

Q5/  Suppose that 𝑅 is a ring with unity and that 𝑎 ∈  𝑅 is a unit of 𝑅. Show that the multiplicative   

         inverse of 𝑎 is unique. 

Q6/ Let (3Z , +) be an abelian group under usual addition where 3𝑍 =  {3𝑛 | 𝑛 ∈  𝑍}. Show  

        that (3𝑍 , + , ⊙) is a commutative ring with identity 3, where 𝑎 ⊙ 𝑏 =
𝑎𝑏

3
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 3𝑍. 

Q6/  Let (𝑅, +, . ) be a ring which has the property that 𝑎2 = 𝑎  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑎 ∈ 𝑅.  Prove that 

        (𝑅,+, . ) is a commutative ring. [ Hint: First show 𝑎 + 𝑎 = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑎 ∈ 𝑅]. 

 

Q7/ Prove that a ring 𝑅 is commutative if and only if                                                                                 

                                   𝑎2 − 𝑏2 = (𝑎 + 𝑏)𝑎 − 𝑏), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝑅. 

Q8/ Prove that a ring 𝑅 is commutative if and only if 

                                   (𝑎 +  𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈  𝑅. 
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Q9/ Let 𝑅 be the set of all ordered pairs of nonzero real numbers. Determine whether (𝑅, +, . ) is  

        a commutative ring with identity.  

(a) (𝑎, 𝑏) + (𝑐, 𝑑) =  (𝑎𝑐, 𝑏𝑐 + 𝑑),    (𝑎, 𝑏). (𝑐, 𝑑) =  (𝑎𝑐, 𝑏𝑑) 

(b) (𝑎, 𝑏) + (𝑐, 𝑑) =  (𝑎 + 𝑐, 𝑏 + 𝑑),    (𝑎, 𝑏). (𝑐, 𝑑) =  (𝑎𝑐, 𝑎𝑑 + 𝑏𝑐). 

 

Q10/ Find all units in the rings  

1-  (𝑍9, +9,  ×9).        2- 𝑍 × 𝑍        3- 𝑍3 × 𝑍3                4- 𝑍4 × 𝑍6. 

Q11/  Is 𝑍2 a subring of 𝑍6? Is 3𝑍9 a subring of 𝑍9? 

 

 

1.2. Some type of rings. 

Definition 1.2.1. A nonzero element a in a ring 𝑅 is called a zero divisor if there exists 𝑏 ∈  𝑅 such that 

𝑏 ≠  0 and 𝑎𝑏 =  0. 

 In particular, 𝑎 is a left divisor of zero and 𝑏 is a right divisor of zero. 

Definition 1.2.2. An integral domain is a commutative ring with identity which does not have divisors of 

zero. 

Examples. (𝑍,+, . ) , (𝑄,+, . ) 𝑎𝑛𝑑 (𝑍𝑝, +𝑝, .𝑃 ) are integral domain but (𝑍6, +6, .6 )is not integral 

domain. 

Definition 1.2.3. An element 𝑎 of a ring (𝑅,+, . ) is said to be a nilpotent if there exists a positive integer 

n such that 𝑎𝑛 = 0. 

Example. Find nilpotent element in 𝑍8 and 𝑍4 × 𝑍6. 

The nilpotent element in 𝑍8 are 0,  2, 4 and 6. 

The nilpotent element in 𝑍4 are 0 and 2, and the nilpotent element in 𝑍6 is  0 , hence The nilpotent 

element in 𝑍4 × 𝑍6 are (0, 0) and (2, 0).  

 

Theorem 1.2.4. Let (𝑅,+, . ) be a commutative ring with identity. Then (𝑅,+, . ) is an integral domain if 

and only if the cancellation law holds for multiplication. 

Proof. We suppose that R is an integral domain . Let 𝑎, 𝑏 , 𝑐 ∈  𝑅 such that 𝑎 ≠ 0 and  

𝑎. 𝑏 = 𝑎. 𝑐. Hence 𝑏 = 𝑐. 
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Conversely, suppose that the cancellation law holds and . 𝑏 = 0 . 

If the element 𝑎 ≠ 0, then by Theorem 2.1.6 we have 𝑎. 0 = 0, hence  

𝑎. 𝑏 = 0 = 𝑎. 0, consequently 𝑏 = 0. That is 𝑅 has no divisors of zero and 𝑅 commutative with identity, 

we get 𝑅 is an integral domain. 

Corollary 1.2.5. Let  (𝑅,+, . ) be an integral domain. Then the only solution of the equation 𝑎2 = 𝑎 are 

𝑎 = 0 and 𝑎 = 1.  

Proof. Clearly 0 is the solution of the equation 𝑎2 = 𝑎. 

Now , if 𝑎2 = 𝑎 𝑎𝑛𝑑 𝑎 ≠ 0, since 𝑎 = 𝑎. 1 and 𝑎. 𝑎 = 𝑎2 = 𝑎 = 𝑎. 1, hence by cancellation law we get  

𝑎 = 1. 

Definition 1.2.6. A ring (𝑅,+, . ) is said to be a division ring(skew field ) if it is a ring with identity in 

which every nonzero element has a multiplicative inverse. 

  

Definition 1.2.7. A field is a commutative ring with identity in which each nonzero element has an 

inverse under multiplication. 

Examples:  

1- (𝑄,+, . ) , (𝑅, +, . ) 𝑎𝑛𝑑 (ℂ, +, . ) are field(field of rational numbers, field of real numbers, field of 

Complex numbers) . 

 

2- (Zn ,+n ,.n) is a field if and only if n is a prime number. 

3- (𝑍 , + , . ) is an integral domain but not a field. 

 

Theorem 1.2.8. Every field is an integral domain. 

Proof.  Let (𝑅,+, . ) be a field. Then R is a commutative ring with identity. 

Let 𝑎, 𝑏 ∈ 𝑅 𝑎𝑛𝑑 𝑎. 𝑏 =  0 𝑤𝑖𝑡ℎ 𝑎 ≠ 0.  

Since R is a field, then the element a has an inverse.. The hypothesis a.b =0 yields   

𝑎−1. (𝑎. 𝑏) = 𝑎−1. 0 ⟹  (𝑎−1. 𝑎). 𝑏 =  0 ⟹  𝑏 =  0. 

That is 𝑅 contains  no divisors of zero. Hence 𝑅 is an integral domain. 

Theorem 1.2.9. Any finite integral domain is a field. 

Proof. Let (𝑅,+, . ) be an integral domain contains n distinct elements say 𝑥1, 𝑥2 , … , 𝑥𝑛. 
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Let 𝑥 ≠ 0 be any element of 𝑅, consider the elements  𝑥. 𝑥1, 𝑥. 𝑥2 , … , 𝑥. 𝑥𝑛 ∈ 𝑅. These products are all 

distinct because 

 If 𝑥. 𝑥𝑖 = 𝑥. 𝑥𝑗 , 𝑓𝑜𝑟 𝑖 ≠ 𝑗 ⟹ 𝑥. (𝑥𝑖 − 𝑥𝑗) = 0, but 𝑥 ≠ 0 ⟹ 𝑥𝑖 − 𝑥𝑗 = 0 ⟹ 𝑥𝑖 = 𝑥𝑗, 

which is contradiction to 𝑥1, 𝑥2 , … , 𝑥𝑛 are all distinct.  

Since 1 𝑅 , then 𝑥. 𝑥𝑘 = 1 for some 𝑘 and 𝑥. 𝑥𝑘 = 𝑥𝑘 . 𝑥 = 1 ⟹ 𝑥 has multiplicative inverse and 𝑥−1 =

𝑥𝑘. That is (𝑅, +, . ) is a field. 

 

Theorem 1.2.10. The ring (𝑍𝑛, +𝑛, .𝑛 )of integers modulo n is a field if and only if n is a prime number. 

Proof. Suppose that 𝑅 is a field. To prove that 𝑛 is a prime number. 

If  𝑛 is not prime, then 𝑛 =  𝑎. 𝑏 where 0 < 𝑎 < 𝑛 𝑎𝑛𝑑 0 < 𝑏 < 𝑛. It follows  

[𝑎].𝑛 [𝑏] = [𝑎. 𝑏] = [𝑛] = [0] . 

Since [𝑎] ≠ [0], [𝑏] ≠ [0]. This means that the system (𝑍𝑛, +𝑛, .𝑛 )is not an integral domain and hence 

not a field. 

Conversely suppose that n is a prime number. To prove that  (Zn ,+n , .n) is a field, enough to show that is 

an integral domain. 

Let [𝑎], [𝑏] ∈ 𝑍𝑛 and [𝑎].𝑛 [𝑏] = [0] ⟹ [𝑎. 𝑏] = [0] = [𝑛] 

⟹ 𝑎. 𝑏 ≡ 0(𝑚𝑜𝑑  𝑛) ⟹ 𝑎. 𝑏 = 𝑘𝑛, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 

⟹ 𝑛 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑎. 𝑏 ⟹ 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑎 𝑜𝑟 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑎 𝑏 ⟹ 

𝑎 ≡ 0(𝑚𝑜𝑑 𝑛)𝑜𝑟 𝑏 ≡ 0( 𝑚𝑜𝑑 𝑛) ⟹ [𝑎] = [0]𝑜𝑟 [𝑏] = [0] 

Hence (𝑍𝑛, +𝑛, .𝑛 ) has no divisors of zero, that is (𝑍𝑛, +𝑛, .𝑛 ) is an integral domain. 

 

Definition 1.2.11. Let (𝑅, +, . ) be a ring. If there exists a positive integer 𝑛 such that 𝑛𝑎 = 0 for all 𝑎 ∈

𝑅, then the smallest such integer is called the characteristic of the ring. If no such positive integer exists, 

then we say (R, +, .) has characteristic zero.  

 

Example. The rings Z, Q, R, C have characteristic 0. 

 

Theorem  1.2.12. : Let (𝑅, +, . ) be a ring with identity. Then(𝑅,+, . ) has characteristic 𝑛 > 0 if and 

only if 𝑛 is the least positive integer for which 𝑛. 1 =  0. 

Proof: If the ring (𝑅,+, . ) is of characteristic 𝑛 > 0, it follows that 𝑛. 1 = 0. 

Where 𝑚. 1 = 0, where 0 < 𝑚 < 𝑛, then  

𝑚. 𝑎 =  𝑚. (1. 𝑎)  =  (𝑚. 1). 𝑎 = 0.1 = 0 for every 𝑎𝑅. This mean The characteristic of (𝑅,+, . ) is 

less than 𝑛, which is contradiction. 

Conversely,  Let 𝑛 be the least positive integer in which 𝑛. 1 = 0. 

Let 𝑎𝑅, 𝑎 0. 

𝑛. 𝑎 =  𝑛. (1. 𝑎)  =  (𝑛. 1). 𝑎 =  0. 𝑎 =  0  

Then (𝑅,+, . ) has characteristic 𝑛 > 0. 

 

Corollary 1.2.13. The characteristic of an integral domain (𝑅,+, . ) is either zero or a prime. 

Proof. Let (𝑅,+, . ) be a positive characteristic n and assume that 𝑛 is not a prime   
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Then n can be written as 𝑛 = 𝑎. 𝑏 with 1 < 𝑎, 𝑏 < 𝑛 . 

By Theorem 1.2.12 we have  0 =  𝑛. 1 =  (𝑎. 𝑏). 12  =  (𝑎. 1). (𝑏. 1). 

Since by hypothesis (𝑅,+, . ) is without zero divisors, then either 𝑎. 1 = 0 𝑜𝑟 𝑏. 1 = 0. But this 

contradicts the choice of 𝑛 as the least positive integer such that 𝑛. 1 = 0. 

Hence the characteristic of (𝑅,+, . ) must be prime. 

 

Example. Show that the characteristic of the ring (𝑃(𝑋),  ,∩) is equal two.  

Since ∅  is the zero element of the ring (𝑃(𝑋),  ,∩). 

Now for all 𝐴 ∈ 𝑃(𝑋), then   

2𝐴 = 𝐴𝐴 =  (𝐴 –  𝐴) (𝐴 –  𝐴) = ∅. 

From the definition of characteristic, then the characteristic of (𝑃(𝑋),  ,∩) is 2. 

 

Solve the following problems 

Q1/ Give an example of  a division ring which is not a field. 

Q2/ Prove that  𝑇 = {(
𝑎 𝑏
−𝑏 𝑎

)|  𝑎, 𝑏, 𝑐 ∈ ℝ} is a subring of 𝑀2(ℝ). 

Q3/ In (𝑍12, +12,  ×12),  find  (i) (2)2 +12 (9)
−2     . 

 

Q4/ Suppose that a and b belong to a commutative ring and ab is a zero-divisor. Show that either a or b  

        is a zero-divisor. 

Q5/ Complete the operation tables for the ring 𝑅 = {𝑎, 𝑏, 𝑐, 𝑑}: 
 

+ a b c d   . a b c d  

 a b c d   a a a a a  

b b a d c   b a b    

c c d a b   c a   a  

d d c b a   d a b c   

 

 

Is 𝑅 a commutative ring? Does it have a unity? What is its characteristic? 

Hint. 𝑐. 𝑏 = (𝑏 + 𝑑). 𝑏;  𝑐. 𝑐 =  𝑐. (𝑏 + 𝑑); etc. 

 

Q6/ Let R and S be commutative rings. Prove or disprove the following statements. 

(a) An element (𝑎, 𝑏) ∈ 𝑅 × 𝑆 is nilpotent if and only if 𝑎 nilpotent in 𝑅 and 𝑏 is nilpotent in 𝑆. 

 

(b) An element (𝑎, 𝑏) ∈ 𝑅 × 𝑆 is a zero divisor if and only if 𝑎 is a zero divisor in 𝑅 and 𝑏 is a zero  

divisor in 𝑆. 

 

Q7/ Show that 𝑄[√2]  =  {𝑎 +  𝑏√2 ∈  𝑅 | 𝑎, 𝑏 ∈  𝑄} is a subfield of the field 𝑅. 

 

 

1.3. Ideals and Quotient rings. 
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Definition 2.3.1.  A subring ( 𝐼, +, . ) of the ring (𝑅,+, . ) is an ideal of (𝑅,+, . )                          if and only 

if  𝑟 ∈  𝑅 and 𝑎 ∈  𝐼 imply both 𝑟. 𝑎 ∈  𝐼 and 𝑎. 𝑟 ∈  𝐼. 

Definition 2.3.2. Let (𝑅,+, . ) be a ring. Let 𝐼 be a nonempty subset of 𝑅. 

(i) 𝐼 is called a left ideal of 𝑅 if for all 𝑎, 𝑏 ∈  𝐼 and for all 𝑟 ∈  𝑅, 𝑎 −  𝑏 ∈  𝐼, 𝑟𝑎 ∈  𝐼. 

(ii) 𝐼 is called a right ideal of 𝑅 if for all 𝑎, 𝑏 ∈  𝐼 and for all 𝑟 ∈  𝑅, 𝑎 − 𝑏 ∈  𝐼, 𝑎𝑟 ∈  𝐼. 

(iii) I is called a (two-sided) ideal of R if I is both a left and a right ideal of R. 

 

Remark. In a commutative ring , every right ideal is left ideal. 

Examples.  

1) The subring ({0,2,4}, +6, .6 ) is an ideal of (𝑍6, +6, .6 ). 

2) The trivial subrings (𝑅, +, . ) 𝑎𝑛𝑑 ({0}, +, . ) of the ring (𝑅,+, . ) are both ideals.  

Any ideal different from (𝑅, +, . ) is called proper ideal. 

  

3) In the ring (𝑍,+, . ), 𝐼 =< 𝑎 >= {𝑛𝑎| 𝑛 ∈ 𝑍} for a fixed integer  . Then 𝐼  is an ideal of (𝑍,+, . ) 

because 𝑛𝑎 −𝑚𝑎 = (𝑛 −𝑚)𝑎 ∈ 𝐼  𝑎𝑛𝑑   𝑚(𝑛𝑎) = (𝑚𝑛)𝑎 ∈,  where  𝑛,𝑚 ∈ 𝑍. 

4) (𝑍,+, . ) is not ideal of (𝑄,+, . ) but (𝑍,+, . ) is a subring of (𝑄,+, . ).  

Since  1 ∈ 𝑍 and 
1

2
∈ 𝑄, then 1.

1

2
=
1

2
∉ 𝑍 . Then (𝑍,+, . ) is not ideal of (𝑅,+, . ). 

5) Let (𝑀2(𝑅),+, . ) be the square matrix ring over the field of real number.  Then (𝑐𝑒𝑛𝑡 (𝑅), +, . ) is not 

an ideal. 

 

 Definition 2.3.3. A ring which contains no ideals except trivial ideals is said to be a simple ring. 

 

Definition 2.3.4. Let (𝑅,+, . ) be a commutative ring with identity. An ideal (𝐼, +, . ) is called a principal 

ideal of the ring (𝑅,+, . ) if generated by a single element 𝑎 and denoted by 𝐼 = (𝑎) = {𝑟. 𝑎 | 𝑟 ∈ 𝑅}.   

 

Example. In the ring (𝑍,+, . ) the ideal (2) = {2. 𝑟 | 𝑟 ∈  𝑍 }  = 2𝑍 is a principal ideal generated by 2 and 

(3) = {3. 𝑟 | 𝑟 ∈  𝑍 }  = 3𝑍 is a principal ideal generated by 3. 

 

Theorem 2.3.5. If (𝐼, +, . ) is an ideal of the ring (𝑍,+, . ), then 𝐼 = (𝑛) for some nonnegative integer 𝑛.  

Proof. If 𝐼 = (0), then the theorem is true.  

Suppose then that 𝐼 ≠ (0), that is there exists 0 ≠ 𝑚 ∈  𝐼.  Since I is an ideal, then –𝑚 ∈  𝐼 , so 𝐼 contains 

positive integers.  

Let 𝑛 be the least positive integer in 𝐼. We claim 𝐼 = (𝑛). 

Since 𝑛 ∈  𝐼 and (𝐼, +, . ) is an ideal of (𝑍,+, . ), then 𝑘𝑛 ∈ 𝐼, for all 𝑘 ∈  𝑍, that is (𝑛) ⊆ 𝐼. 

On the other hand, any integer 𝑘 ∈  𝐼. By division Algorithm there exists 𝑞, 𝑟 ∈  𝑍 such that  𝑘 = 𝑞𝑛 + 𝑟, 

where 0 ≤ 𝑟 < 𝑛. 

Since 𝑘 𝑎𝑛𝑑 𝑞𝑛 are members of 𝐼, it follows that 𝑘 − 𝑞𝑛 = 𝑟 ∈ 𝐼.  

Our 𝑛 be a least integer implies 𝑟 = 0, and consequently 𝑘 = 𝑞𝑛 ⟹ 𝑘 ∈ (𝑛) 

Therefore 𝐼 = (𝑛). 



 
 

10 
 

 

Definition 2.3.6. Let (𝑅,+, . ) be a commutative ring with identity. A ring (𝑅,+, . ) is called a principal 

ideal ring if every ideal is principal. 

  

Theorem 2.3.7. Let (𝑅,+, . ) be a ring with identity element and 𝐼 be an ideal of 𝑅 containing identity 

element .Then 𝐼 = 𝑅 . 

Proof . Since 𝐼 is an ideal of 𝑅, then 𝐼  𝑅. 

Let 𝑅 , then 𝑟 = 𝑟. 1 ∈ 𝐼  (because 𝐼 is an ideal of 𝑅) ⟹ 𝑟 ∈ 𝐼 ⟹   𝑅 ⊆ 𝐼 ⟹ 𝐼 = 𝑅.   

 

Theorem 2.3.8. If (𝐼, +, . ) is a proper ideal of a ring (𝑅,+, . ) with identity, then no element of I has a 

multiplicative inverse; that is ∩ 𝑅∗ = ∅ . 

Proof. Suppose to the contrary that there is 0 ≠ 𝑎 ∈ 𝐼 such that 𝑎−1exists. 

Since 𝐼 is an ideal, then 1 = 𝑎. 𝑎−1 ∈ 𝐼 ⟹ 𝐼 = 𝑅, contradiction the hypothesis that 𝐼 is a proper subset of 

𝑅 

  

ITheorem 2.3.9. If (𝐼1, +, . ) and (𝐼2, +, . ) are two ideals of  the ring (𝑅,+, . ), then (𝐼1 ∩ 𝐼2, +, . ) is also 

an ideal. 

Proof. Since (𝐼1, +, . ) and (𝐼2, +, . ) are ideals of the ring (𝑅,+, . ), then 0 ∈ 𝐼1 and 0 ∈ 𝐼2, hence 0 ∈ 𝐼1 ∩

𝐼2. This implies that  𝐼1 ∩ 𝐼2 ≠ ∅. 

Suppose 𝑎, 𝑏 ∈ 𝐼1 ∩ 𝐼2 and 𝑟 ∈ 𝑅.  Then 𝑎, 𝑏 ∈ 𝐼1 and 𝑎, 𝑏 ∈ 𝐼2. 

As the (𝐼1, +, . ) and (𝐼2, +, . ) are ideals of the ring (𝑅,+, . ), it follows from definition  

𝑎 − 𝑏 ∈ 𝐼1, 𝑎𝑟 ∈ 𝐼1 and 𝑟𝑎 ∈ 𝐼1, and also 𝑎 − 𝑏 ∈ 𝐼2, 𝑎𝑟 ∈ 𝐼2 and 𝑟𝑎 ∈ 𝐼2. 

Hence 𝑎 − 𝑏 ∈ 𝐼1 ∩ 𝐼2, 𝑎𝑟 ∈ 𝐼1 ∩ 𝐼2  and 𝑟𝑎 ∈ 𝐼1 ∩ 𝐼2, which implies that  (𝐼1 ∩ 𝐼2, +, . )  is an ideal of 

(𝑅,+, . ). 

 

Theorem 3.2.10. Let (R, +, .) be a commutative ring with identity. Then (R, +, .) is a field if and only if 

(R, +, .) has no nontrivial ideals. 

Quotient rings 

We now give the analogue of quotient groups for rings. Let 𝑅 be a ring and 𝐼 an ideal of 𝑅. Let 𝑥 ∈  𝑅. 

Let 𝑥 + 𝐼 denote the set 𝑥 +  𝐼 =  {𝑥 +  𝑎 | 𝑎 ∈  𝐼 }. 

The set 𝑥 +  𝐼 is called a coset of 𝐼 .For 𝑥, 𝑦 ∈  𝑅, By Theorem 6.1,  𝑥 +  𝐼 =  𝑦 +  𝐼 if and only if 𝑥 −

 𝑦 ∈  𝐼. 

Let 𝑅/𝐼 denote the set 𝑅/𝐼 =  {𝑥 +  𝐼 | 𝑥 ∈  𝑅}. Because 𝐼 = 0 + 𝐼 ∈  𝑅/𝐼, 𝑅/𝐼 is a nonempty set. 

Define the operations + and · on 𝑅/𝐼 as follows:  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 + 𝐼,   𝑦 +  𝐼 ∈  𝑅/𝐼 

(𝑥 +  𝐼 ) + (𝑦 +  𝐼 ) = (𝑥 +  𝑦) + 𝐼, and (𝑥 +  𝐼 )  ·  (𝑦 +  𝐼 ) = 𝑥𝑦 +  𝐼. 

We leave it as an exercise for verify that +  and · are binary operations on 𝑅/𝐼 . 

Under these binary operations (𝑅/𝐼, +,·) satiesfies the properties of a ring.  

Let us verify some of these properties. 

Let  𝑥 +  𝐼, 𝑦 +  𝐼, 𝑧 +  𝐼 ∈  𝑅/𝐼 . Now 



 
 

11 
 

(𝑥 + 𝐼) + ((𝑦 + 𝐼) + (𝑧 + 𝐼)) = (𝑥 + 𝐼) + ((𝑦 +  𝑧) + 𝐼 ) = (𝑥 + (𝑦 +  𝑧))  +  𝐼 

                                                      = ((𝑥 +  𝑦) + 𝑧) + 𝐼, 

                             = ((𝑥 + 𝑦) + 𝐼 ) + (𝑧 +  𝐼 ) = ((𝑥 +  𝐼 ) + (𝑦 +  𝐼 ))  +  (𝑧 +  𝐼 ). 

This shows that + is associative in /𝐼 . Similarly, + is commutative. Next, note that 0 + 𝐼 =  𝐼 is the 

additive identity and for  + 𝐼 ∈  𝑅/𝐼 , (−𝑥) + 𝐼 is the additive inverse of 𝑥 +  𝐼. As in the case of the 

associativity for +, 

we can show that · is associative. 

Next, let us verify one of the distributive law. Now 

(𝑥 +  𝐼 )  ·  ((𝑦 +  𝐼 ) + (𝑧 +  𝐼 ))  =  (𝑥 +  𝐼 )  ·  ((𝑦 +  𝑧) + 𝐼 ) = (𝑥(𝑦 +  𝑧))  +  𝐼 

= (𝑥𝑦 +  𝑥𝑧) + 𝐼 = (𝑥𝑦 + 𝐼 ) + (𝑥𝑧 +  𝐼 ) 

= ((𝑥 +  𝐼 )  ·  (𝑦 +  𝐼 ))  +  ((𝑥 +  𝐼 )  ·  (𝑧 +  𝐼 )). 

In a similar manner, we can verify the right distributive property. 

 

Theorem 2.3.10. If (𝐼, +, . ) is an ideal of (𝑅,+, . ), then the ring (𝑅/𝐼 , +,·) is ring, known as the  

quotient ring of 𝑅 by 𝐼. 

 

Definition 2.3.11. An ideal (𝐼, +, . ) of the ring (𝑅, +, . ) is a prime ideal if for all 𝑎, 𝑏 ∈  𝑅, 𝑎. 𝑏 ∈

𝐼 implies either 𝑎 ∈ 𝐼 𝑜𝑟 𝑏 ∈ 𝐼. 

 

Example.(1) The ideal ((3),+, . ) of the ring (𝑍,+, . ) is a prime ideal. 

(2) A commutative ring with identity is an integral domain if and only if the zero ideal is a prime ide 

 

Theorem 2.3.12. Let (𝐼, +, . ) be a proper ideal of the ring (𝑅,+, . ). Then (𝐼, +, . ) is a prime ideal if and 

only if the quotient ring (𝑅/𝐼, +, . ) is an integral domain.  

Proof. First, take (𝐼, +, . ) to be a prime ideal of (𝑅,+, . ). Since (𝑅,+, . ) is a 

commutative ring with identity, so is the quotient ring (𝑅/𝐼, +, . ). It remains to show  (𝑅/𝐼, +, . ) has no 

divisor of zero. For this, assume that  

(𝑎 +  𝐼). (𝑏 +  1) =  𝐼 ⟹ 𝑎 ·  𝑏 +  𝐼 =  𝐼 ⟹ 𝑎. 𝑏 ∈ 𝐼. Since (𝐼, +, . ) is a prime ideal, 

hence 𝑎 ∈ 𝐼 𝑜𝑟 𝑏 ∈ 𝐼 ⟹ 𝑎 + 𝐼 = 𝐼 𝑜𝑟 𝑏 + 𝐼 = 𝐼, hencc (𝑅/ 𝐼, +, . ) is without zero divisors.  

To prove the converse,  suppose (𝑅/ 𝐼, +, . ) is an integral domain and 𝑎. 𝑏 ∈ 𝐼. Then we have  

𝑎. 𝑏 + 𝐼 = 𝐼 ⟹ (𝑎 +  𝐼) . (𝑏 +  𝐼)  =  𝐼.  

By hypothesis , (𝑅/ 𝐼, +, . ) contains no divisors of zero,  that either 

 𝑎 +  𝐼 = 𝐼 𝑜𝑟 𝑏 +  𝐼 =  𝐼 ⟹ 𝑎 ∈ 𝐼 𝑜𝑟 𝑏 ∈ 𝐼. That is  (𝐼, +, . )is a prime ideal.  

 

Theorem 2.3.13. Let (𝑍,+, . ) be the ring of integers and 𝑛 >  1. Then the principal ideal ((𝑛). +, . ) is 

prime if and only if n is a prime number.  

Prool. First, suppose ((𝑛), +, . ) is a prime ideal of (𝑍,+, . ). If the integer 𝑛 is not prime, then 𝑛 =  𝑝. 𝑞, 

where 1 < 𝑝, 𝑞 < 𝑛. This implies the 𝑝. 𝑞 ∈ (𝑛) and such that ((𝑛),+, . ) 

Is a prime ideal, this implies 𝑝 ∈ (𝑛)𝑜𝑟 𝑞 ∈ (𝑛) and this contradiction to the hypothesis of 𝑝 and 𝑞 are 

less than 𝑛, therefore 𝑛 must be a prime number.  
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Conversely, suppose 𝑛 is a prime number and 𝑎, 𝑏 two integers such that 𝑎. 𝑏 ∈ (𝑛) 

with 𝑎 ∉ (𝑛). 

Since 𝑎. 𝑏 ∈ (𝑛) ⟹ 𝑛|𝑎. 𝑏 and sine n is a prime number implies that 𝑛 ∤ 𝑎 ⟶ 𝑛|𝑏 ⟹ 𝑏 ∈ (𝑛), therefore 

((𝑛), +, . ) is a prime ideal. 

 

Definition 2.3.14. An ideal (𝐼, +, . ) of the ring (𝑅, +, . ) is a maximal ideal provided 𝐼 ≠ 𝑅 and whenever 

(𝐽, +, . ) is an ideal of (𝑅,+, . ) with 𝐼 ⊂ 𝐽 ⊆ 𝑅, then 𝐽 =  𝑅. 

Remark. An element is invertible is not belongs to maximal ideal. 

 

Definition 2.3.14. An ideal (𝐼, +, . ) of the ring (𝑅, +, . ) is a maximal ideal provided 𝐼 ≠ 𝑅 and whenever 

(𝐽, +, . ) is an ideal of (𝑅,+, . ) with 𝐼 ⊂ 𝐽 ⊆ 𝑅, then 𝐽 =  𝑅. 

Remark. An element is invertible is not belongs to maximal ideal. 

2-((6),+, . ) is not a maximal ideal since (6) ⊂ (3) ⊂ 𝑍  

3-(2𝑍 × {0}, +, . ) is a prime ideal of the ring (𝑍 × 𝑍,+, . ) but is not a maximal ideal since 2𝑍 × {0} ⊂

2𝑍 × 2𝑍 ⊂ 𝑍 × 𝑍. 

4- ({0},+, . ) is a prime ideal of the ring (𝑍, , . ) but not a maximal ideal. 

Theorem 2.3.15. Let (𝐼, +, . )be aproper ideal of the commutative ring with identity (𝑅, +, . ). Then 

(𝐼, +, . ) is a maximal ideal if and only if the quotient ring (𝑅/𝐼, +, . ) is a  

field.  

Proof. Let (𝐼, + . . ) be a maximal ideal of (𝑅.+, . ). Since (𝑅, +, . ) is a commutative ring with identity, 

then the quotient ring (𝑅/𝐼, +, . ) is also a commutative ring with identity. It remains to show that every 

non-zero elemnt in 𝑅/𝐼 has inverse. 

𝑎 +  𝐼 ∈ 𝑅/𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎 + 𝐼 ≠  𝐼 ⟹ 𝑎 ∉ 𝐼. 

Since ((𝑎),+, . ) is an ideal of (𝑅, +, . ), the ((𝑎) + 𝐼, +, . ) is an ideal of (𝑅,+, . ) and 𝑎 ∉ 𝐼 ⟹ 𝐼 ⊂

(𝑎) + 𝐼. By suppose (𝐼, +, . ) is a maximal ideal, then (𝑎) + 𝐼 = 𝑅. 

𝑅 =  ((𝑎), 𝐼) =  {𝑎. 𝑟 + 𝑏 | 𝑏 ∈ 𝐼, 𝑟 ∈ 𝑅}.  

Since 1 ∈ 𝑅 ⟹ 1 ∈ (𝑎) + 𝐼 ⟹ 1 = 𝑎. 𝑟 + 𝑏, 𝑟 ∈ 𝑅 , 𝑏 ∈ 𝐼 ⟹ 𝑏 = 1 − 𝑎. 𝑟 ∈ 𝐼. 

That is 1 − 𝑎. 𝑟 ∈ 𝐼 ⟹ 1 + 𝐼 = 𝑎. 𝑟 + 𝐼 = (𝑎 + 𝐼). (𝑟 + 𝐼). 

Therefore 𝑎 + 𝐼 has an inverse, consequently (𝑅/𝐼, +, . ) is a field.  

Conversely, suppose (𝑅/𝐼, +, . ) is It field and (𝐽. +, . ) is any ideal of (𝑅, +, . ) such that 𝐼 ⊂  𝐽 ⊆ 𝑅.  

Since 𝐼 ⊂ 𝐽, then there exist an element 𝑎 ∈ 𝐽 𝑎𝑛𝑑 𝑎 ∉ 𝐼 ⟹ 𝑎 + 𝐼 ≠ 𝐼. 

Since (𝑅/𝐼, +, . ) is a field, then 𝑎 + 𝐼 has an inverse say 𝑏 + 𝐼, therefore  

(𝑎 + 𝐼). (𝑏 + 𝐼) = 1 + 𝐼 ⟹ 𝑎. 𝑏 + 𝐼 = 1 + 𝐼 ⟹ 1 − 𝑎. 𝑏 ∈ 𝐼 ⊂ 𝐽 ⟹ 1 − 𝑎. 𝑏 ∈ 𝐽 

Since 𝑎. 𝑏 ∈ 𝐽 ⟹ 1 ∈ 𝐽 ⟹ 𝐽 = 𝑅. Hence (𝐼, +, . ) is a maximal ideal. 

 

Definition 2.3.16. A ring (𝑅,+, . ) is called a local ring if has only one maximal ideal. 

Definition 2.3.17. The radical of a ring (𝑅,+, . ), denoted by 𝑟𝑎𝑑 𝑅, is the set  

𝑟𝑎𝑑(𝑅) =∩ {𝑀 ∶ (𝑀,+, . )𝑖𝑠 𝑎  𝑎𝑚𝑥𝑖𝑚𝑎𝑙 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓  𝑟𝑖𝑛𝑔 (𝑅,+, . )}.  

If 𝑟𝑎𝑑 (𝑅) = {0}, then we say (𝑅,+, . ) is a ring without radical or is a semi 
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simple ring.  

 

Example. In (𝑍12, +12, .12 ), find 𝑟𝑎𝑑(𝑍12)  

Remark. (𝑟𝑎𝑑 (𝑅), +, . ) is an ideal of (𝑅,+, . ). 

Definition 2.3.18. An ideal (𝐼, +, . ) of a ring (𝑅,+, . ) is said to be a primary ideal if 𝑎. 𝑏 ∈ 𝐼 with 𝑎 ∉ 𝐼 

implies 𝑏𝑛 ∈ 𝐼 for some positive integer n. 

Example. An ideal ((4), +, . ) of (𝑍, +, . ) is a primary. 

Definition 2.3.19. An element 𝑎 of a ring (𝑅,+, . ) is said to be a nilpotent if there exists a positive 

integer n such that 𝑎𝑛 = 0. 

Theorem 2.3.19. Let  (𝐼, +, . ) be an ideal of a ring (𝑅, +, . ).  Then (𝐼, +, . ) is a primary if and only if 

every zero divisor of the quotient ring (𝑅/𝐼, +, . ) is nilpotent. 

Proof. Suppose (𝐼, +, . )is a primary ideal and 𝑎 + 𝐼 is a zero divisor in 𝑅/𝐼. 

That is there exists a npnzero element 𝑏 + 𝐼 such that  

(𝑎 + 𝐼). (𝑏 + 𝐼) = 𝐼 ⟹ 𝑎. 𝑏 + 𝐼 = 𝐼 ⟹ 𝑎. 𝑏 ∈ 𝐼. 

Since 𝑏 ∉ 𝐼 𝑎𝑛𝑑 (𝐼, +, . ) is a primary, then there exists a positive integer n such that 𝑎𝑛 ∈ 𝐼 ⟹ 𝑎𝑛 + 𝐼 =

𝐼 ⟹ (𝑎 + 𝐼)𝑛 = 𝐼. Hence 𝑎 + 𝐼 is nilpotent element in 𝑅/𝐼. 

Conversely, suppose every zero divisor is nilpotent.  

Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎. 𝑏 ∈ 𝐼 with 𝑎 ∉ I. We must to sow that 𝑏𝑛 ∈ 𝐼, for some 𝑛 ∈ 𝑍+. 

If 𝑏 ∈ 𝐼, it is trivial. 

If 𝑏 ∉ 𝐼 ⟹ 𝑏 + 𝐼 ≠ 𝐼.  Since (𝑎 + 𝐼). (𝑏 + 𝐼) = 𝑎. 𝑏 + 𝐼 = 𝐼, hence 𝑏 + 𝐼 is divisor of zero. 

 By hypothesis 𝑏 + 𝐼 is a nilpotent element, that is there exist a positive integer n such that 𝑏𝑛 + 𝐼 =

(𝑏 + 𝐼)𝑛 = 𝐼 ⟹ 𝑏𝑛 ∈ 𝐼, consequently (𝐼, +, . )is primary. 

2.4. Homomorhpisms 

Definition 2.4.1. Let (𝑅,+, . ) and (𝑅′, +′, . ′) be two rings and 𝑓 a function from 

     𝑅 into 𝑅′; in symbols, 𝑓: 𝑅 ⟶  𝑅′. Then 𝑓 is said to be a (ring) homomorphism from      

     (𝑅,+, . ) into (𝑅′, +′, . ′) if and only if  

1- 𝑓(𝑎 +  𝑏) =  𝑓(𝑎)+′𝑓(𝑏), 

2- 𝑓(𝑎 ·  𝑏) =  𝑓(𝑎).′ 𝑓(𝑏)  

for every  𝑎, 𝑏 ∈  𝑅. 



 
 

14 
 

  Example. Let 𝑓: (𝑅,+, . ) ⟶ (𝑅′, +′, . ′) be the function defined by  

𝑓(𝑎) = 0′, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑅 

𝑓(𝑎 +  𝑏) =  0′ = 0′+′0′ =  𝑓(𝑎)+′𝑓(𝑏), 

𝑓(𝑎 ·  𝑏) =  0′ = 0′.′ 0′ =  𝑓(𝑎).′ 𝑓(𝑏), 𝑎. 𝑏 ∈  𝑅. 

 Hence 𝑓is a ring homomorphism. 

  Example. Let 𝑓: (𝑍,+, . ) ⟶ (𝑍𝑒 , +, . ) be the function defined by  

𝑓(𝑎) = 2𝑎 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝑅 

𝑓(𝑎 +  𝑏) =  2(𝑎 + 𝑏) = 2𝑎 + 2𝑏 =  𝑓(𝑎) + 𝑓(𝑏), 

𝑓(𝑎 ·  𝑏) =  2(𝑎. 𝑏) = 2𝑎. 𝑏 ≠  𝑓(𝑎). 𝑓(𝑏), 𝑎. 𝑏 ∈  𝑅. 

 Hence 𝑓is not a ring homomorphism. 

 

Definition. A homomorphism 𝑓 from the ring (R, +, .) in to ring (R’, +’, .’) is called an isomorphism if  

𝑓 is one to one and onto. 

If there exist an isomorphism function between two rings, then is said an isomorphic and denoted by 

(𝑅,+, . ) ≅ (𝑅′, +′, .′ ). 

 

Theorem 2.4.2. Let𝑓 be a homomorphism from the ring (𝑅,+, . ) into the 

ring (𝑅′, +′, . ′). Then the following hold: .  

1) 𝑓(0)  =  0′, where 0′ is the zero element of (𝑅′, +′, . ′).  

2) 𝑓( −𝑎) =  −𝑓(𝑎)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝑅.  

3) The triple (𝑓(𝑅), +′, . ′) is a subring of (𝑅′,+′, . ′).  

If, in addition, (𝑅,+, . ) and (𝑅′, +′, . ′). are rings with identity elements 1  

and 1', respectively, and 𝑓( 𝑅)  =  𝑅′, then  

4) 𝑓(1)  =  1′,  

5) 𝑓(𝑎−1) = 𝑓(𝑎)−1 for each invertible element 𝑎 ∈ 𝑅. 

 

Proof. Similar of Theorem 8.4 

 

Theorem .  

1- Let 𝑓 ∶ (𝑅, +, . ) ⟶ (𝑆,+, . )  and 𝑔 ∶ (𝑆, +, . ) ⟶ (𝑇,+, . ) be two homomorphisms. Then 𝑔  ⃘𝑓 ∶

(𝑅,+, . ) ⟶ (𝑇,+, . ) is also a homomorphism. 

2-  Let 𝑓 ∶ (𝑅, +, . ) ⟶ (𝑆,+, . ) be a homomorphism. Then Let 𝑓−1 ∶ (𝑆, +, . ) ⟶ (𝑅,+, . ) Is also 

homomorphism. 

Proof. 1. Let 𝑥, 𝑦 ∈ 𝑅. Then  

𝑔  ⃘𝑓(𝑥 + 𝑦) = 𝑔(𝑓(𝑥 + 𝑦)) = 𝑔(𝑓(𝑥) + 𝑓(𝑦)) = 𝑔(𝑓(𝑥)) + 𝑔𝑓(𝑦)) = 𝑔  ⃘𝑓(𝑥) + 𝑔  ⃘𝑓(𝑦), and  

𝑔  ⃘𝑓(𝑥. 𝑦) = 𝑔(𝑓(𝑥. 𝑦)) = 𝑔(𝑓(𝑥). 𝑓(𝑦)) = 𝑔(𝑓(𝑥)). 𝑔𝑓(𝑦)) = 𝑔  ⃘𝑓(𝑥). 𝑔  ⃘𝑓(𝑦). 
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Hence 𝑔  ⃘𝑓 is ahomomorphism. 

Proof. 2.  Since 𝑓 is a one to one and onto function, then so is 𝑓−1. 

Let 𝑥,  𝑦 ∈ 𝑆.  Then there exists 𝑟,  𝑡 ∈ 𝑅 such that 𝑓(𝑟) = 𝑥 𝑎𝑛𝑑 𝑓(𝑡) = 𝑦. 

Since 𝑥 + 𝑦 = 𝑓(𝑟) + 𝑓(𝑡) = 𝑓(𝑟 + 𝑡),  thus we get  

 𝑓−1(𝑥 + 𝑦) = 𝑟 + 𝑡 = 𝑓−1(𝑥) + 𝑓−1(𝑦). 

and 𝑥. 𝑦 = 𝑓(𝑟). 𝑓(𝑡) = 𝑓(𝑟. 𝑡),  thus we get  

 𝑓−1(𝑥. 𝑦) = 𝑟. 𝑡 = 𝑓−1(𝑥). 𝑓−1(𝑦). 

Therefore 𝑓−1  is a homomorphism. 

 

 

Theorem 2.4.3.  Let 𝑓 be a homomorphism from the ring (𝑅,+, . ) into the ring  (𝑅′, +′, . ′). Then 

1- If (𝑆, +, . ) is a subring of (𝑅,+, . ), then (𝑓(𝑆), +′, .′ ) is a subring  of (𝑅′, +′, .′ ). 

 

2- If (𝑆′, +′, . ′) is a subring of the ring (𝑅′, +′, . ′), then (𝑓−1(𝑆),+, . )  is a subring of (𝑅,+, . ).  

3- If (𝐼, +′, . ′) is an ideal of the ring (𝑆, +′, . ′), then (𝑓−1(𝐼),+, . )  is an ideal of (𝑅,+, . ).  

4- If 𝑓(𝑅) = 𝑆 and (𝐽, +, . ) is an ideal of (𝑅,+, . ), then (𝑓(𝐽), +′, .′ ) is an ideal  of (𝑆, +′, .′ ). 

Proof. 1-  𝑓(𝑆) = { 𝑓(𝑥):  𝑥 ∈ 𝑆}  

Since 𝑒𝑆, then 𝑓(𝑒) ∈ 𝑓(𝑆) ⟹ 𝑓(𝑆) ≠ ∅.  

Let 𝑓(𝑥), 𝑓(𝑦) ∈ 𝑓(𝑆), 𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝑆.   

Now 𝑓(𝑥) −  𝑓(𝑦) = 𝑓(𝑥 − 𝑦) ∈ 𝑓(𝑆), Since  𝑥 − 𝑦 ∈ 𝑆, and  

𝑓(𝑥). 𝑓(𝑦) = 𝑓(𝑥. 𝑦) ∈ 𝑓(𝑆), Since  𝑥. 𝑦 ∈ 𝑆 

Therefore by Definition 2.1.12, we get  𝑓(𝑆) is a subring of 𝑅′. 

3-  By part (2) (𝑓−1(𝐼), ∗)  is a subring of (𝑅, +, . ). 

     To show that (𝑓−1(𝐼), +, . )  is an ideal of (𝑅,+, . ), such that  

𝑓−1(𝐼) = { 𝑟 ∈ 𝑅: 𝑓(𝑟) ∈ 𝐼} 

Now suppose 𝑥, 𝑦 ∈ 𝑓−1(𝐼) ⟹ 𝑓(𝑥), 𝑓(𝑦) ∈ 𝐼. 

Since 𝑓 is a homomorphism and (𝐼, +′, .′ ) is a subring of (𝑅′, +′, .′ ), then we have  

𝑓(𝑥 − 𝑦) = 𝑓(𝑥) − 𝑓(𝑦) ∈ 𝐼, Since  (𝐼, +′, .′ ) is an ideal of (𝑅′, +′, . ′). 

Therefore 𝑥 − 𝑦 ∈ 𝑓−1(𝐼), and  

Let 𝑟 ∈ 𝑅 ⟹ 𝑓(𝑟) ∈ 𝑅′ 𝑎𝑛𝑑 𝑥 ∈ 𝑓−1(𝐼) ⟹ 𝑓(𝑥) ∈ 𝐼. 
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Since (𝐼, +′, . ′) is an ideal of (𝑅′,+′, . ′), then 𝑓(𝑟). ′𝑓(𝑥), 𝑓( 𝑥). ′𝑓(𝑟) ∈ 𝐼. 

Hence since 𝑓 is a homomrphism, we get  

𝑓(𝑟. 𝑥) = 𝑓(𝑟).′ 𝑓(𝑥) ∈ 𝐼 ⟹ 𝑟. 𝑥 ∈ 𝑓−1(𝐼)   and  

𝑓(𝑥. 𝑟) = 𝑓(𝑥).′ 𝑓(𝑟) ∈ 𝐼 ⟹ 𝑥. 𝑟 ∈ 𝑓−1(𝐼)       

   Therefore  (𝑓−1(𝐼), +, . ) is an ideal of (𝑅,+, . ). 

 

Example. 𝑓: (ℚ,+, . ) ⟶ (ℜ,+, . )defined by 𝑓(𝑥) = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℚ is a homomorphism and 𝑓(ℚ) =

ℚ but (ℚ,+, . ) is not an ideal of (ℜ,+, . ). 

 

Definition 2.4.4. Let 𝑓 be a homomorphism from the ring (𝑅, +, . ) into the ring (𝑅′, +′, . ′). Then kerenel 

of 𝒇, denoted by 𝑘𝑒𝑟 𝑓, is the set 

 ker 𝑓 = {𝑥 ∈ 𝑅 ∶   𝑓(𝑥) = 𝑒′}. 

Theorem 2.4.5.  If 𝑓 is  a homomorphism from the ring (𝑅,+, . )  into the ring (𝑅′, +′, . ′) , then 

(𝑘𝑒𝑟 𝑓, +, . ) is an ideal of (𝑅,+, . ).  

Proof. Since ({𝑒′},+′, . ′)  is an ideal  (𝑅′, +′, . ′)  and ker 𝑓 = 𝑓−1({𝑒′}) , then by Theorem 2.4.3 

(ker 𝑓, +, . ) is an ideal of the ring (𝑅,+, . ). 

 

Theorem 2.4.5. Let 𝑓 be a homomorphism from the field (𝐹, +, . )on to  the field (𝐹′, +′, .′ ). Then either 

𝑓 is the trivial homomorphism or else (𝐹,+, . )  

and (𝐹′, +′, . ′) are isomorphic.  

Proof.  By The Theorem 2.4.4  (𝑘𝑒𝑟 𝑓, +, . ) is an ideal of the field (𝐹,+, . ). 

Since (𝐹,+, . ) is a field has no ideal other than (𝐹,+, . ) itself and ({0},+, . ). 

Hence either the set 𝑘𝑒𝑟 𝑓 = {0} or else 𝑘𝑒𝑟 (𝑓)  =  𝐹.  

If  𝑘𝑒𝑟 (𝑓)  =  𝐹, then 𝑓(𝑥) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐹 and this contradication for 𝑓(1) = 1, hence ker 𝑓 = {0} 

and this implies that 𝑓 is one-to-one. Therefore 𝑓 is an isomorphism, consequently (𝐹,+, . ) ≅

(𝐹′, +′, .′ ). 

 

Definition 2.4.6. We said that (𝐹′, +, . )is a subfield of the field (𝐹,+, . ) is meant any subring of 

(𝐹, +, . ) which is itself a field. 

 

Example. The ring (ℚ,+, . ) of rational numbers is a subfield of the field (ℜ,+, . ).  

 

Is equivalent to  

The triple (𝐹′,+, . ) will be a subfield of the field (𝐹, +, . ) provided  

(1) (𝐹′,+) is a subgroup of the additive group (𝐹,+) and  

(2) (𝐹′ −  {𝑂},·) is a subgroup of the multiplicative group (𝐹 − {𝑂},·).  

 

Definition 2.4.7.  A ring (𝑅,+, . ) is imbedded in a ring (𝑅′,+′, . ′) if there exists some subring (𝑆, +′, . ′) 

of (𝑅′, +′, . ′) such that (𝑅, +, . )  ≅ (𝑆, +′, . ′). 
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The field of quotient of an integral domain. 

Let 𝐷 be an integral domain. 

𝐷 × 𝐷 =  {(𝑎, 𝑏) ∶  𝑎, 𝑏 ∈  𝐷}.   Let 𝑆  be the subset of 𝐷 × 𝐷 given by   

𝑆 =  {(𝑎, 𝑏) ∶  𝑎, 𝑏 ∈  𝐷, 𝑏 ≠  0}.   Define a relation on 𝑆 as follows: 

Two elements (𝑎, 𝑏) and (𝑐, 𝑑) in 𝑆 are equivalent (denoted by (𝑎, 𝑏)~ (𝑐, 𝑑)) if  

𝑎𝑑 = 𝑏𝑐. 

 

Lemma 2.4.8.   The relation  ~ is an equivalence relation. 

Proof.  

(1) Reflexive: (𝑎, 𝑏)~ (𝑐, 𝑑), since multiplication in 𝐷 is commutative. 

(2) Symmetric: Suppose that (𝑎, 𝑏)~ (𝑐, 𝑑),  then 𝑎𝑑 = 𝑏𝑐 .  Hence 𝑐𝑏 = 𝑑𝑎 , consequently 

(𝑐, 𝑑)~ (𝑎, 𝑏). 

(3) Transitive: suppose that (𝑎, 𝑏)~ (𝑐, 𝑑) and (𝑐, 𝑑)~ (𝑒, 𝑓).   Then  

𝑎𝑑 = 𝑏𝑐 and 𝑐𝑓 =  𝑑𝑒, so  

   𝑎𝑓𝑑 =  𝑓𝑎𝑑 =  𝑓𝑏𝑐 = 𝑏𝑓𝑐 =  𝑏𝑑𝑒 =  𝑏𝑒𝑑 (𝐷 is commutative) 

                 since  𝑑 ≠  0 and 𝐷 is an integral domain, hence 𝑎𝑓𝑑 =  𝑏𝑒𝑑 ↔  𝑎𝑓 =  𝑏𝑒     

                ↔ (𝑎, 𝑏)~ (𝑒, 𝑓).   From (1), (2) and (3) we get that ~ is an equivalence  

                relation. 

    Hence it gives a partition of 𝑆  in to equivalence class.   We write the equivalence class of 

(𝑎, 𝑏) 𝑏𝑦 [(𝑎, 𝑏)]. 

Let 𝐹 =  {[(𝑎, 𝑏)]: (𝑎, 𝑏)  ∈ 𝑆}.   Define addition and multiplication on F as follows: 

[(𝑎, 𝑏)]  +  [(𝑐, 𝑑)]  =  𝑎. 𝑑 +  𝑏. 𝑐, 𝑏. 𝑑] and  

[(𝑎, 𝑏)]. `[(𝑐, 𝑑)]  =  [(𝑎. 𝑐, 𝑏. 𝑑)].  

Now we show that the operations defined above is well-defined. 

First note that if [(𝑎, 𝑏)] 𝑎𝑛𝑑 [(𝑐, 𝑑)] ∈  𝐹, then 𝑏 ≠  0 𝑎𝑛𝑑 𝑑 ≠  0.   Since D is an integral domain, then 

𝑏𝑑 ≠  0, so both [(𝑎. 𝑑 + 𝑏. 𝑐, 𝑏. 𝑑)] 𝑎𝑛𝑑 [(𝑎. 𝑐, 𝑏. 𝑑)] ∈ 𝐹. 

To show that the multiplication (.`) is well-defined, suppose that  

(𝑎, 𝑏) ~(𝑎1, 𝑏1) and (𝑐, 𝑑) ~(𝑐1, 𝑑1). We have two show that [(𝑎, 𝑏)] [(𝑐, 𝑑)]  = [(𝑎1, 𝑏1) ] [(𝑐1, 𝑑1)] . 

𝑎𝑏1  =  𝑎1𝑏 and 𝑐𝑑1  =  𝑐1𝑑  𝑎𝑏1 𝑐𝑑1  =  𝑏1𝑎 𝑑1𝑐  𝑎𝑏1 𝑐𝑑1  =  𝑏1𝑎 𝑑1𝑐 . This means that 

            (𝑎1 𝑐1 , 𝑏1𝑑1 ) ~ (𝑎𝑐, 𝑏𝑑)  which means that the multiplication  is well-defined . 
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Theorem 2.4.9. Let D be an integral domain and 𝑆 =  {(𝑎, 𝑏) ∶  𝑎, 𝑏𝐷 , 𝑏 ≠  0}. 

Define a relation on S as follows: (𝑎, 𝑏) ~ (𝑐, 𝑑)) 𝑖𝑓 𝑎𝑑 = 𝑏𝑐 . Then  

𝐹 = {[(𝑎, 𝑏)] ∶  (𝑎, 𝑏)𝑆 } is a field with addition and multiplication defined as follows: [(𝑎, 𝑏)] +

 [(𝑐, 𝑑)]  = [(𝑎𝑑 + 𝑏𝑐, 𝑏𝑑)] 𝑎𝑛𝑑 [(𝑎, 𝑏)] [(𝑐, 𝑑)]  =  [(𝑎𝑐, 𝑏𝑑)]. 

Proof. 

(1)  + is a commutative :  

[(𝑎, 𝑏)] + [(𝑐, 𝑑)]  = [(𝑎𝑑 + 𝑏𝑐, 𝑏𝑑)]  =  [(𝑐𝑑 + 𝑑𝑎, 𝑑𝑏)] =  [(𝑐, 𝑑)]  + [(𝑎, 𝑏)]. 

(2) It is easy to show that + is a associative  

(3) [(0,1)] is identity for addition in F:[(𝑎, 𝑏)] + [(0,1)] = [(𝑎 + 0, 𝑏)] =  [(𝑎, 𝑏)]  

(4) [(−𝑎, 𝑏)] is an additive inverse of [(𝑎, 𝑏)] in F:  

[(𝑎, 𝑏)]  +  [(−𝑎, 𝑏)]  =  [(𝑎𝑏 − 𝑏𝑎, 𝑏2)]  =  [(0, 𝑏2)]  =  [(0,1)]  (since (0, 𝑏2) ~ (0,1)  

because  0 .1 =  0. 𝑏2 ) Thus  [(𝑎, 𝑏)]  +  [(−𝑎, 𝑏)]  =  [(0,1)] . 

(5) It is easy to show that multiplication is a associative. 

(6)  [(1,1)] is identity for multiplication in F : 

 [(𝑎, 𝑏)] + [(1,1)]  = [(𝑎 1, 𝑏 1)] =  [(𝑎, 𝑏)] 

(7) Multiplication is commutative  

(8) The distributive law hold in F 

(9) Let [(𝑎, 𝑏)]  𝐹 and [(𝑎, 𝑏)]  ≠ [(0,1)] hence 𝑎 ≠ 0 because  if 𝑎 = 0 , then  

𝑎 1 = 𝑏 0 =  0 , 𝑠𝑜 (𝑎, 𝑏)~(0,1) , consequently [(𝑎, 𝑏)]  =  [(0,1)] which is a contradiction .  

Thus a is a non zero element in F. Now [(𝑎, 𝑏)] [(𝑏, 𝑎)]  =  [(𝑎𝑏, 𝑏𝑎)] =  [(1,1)] [(𝑏, 𝑎)]  is a 

multiplicative inverse of [(𝑎, 𝑏)]. Hence F is a field. This field called the field of quotients of  R. 

the quotient field of an integral domain (D,+, .`) is the smallest field containing  D as a subring. 

 

Example. The field of quotients of  Z,  is  the ring of integers is Q 

Theorem 2.4.10. The integral domain (R, +, .) can be imbedded in its of quotients  

(F, +’, .’). 

Proof. Consider the subset F’ of F consisting of all elements of the form [𝑎, 1],  where 1 is the 

multiplicative identity of (R, +, .): 

   𝐹’ =  { [𝑎, 1] ∶  𝑎 ∈  𝑅}. Now it is must be show that (𝐹’, +’, . ’) is a subring.  

 Let 𝑓 ∶  𝑅 →  𝐹’ be onto mapping defined by 𝑓(𝑎)  =  [𝑎, 1], for each 𝑎 ∈ 𝑅. 

Since the condition [𝑎, 1]  = [𝑏, 1] implies  𝑎. 1 =  𝑏. 1 𝑜𝑟 𝑎 =  𝑏, we see 𝑓 is one to one. 

http://www.proofwiki.org/wiki/Definition:Smallest_Set
http://www.proofwiki.org/wiki/Definition:Subring
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Now we show that f is homomorphism: 

𝑓(𝑎 +  𝑏)  =  [𝑎 + 𝑏 , 1]  =  [𝑎, 1]  + ’ [𝑏, 1]  =  𝑓(𝑎)  + ’ 𝑓(𝑏) and  

 𝑓(𝑎 . 𝑏)  =  [𝑎 . 𝑏 , 1]  =  [𝑎, 1] . ’ [𝑏, 1]  =  𝑓(𝑎) . ’ 𝑓(𝑏)  

Accordingly (𝑅,+, . )  ≅  (𝐹’, +’, . ’). 

 

Theorem 2.4.11. (First isomorphism theorem)   

If 𝑓 is a homomorphism from the ring (𝑅,+, . ) onto the ring (𝑅′, +′, . ′).  Then                          

                                          (𝑅 ker 𝑓⁄ ,+, ′) ≅ (𝑅′, +′, . ′). 

Proof.  Put 𝑘𝑒𝑟 𝑓 =  𝐾. We define a function 𝜑: 𝑅 𝐾⁄ ⟶ 𝑅′ by  

        𝜑(𝑥 + 𝐾) = 𝑓(𝑥),   𝑓𝑜𝑟 𝑥 ∈ 𝑅. 

We must show that 𝑅 is well defined, suppose 𝑥 + 𝐾 = 𝑦 + 𝐾 ⟹ 𝑥 − 𝑦 ∈ 𝐾 = ker 𝑓. 

Therefore 𝑓(𝑥 − 𝑦) = 𝑒′. But f is homomorphism, then  

  𝑓(𝑥) − 𝑓(𝑦) = 𝑒′ ⟹ 𝑓(𝑥) = 𝑓(𝑦) ⟹  𝜑(𝑥 + 𝐾) = 𝜑(𝑦 + 𝐾). 

Hence 𝜑 is well defined. 

Now to show that 𝜑 is a homomorphism, suppose that  

            𝜑((𝑥 + 𝐾) + (𝑦 + 𝐾)) = 𝜑((𝑥 + 𝑦) + 𝐾) 

                                                  = 𝑓(𝑥 + 𝑦) 

                                                 = 𝑓(𝑥) + ′𝑓(𝑦) 

                                                 = 𝜑(𝑥 + 𝐾) + ′𝜑(𝑦 + 𝐾). 

𝜑((𝑥 + 𝐾). (𝑦 + 𝐾)) = 𝜑((𝑥. 𝑦) + 𝐾) 

                                                  = 𝑓(𝑥. 𝑦) 

                                                 = 𝑓(𝑥). ′𝑓(𝑦) 

                                                 = 𝜑(𝑥 + 𝐾). ′𝜑(𝑦 + 𝐾). 

 

Hence 𝜑 is a homomorphism. 

Let 𝜑(𝑥 + 𝐾) = 𝜑(𝑦 + 𝐾) ⟹ 𝑓(𝑥) = 𝑓(𝑦) ⟹ 𝑓(𝑥) − 𝑓(𝑦) = 𝑒′. 

Since  𝑓 is a homomorphism, therefore  

𝑓(𝑥) − 𝑓(𝑦) = 𝑒′ ⟹ 𝑓(𝑥 − 𝑦) = 𝑒′ ⟹ 𝑥 − 𝑦 ∈ 𝐾 ⟹ 𝑥 + 𝐾 = 𝑦 + 𝐾. 

Hence   𝜑 is one-to-one. 

Finally, for all 𝑧 ∈ 𝑅′ there exists 𝑦 ∈ 𝑅  such that 𝑧 = 𝑓(𝑦) = 𝜑(𝑦 + 𝐾). 

Hence 𝜑 is onto. Therefore 𝜑 is an isomorphism and   (𝑅 𝐾⁄ ,+, . ) ≅ (𝑅′, +′, . ′). 

Remark. If 𝑓 is not onto, then (𝑅 𝐾𝑒𝑟𝑓,+, . ) ≅ (𝑓(𝑅), +′, .′ )⁄ .  

 

Theorem 2.4.12. (second isomorphism theorem) 

If (𝑆, +, . ) is a subring of the ring (𝑅,+, . ) and (𝐼, +, . ) is an ideal of (𝑅,+, . ), then 𝑆 + 𝐼 𝐼 ≅⁄ 𝑆 𝑆 ∩ 𝐼⁄ . 

Proof. Similarly to prove Theorem 9.3 

 

Theorem 2.4.13. (Third isomorphism theorem) 
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If (𝐼, +, . ) and (𝐽, +, . ) are two ideals  of the ring (𝑅,+, . ) and 𝐼 ⊂ 𝐽, then (𝐽 𝐼⁄ , +, . ) is an ideal of the 

ring (𝑅 𝐼⁄ , +, . ) and    
𝑅 𝐼⁄

𝐽 𝐼⁄
≅ 𝑅 𝐽⁄ .   

Proof. Similarly to prove Theorem 9.4. 

 

 

 

 

 

Chapter Three 

Polynomial rings 

 

The polynomial ring R[x] in indeterminate x with coefficients from R is the set of all formal sums  an x
n + 

an-1 x
n-1 +…. + a1 x +a0  with  n ≥ 0 and  ai R, That is                    R[x] =   {  an x

n + an-1 x
n-1 +…. + a1 x 

+a0 : n ≥ 0 and ai R }. 

 If an≠0 , then the polynomial is of degree n , an x
n is the leading term, and an the leading coefficient. 

Addition of polynomial is component wise 

 ∑ 𝑎𝑖
𝑛
𝑖=0 𝑥𝑖  +∑ 𝑏𝑖

𝑛
𝑖=0 𝑥𝑖  = ∑ (𝑎𝑖 

𝑛
𝑖=0 +𝑏𝑖 )𝑥

𝑖  ( where an and bn may be zero in order for addition of 

polynomials of different degree to  be defined ). 

Multiplication performed by first defined a xi b xi = ab xi+j and then extended to all polynomials by 

distributive law , in general  

( ∑ 𝑎𝑖
𝑛
𝑖=0 𝑥𝑖 ) × (∑ 𝑏𝑖

𝑛
𝑖=0 𝑥𝑖 )  =  ∑ (𝑛+𝑚

𝑖=0  ∑ (𝑎𝑖 
𝑘
𝑖=0 𝑏𝑘−𝑖 )𝑥

𝑘) .  

Two polynomials p(x) = a0+a1x+…+anx
n   and  q(x) = b0+b1x+…+bnx

n , are equal if ai = bi  for each i. The 

ring  R appears in R[x] as the constant polynomials.   

If g(x) is a polynomial over a ring R, then degree g(x) denoted deg g(x). 

If R[x] has unity 1 and you must have x( x = (0, 1, 0, 0, …) ) 

2+ x2 in Z[x] (i.e (2, 0, 1, 0, 0, …)). 

If R is a ring with two determinates, then we can form (R[x])[y] = R[x, y] 

The ring R[x1, x2, . …,  xn] of polynomials in the n indeterminate x with coefficients in R. 

 

Theorem 3.1. The triple (R[x], +, .) forms a ring, known as the ring of polynomials over R. 

 

Examples. (1)  Let f(x) =1+3x+2x5 a polynomial, then the leading coefficient of f(x) = 2, deg f(x) = 3. 

(2) In Z2[x]. If f(x) = x + 1, then we have  

(x + 1) + (x + 1) = 2x + 2 = 0, and  

(x+1)2 = x2 + 2x + 1 = x2 + 1 

Remark .  Let R be a ring.    

(1) If R is a commutative , then so is R[x].  
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(2) If R is a ring with identity 1R, then R[x] is a ring with identity and the identity element is 1R[x] = 1R 

+ 0R + …   

(3)  don’t write 1R when appear as coefficient for a polynomial, as follows: 

x3 + x2 + 2x + 2 (1.x3 + 1.x2 + 2x + 2). 

    (4)  In general if f(x) and g(x) are two polynomials over a ring R, then 

(1)  deg( f(x) + g(x))   max {deg f(x) , deg g(x) }. 

(2) deg (f(x) . g(x))    deg f(x) + deg g(x). 

 

Example.  Let f(x) =1+5x+2x4 and g(x) = 1+4x2  be two polynomials in Z8[x]. 

The leading coefficient of f(x) = 2, deg f(x) = 4 and deg g(x) = 2. 

 f(x). g(x) = 1+4x2+5x +4x3+ 2x4 

 deg((f(x)+ deg g(x))=7  deg((f(x). deg g(x))=4, and  

f(x) + g(x) = 2+5x+4x2+2x4, deg (f(x) + g(x) ) = 4. 

 

Theorem 2.3 . Let (R , + , .) be an integral domain and f(x) , g(x) be two   nonzero elements of (R[x] , + , 

.) then : deg (f(x).g(x)) = deg f(x) + deg g(x) .                                                    

Proof : suppose f(x) , g(x) ϵ R[x] with deg f(x) =n and deg g(x) =m , so that      

f(x) = ao + a1x + … + anx
n          , an ≠0  

g(x) = bo + b1x + … + bmxm       , bm ≠ 0 

from the definition of multiplication  

f(x) . g(x) = ao . bo + (ao .b1+ a1 . bo ) x + … + (an . bm) x n+m      

since an ≠0 and bm ≠ 0 and R is an integral domain , then  an . bm  ≠ 0  

accordingly, f(x) . g(x) ≠ 0 and deg(f(x).g(x)) = n+m = deg f(x) +deg g(x) 

 

Corollary 2.4 .  Let (R, + , .) be an integral domain.  Then (R[x], + , .) is an integral domain. 

proof .  We have if (R , + .) is a commutative ring with identity , then so is  

(R[x] , + , .) . To see that (R, +, .) has no divisors , let f(x) ≠ 0 , g(x) ≠ 0 in R[x] . Then deg (f(x).g(x)) = 

deg f(x) + deg g(x)>0 , hence the product cannot be the zero polynomial  

 

Theorem 2.5. (Division algorithm) 

Let (R, +, .) be a commutative ring with identify and let f(x) = an x
n + an-1 x

n-1 +… +a0 and g(x) = bm xm + 

bn-1 x
m-1 +… +b0 , be two elements in R[x], with both an , bn non zero elements of R and m > 0  and the 

leading coefficient of g(x) is invertible. Then there are unique polynomials  q(x) and r(x)  in R[x] such that 

 f(x)=q(x) g(x) + r(x), with r(x) = 0 or   degree r(x) < degree g(x).  
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Examples.  

(1) Consider f(x) = x4 - 3x3 + x2 - 3x + 1 in Z5[x] and let g(x)= x2 +2x -6. To find q(x) and r(x), divide  

f(x)  by g(x),   
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So x4 - 3 x3 + x2  - 3x + 1 = (x2 - 2x + 3) (x2 – 3x + 3) + (3x + 5), remembering that  the coefficients are in 

Z5 . Then q(x) = x2 -3x +3, and r(x) = 3x+5. 

 

(2)Consider f(x) = x4 + 3x3 + 2x + 4 in Z5[x] and let g(x)= x - 1. To find q(x) and r(x), divide  f(x)  by g(x),   

Definition 2.6.  Let (R, +, .) be a ring with identity and f(x) = an x
n + an-1 x

n-1 +… +a0  R[x] . Then if r 

R we define f(r) by  f(r) = an r
n + an-1 r

n-1 +… +a0  R.   

 

Example. Let f(x) = x3+4x2+3Q(x) . Then f(2) = 8+4(4)+3=27  

Definition 2.7. Let R be a commutative ring and f(x) a polynomial over R.  

Any element r  R such that f(r) = 0 is a zero of  f(x) in R( or r is a root of f(x) ). 

 

Definition 2.8.  Let R be a commutative ring with identity and f(x), g(x) be non zero polynomials in R[x]. 

Then g(x) is said to be a factor of f(x), if there exists a non zero polynomial    h(x)  R[x] such that  f(x) 

= h(x) g(x). 

 

Example. Let f(x) = (x-1)(x+5) be a polynomial of Z[x].   Then (x-1) is a factor of f(x). 

 

Proposition 2.9.  Let f(x) be a polynomial over a commutative ring with identity and a be an element in 

R. Then a is a root of f(x) if and only if (x-a) is a factor of f(x). 

Proof.  Suppose (x-a) is a factor of f(x).  Then there exists a polynomial q(x) such that f(x) =q(x) (x-a). 

Then f(a)= q(a) 0  which  implies   f(a) = 0,  and a is a root of  f(x).  
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Conversely, suppose f(a) =0. By division algorithm, there exist q(x) and  r(x) in R[x] such that f(x) =q(x) 

(x-a)+ r(x) , deg r(x) <  deg (x-a) or r(x) =0. 

Since deg (x-a) =1, then r(x) is a constant polynomial.  

But 0= f(a) = q(a)(a - a)+r(a) = r(a).Hence r(x) =0, consequently f(x) = q(x) (x-a). 

 

Definition 2.10. The element r is a root of multiplicity m of f(x) if (x-a)m| f(x) but (x-a)m+1 ∤ f(x). A zero 

of multiplicity 1 is called simple zero. 

  

Theorem 2.11.  (Fundamental theorem of algebra): 

If f(x) is a non constant polynomial over the field of complex numbers, then               f(x) has at least one 

root in C. 

 

Theorem 2.12.  Let  R be an integral domain, f(x) be a non zero polynomial over R. If  deg f(x) = n, then 

f(x) has at most n distinct roots R. 

Proof.    We proved by induction on the degree of f(x).  When  deg f(x) = 0, then there exists 0 ≠ a0 ∈  R 

such that f(x) = a0.  This means f(x) has no root in R. 

If  deg f(x) = 1, then there exists 0 ≠ a1 ∈  R such that f(x) = a0 +a1x.  This means f(x) has at most one  root 

in R; indeed, if a1 is invertible, - 𝑎1
−1.a0 is the only root of f(x).  Now, suppose the theorem is true for all 

polynomials of degree n-1≥1, and let deg f(x) = n. 

If r is a root of f(x), then there exists q(x) ∈  R[x] such that f(x) = (x-r)q(x), where q(x) of degree n-1. 

Any root t of f(x) distinct from r must be a root of q(x), by substitution, we have  

f(t) = (r – t)q(t) = 0.  Since R has no zero divisors, then q(t) = 0.  From hypotheses , q(x) has at most n-1 

distinct roots.  As the only roots of f(x) are r and those of q(x). 

That is f(x) cannot have more than n distict roots in R.  

 

The following example shows that the condition that R is an integral domain is the last theorem is 

necessary. 

Example.  Consider the ring R =Z2Z2 .Clearly R is not an integral domain. 

Now consider the polynomial f(x) = x2 + x . 

It is not difficult to show that every element of Z2Z2  is a root of  f(x). where 

Z2Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. So f(x) has four roots. 

         

 

 

 


