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Chapter one 

Group theory 

 

1. Basics 

ℕ = {0,1,2, 3,4. . . }.  The set of natural numbers.  

ℤ = {… ,−2,−1, 0, 1, 2, … } The set of all integers.  

ℤ# − The set of nonnegative integers 

ℚ = {𝑥
𝑦
 ,    𝑦≠0:  𝑥,   𝑦 ∈ℤ }.   The set of rational numbers 

ℚ+ − The set of positive rational numbers 

ℚ∗ − The set of nonzero rational numbers. 

         𝐼𝑟𝑟 = {∃ 𝑥, 𝑠. 𝑡. 𝑥 > 0 𝑎𝑛𝑑 𝑥 ∉  ℚ}.  Some positive real numbers are irrational. 

ℝ− The set of real numbers 

ℝ+ − The set of positive real numbers 

ℝ∗ = { 𝑥 ∈ ℝ, 𝑥 ≠ 0}. The set of nonzero real numbers 

ℂ = { 𝑥 + 𝑦𝑖: 𝑥, 𝑦 ∈ ℝ}. The set of complex numbers 

ℂ∗ − The set of nonzero complex numbers 

 

The order or cardinality of a set 𝐴 will be denoted by |𝐴|. If 𝐴 is a finite set the 

order of 𝐴 is simply the number of elements of 𝐴. 

 

Definition 1.1.The Cartesian product of two sets A and B is collection  

                                  

Definition 1.2. For any set 𝑋, the power set of 𝑋, written 𝑃(𝑋), is defined to be the set          

𝑃(𝑋) =  {𝐴 | 𝐴 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑋}. 
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Example.  Let 𝑋 =  {1, 2, 3}. Then 

𝑃(𝑋)  =  {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

Here 𝑃(𝑋) has 23 elements. 

 

Definition 1.3. Principle of Well-Ordering: Every nonempty subset of ℤ# has a smallest 

(least) element, i.e., if ∅ ≠  𝑆 ⊆  ℤ#, then there exists 𝑥 ∈  𝑆 such that 𝑥 ≤  𝑦 for all 

𝑦 ∈  𝑆. 

 

Theorem 1.4. (Division Algorithm) Let 𝑥, 𝑦 ∈  𝑍 with 𝑦 ≠  0. Then there exist unique 

integers 𝑞 and 𝑟 such that  =  𝑞𝑦 +  𝑟, 0 ≤  𝑟 <  |𝑦| . 

 

Definition 1.5 

 (i) An integer 𝑝 >  1 is called prime if the only divisors of 𝑝 are ±1 and ±𝑝. 

(ii) Two integers 𝑥 and 𝑦 are called relatively prime if 𝑔𝑐𝑑(𝑥, 𝑦)  =  1. 

 

         We shall use the following notation for some common sets of numbers. 

2. Groups 

Definition 2.1.  Let 𝑆 be a nonempty set. Any function  from Cartesian product 𝑆 × 𝑆 to 

𝑆 called binary operation on 𝑆. Then for all 𝑥, 𝑦 ∈  𝑆 we shall write (𝑥,𝑦)𝑎𝑠 𝑥 ∗ 𝑦. 

Examples. 

1- Ordinary addition and multiplication is a binary operation. 

2- Ordinary subtraction is a binary operation on the set of integers but not binary 

operation on the set of ℤ+.  

3- The set of odd integers is binary operation under multiplication (.) but not binary 

operation under addition (+). 

4- - Let 𝐴 be a nonempty set and 𝑃(𝐴) be the set of all subsets of 𝐴(power set   
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    of 𝐴). Then ∩ and ∪  are binary operations on 𝑃(𝐴). 

Definition 2.2.  A mathematical system is a nonempty set of elements together with one 

or more binary operations defined on this set. 

 

Examples.  

1- (𝑍, +),   (𝑍, . ),   (𝑃(𝐴), ∩) are Mathematical system.  

2-  (𝑛𝑍𝑒 , +, . ) is Mathematical system but  (𝑍𝑜, +, . ) is  not Mathematical system. 

3- Let 𝑆 = {1,−1, 𝑖, −𝑖},  𝑤𝑖𝑡ℎ 𝑖2  =  −1 and (. ) is a multiplication operation defined      

     on S. Then (𝑆, . ) is a mathematical system. 

 

Definition 2.3. A group 𝐺 consists of a set 𝐺 together with a binary operation ∗ for 

which the following properties are satisfied: 

(I) (𝑥 ∗  𝑦)  ∗  𝑧 =  𝑥 ∗  (𝑦 ∗  𝑧) for all elements 𝑥, 𝑦 and 𝑧 of 𝐺 (the Associative Law);  

(II) there exists an element 𝑒 of 𝐺 (known as the identity element of 𝐺) such that   

       𝑒 ∗  𝑥 =  𝑥 =  𝑥 ∗  𝑒, for all elements 𝑥 of 𝐺;  

(III) for each element 𝑥 of 𝐺 there exists an element 𝑥′  of 𝐺 (known as the inverse of 𝑥)  

        such that  𝑥 ∗  𝑥′  =  𝑒 =  𝑥′  ∗  𝑥 (where 𝑒 is the identity element of 𝐺).  

 

The order |𝐺| of a finite group 𝐺 is the number of elements of 𝐺.  

 

Examples.  1- (𝑍, +), (𝑅,+), (𝑅 − {0}, . ) 𝑎𝑛𝑑 (𝑀𝑛×𝑛(𝑅),+) are groups. 

2- (𝑃(𝐴), ∆) is a group, but (𝑃(𝐴),∩) and (𝑃(𝐴),∪) are not groups. 

Example. Let 𝑆 = {𝑎, 𝑏, 𝑐}. Let • be the binary operation on S with the following 

composition table: 

• 𝑎 𝑏 𝑐 
𝑎 𝑏 𝑐 𝑎 

𝑏 𝑎 𝑐 𝑎 

𝑐 𝑏 𝑏 𝑐 
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Then it is not associative; for example (𝑎 • 𝑏) •  𝑐 = 𝑐 •  𝑐 =  𝑐, 𝑎 •  (𝑏 •  𝑐) = 𝑎 •  𝑎 =
𝑏. 

 

Definition 2.4.  A group 𝐺 is called an abelian group ( or commutative) if the binary 

operation of 𝐺 is commutative (𝑥 𝑦 = 𝑦 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦𝐺). 

Then • is not commutative; for example above as  𝑎 • 𝑏 = 𝑐, 𝑏 •  𝑎 =  𝑎. 
 

 Examples. 

1- Let 𝑎 be any nonzero real number and consider the set 𝐺 of integral multiples of a  

𝐺 = {𝑛𝑎| 𝑛 ∈ 𝑍}. Then (𝐺, +) is a commutative group . 

2- Let * be a binary operation defined of the set 𝑄+ as follows: 

 𝑎 ∗ 𝑏 =
𝑎.𝑏

3
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑄+.   Show that (𝑄+,∗) is a commutative group. 

3- Let 𝑆 =  ℝ − {−1} and * defined of 𝑆 as follows: 

    𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 𝑎𝑏, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑆. Show that (𝑆,∗) is a group. 

4- Let 𝑄8 = {±1, ±𝑖, ±𝑗, ±𝑘} with  

𝑖2 = 𝑗2 = 𝑘2 = −1 

𝑖. 𝑗 = 𝑘,       𝑗. 𝑘 = 𝑖,            𝑘. 𝑖 = 𝑗  

𝑗. 𝑖 = −𝑘,      𝑘. 𝑗 = −1,        𝑖. 𝑘 = −𝑗 

Then (𝑄8, . )is not a commutative group and is said a quaternion group. 

 

Definition 2.5. A Semigroup is a pair (𝑆, ) consisting  of a nonempty set S together 

with an associative binary operation  defined on S. 

Example.  (𝑃(𝐴),∩) and (𝑃(𝐴),∪) are semigroups for any set 𝐴. 

 

SOLVED PROBLEMS: 

Q1/Determine if the following sets G with the operation indicated form a group. If not, point out   

        which of the group axioms fail. 
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      (a) G = set of all integers, a * b = a - b. 

      (b) G = set of all integers, a*b = a + b + ab. 

      (c) G = set of nonnegative integers, a * b = a + b. 

      (e) 𝐺 =  𝑍+, 𝑎 ∗ 𝑏 =  𝑚𝑎𝑥 {𝑎, 𝑏}, 

      (f)  𝐺 =  𝑍 ×  𝑍, (𝑎, 𝑏) ∗  (𝑒, 𝑑) =  (𝑎 +  𝑒, 𝑏 +  𝑑), 

     (𝑔) 𝐺 =  𝑅# × 𝑅#, (𝑎, 𝑏) ∗  (𝑒, 𝑑) =  (𝑎𝑒 +  𝑏𝑑, 𝑎𝑑 +. 𝑏𝑑).    

 

Q2/ Let S be the  set of all real  numbers ≠ − 1, Define * on S by a * b = a + b + ab. 

(a) Show that * gives a binary operation on S. 

(b) Show that (S, *) is a group. 

(c) Find the solution of the equation 2*x*3=7 in S.  

 

3- Elementary Properties of Groups. 

Lemma 3.1.  

1- A group 𝐺 has exactly one identity element 𝑒 satisfying 𝑒 ∗ 𝑥 =  𝑥 =  𝑥 ∗ 𝑒 for all 

𝑥 ∈  𝐺. 

2- An element 𝑥 of a group 𝐺 has exactly one inverse 𝑥−1 . 

3-  (𝑥−1)−1 = 𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐺. 

4- If 𝑥, 𝑦 ∈ 𝐺, then (𝑥 ∗ 𝑦)−1 = 𝑦−1 ∗ 𝑥−1.  

5- The cancellation laws holds in that if 𝑥 ∗ 𝑦 = 𝑥 ∗ 𝑧 or y∗ 𝑥 = 𝑧 ∗ 𝑥 implies y= 𝑧.  

Proof. (1) Suppose that (𝐺,∗)  has two identity elements 𝑒1 and 𝑒2.  

Since 𝑒1𝑎 = 𝑎𝑒1 = 𝑎  𝑎𝑛𝑑 𝑒2𝑎 = 𝑎𝑒2 = 𝑎, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 𝑖𝑛 𝐺.  

In particular if 𝑒1 is identity element, then 𝑒1𝑒2= 𝑒2. But 𝑒2 is also identity element, so 

we have 𝑒1𝑒2= 𝑒1. Thus we obtain 𝑒1 = 𝑒1𝑒2= 𝑒2 and consequently 𝑒1 = 𝑒2. That is if 

the group has an identity element, then there is a unique.  ■ 

(5)  Since 𝑎 ∈ 𝐺, then there is 𝑎−1 ∈ 𝐺.  

Multiplying the equation 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐  on the left side by 𝑎−1, we obtain   
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𝑎−1 ∗ (𝑎 ∗ 𝑏) = 𝑎−1 ∗ (𝑎 ∗ 𝑐). 

The by (II), this becomes  

(𝑎−1 ∗ 𝑎) ∗ 𝑏 = (𝑎−1 ∗ 𝑎) ∗ 𝑐 

Hence  𝑒 ∗ 𝑏 = 𝑒 ∗ 𝑐, therefore 𝑏 = 𝑐.  ■ 

 

Theorem 3.2. The group (𝐺, ) is abelian if and only if 

 (𝑎 ∗ 𝑏)−1 = 𝑎−1 ∗ 𝑏−1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐺. 

Proof. Suppose that 𝐺 is Abelain group. Hence by Theorem 3.1 part (4) we have 

(𝑎 ∗ 𝑏)−1 = 𝑏−1 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑏−1. 

Conversely, suppose that (𝑎 ∗ 𝑏)−1 = 𝑎−1 ∗ 𝑏−1. Hence  

(𝑎 ∗ 𝑏)−1 ∗ (𝑏 ∗ 𝑎) = (𝑎−1 ∗ 𝑏−1) ∗ (𝑏 ∗ 𝑎) 

                                     = 𝑎−1 ∗ (𝑏−1 ∗ 𝑏) ∗ 𝑎 = 𝑎−1 ∗ 𝑒 ∗ 𝑎 = 𝑎−1 ∗ 𝑎 = 𝑒.  

That is we get (𝑎 ∗ 𝑏)−1 ∗ (𝑏 ∗ 𝑎) = 𝑒, therefore 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎.   ■ 

 

Corollary 3.3. The only solution of the group equation 𝑥 ∗ 𝑥 = 𝑥 𝑖𝑠 𝑥 = 𝑒. 

 

Definition 3.4. In any group (𝐺, ), the integral powers of an element 𝑥 ∈ 𝐺 are defined 

by  

                              𝑥𝑛  =  𝑥 ∗ 𝑥 ∗ …∗ 𝑥     (n-factors) 

                 𝑥0   =  𝑒, 

                 𝑥−𝑛  =  𝑥−1 ∗ 𝑥−1 ∗ …∗ 𝑥−1⏟            =
𝑛−𝑡𝑖𝑚𝑒𝑠

(𝑥−1)𝑛,         where 𝑛 ∈ ℤ+. 

Theorem 3.5.  Let (𝐺, ) be a group, 𝑥 ∈ 𝐺 and 𝑛,𝑚 ∈ ℤ. Then 

1- 𝑥𝑛 ∗ 𝑥𝑚  =  𝑥𝑛+𝑚 = 𝑥𝑚 ∗ 𝑥𝑛 .               2- (𝑥𝑛)𝑚 = 𝑥𝑛𝑚 = (𝑥𝑚)𝑛. 

3- 𝑥−𝑛 = (𝑥𝑛)−1,                                         4- 𝑒𝑛  =  𝑒. 
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Remark. If additive notation is employed for an Abelain group then the notation ‘𝑥𝑛 ’ is 

replaced by ‘𝑛𝑥’ for all integers 𝑛 and elements 𝑥 of the group. Then the theorem 3.5 

states that (𝑚 + 𝑛)𝑥 =  𝑚𝑥 + 𝑛𝑥 and (𝑚𝑛)𝑥 =  𝑚(𝑛(𝑥)) for all integers 𝑚 and 𝑛. 

 

Solve the following problems 

Q1/ If G is an abelian group, prove that (𝑎 ∗ 𝑏)𝑛  =  𝑎𝑛  ∗  𝑏𝑛 for all integers n. 

Q2/  Let (𝐺, . ) be a group such that (𝑎 ∗ 𝑏)2  =  𝑎2  ∗ 𝑏2 for every 𝑎, 𝑏 ∈ 𝐺. Prove that the group   

        is commutative. 

Q3/ If 𝐺 is a group in which 𝑎2  =  𝑒 for all 𝑎 ∈  𝐺, show that 𝐺 is abelian.  

Q4/ Let 𝐺 be a group, and suppose that 𝑎 and 𝑏 are any elements of 𝐺. Show that 

        (𝑎𝑏𝑎−1)𝑛  =  𝑎𝑏𝑛𝑎−1, for any positive integer 𝑛. 

 

4. Integers Modulo n 

Definition 4.1. Let 𝑛 be a fixed positive integer. Two integers 𝑎 𝑎𝑛𝑑 𝑏 are said to be 

congruent modulo n, written 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑎 − 𝑏 = 𝑘𝑛 for some integer 

𝑘 or (𝑎 − 𝑏) is divisible by 𝑛. 

Examples  1- 26 ≡ 2(𝑚𝑜𝑑 3).                2- 15 ≡ 7(𝑚𝑜𝑑 2) 

1- 3 ≢ 2(𝑚𝑜𝑑 4)                          4- −2 ≡ 6(𝑚𝑜𝑑 8) 

Theorem 4.2.  Let 𝑛 be a fixed positive integer and 𝑎, 𝑏 are arbitrary integers. Then 𝑎 ≡

𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑎 𝑎𝑛𝑑 𝑏 have the same remainder when divided by 𝑛. 

Proof.  Let 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)  𝑎 − 𝑏 = 𝑘𝑛 𝑜𝑟 𝑎 = 𝑏 + 𝑘𝑛 for some integer 𝑘, 

 and let 𝑏 = 𝑞𝑛 + 𝑟 when divided by 𝑛 and 𝑟 is remainder,       0 ≤  𝑟 <  𝑛. 

Now 𝑎 = 𝑏 + 𝑘𝑛 = 𝑞𝑛 + 𝑟 + 𝑘𝑛 = (𝑞 + 𝑘)𝑛 + 𝑟,  

then 𝑎 has the same remainder of 𝑏 when divided by 𝑛. 

Conversely, let 𝑎 = 𝑞1𝑛 + 𝑟 𝑎𝑛𝑑 𝑏 = 𝑞2𝑛 + 𝑟,  𝑞1, 𝑞2 ∈ 𝑧, (0 ≤  𝑟 <  𝑛). 

Now 𝑎 − 𝑏 = ( 𝑞1𝑛 + 𝑟) − (𝑞2𝑛 + 𝑟) = ( 𝑞1 − 𝑞2)𝑛 

Therefore 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛). 
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Theorem 4.3.  Let 𝑛 be a fixed positive integer and 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑  𝑑 are arbitrary integers. 

Then: 

1- 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑛). 

2- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), then 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛). 

3- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) and 𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑛), then 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑛). 

4- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) 𝑎𝑛𝑑 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛), then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑛)  

     and 𝑎. 𝑐 ≡ 𝑏. 𝑑(𝑚𝑜𝑑 𝑛). 

5- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), then 𝑎. 𝑐 ≡ 𝑏. 𝑐(𝑚𝑜𝑑 𝑛). 

6- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛), then 𝑎𝑘 ≡ 𝑏𝑘(𝑚𝑜𝑑 𝑛) for every positive integer 𝑘. 

Proof.  H.W. 

Remark. The converse of part (5) is not true, for example 5.2 ≡ 1.2(𝑚𝑜𝑑 8) but 5 ≡

1(𝑚𝑜𝑑 8). 

 

Theorem 4.4. If 𝑐𝑎 = 𝑎𝑏(𝑚𝑜𝑑 𝑛) and 𝑐 is relatively prime to 𝑛, then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛). 

Proof. If 𝑐𝑎 = 𝑐𝑏(𝑚𝑜𝑑 𝑛), then 𝑐(𝑎 − 𝑏) = 𝑘𝑛 for some integer 𝑘.  

Since 𝑐 is relatively prime to 𝑛, then 𝑛 is not divide 𝑐. Thus 𝑛 must divide 𝑎 − 𝑏, that is 

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛). 

 

Definition 4.5. For an arbitrary integer 𝑎, let [𝑎] denote the set of all integer numbers 

congruent to a modulo 𝑛: 

   [𝑎] = { 𝑥𝑍 / 𝑥 ≡ 𝑎(𝑚𝑜𝑑 𝑛) }  =  { 𝑥𝑍 / 𝑥 ≡ 𝑎 + 𝑘𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 }.  

We call [𝑎] the congruence class modulo 𝑛 determined by 𝑎, and 𝑎 is a representative of 

this class. 

Examples. 

1- 𝑍𝑛 = {[1], [2], … , [𝑛 − 1]}. 
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2- If 𝑛 = 3, then [0] = { 𝑥 ∈ 𝑍 / 𝑥 ≡ 0(𝑚𝑜𝑑 3)}  

                                         = { 𝑥 ∈ 𝑍 / 𝑥 = 3𝑘, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑍 }  

                                         = {… ,−6,−3, 0, 3, 6, … } = [3] = [6] = [−3]  

                                   [1] = { 𝑥 ∈ 𝑍 / 𝑥 ≡ 1(𝑚𝑜𝑑 3)}  

                                         = { 𝑥 ∈ 𝑍 / 𝑥 = 1 + 3𝑘, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ 𝑍 } 

                                          = {… ,−8,−5,−2, 1, 4, 7, … }  

We see that every integer lies in one of these classes. Integers in the same congruence 

class are congruent modulo 3, while integers in different classes are incongruent modulo 

3.  

Remark.  We select the smallest nonnegative integer for each congruence                     

class to represent it. 

 

Theorem 4.6.  Let 𝑛 be a positive integer and 𝑍𝑛 be as defined above. Then: 

1- For each [𝑎] ∈  𝑍𝑛, [𝑎] ≠ ∅. 

2- If [𝑎] ∈  𝑍𝑛 and 𝑏 ∈ [𝑎], then [𝑎] = [𝑏]. 

3- For 𝑎𝑛𝑦 [𝑎], [𝑏] ∈  𝑍𝑛 such that [𝑎] ≠ [𝑏], then [𝑎] ∩ [𝑏] = ∅.. 

4- ∪ {[𝑎], 𝑎 ∈ 𝑍}  =  𝑍. 

Proof. 

 

Theorem 4.7.  For each positive integer 𝑛, the mathematical system (𝑍𝑛, +𝑛) forms a 

commutative group. Known as the group of integers modulo 𝑛. 

Proof. (1) A binary operation +n may be defined on  𝑍𝑛 as follows:  

For each [𝑎], [𝑏] ∈  𝑍𝑛, let [𝑎]+𝑛[𝑏] = [𝑎 + 𝑏]. 

To prove that +𝑛 is well defined 

Let [𝑎] = [𝑏] 𝑎𝑛𝑑 [𝑐] = [𝑑].  

Now 𝑎 ∈ [𝑎] = [𝑏] and c∈ [𝑐] = [𝑑] 



 
 

10 
 

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)𝑎𝑛𝑑 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛)(𝑎 + 𝑐) = (𝑏 + 𝑑)(𝑚𝑜𝑑 𝑛) 𝑎 + 𝑐 ∈ [𝑏 + 𝑑] 

[𝑎 + 𝑐] = [𝑏 + 𝑑] 𝑜𝑟 [𝑎]+𝑛[𝑐] =  [𝑏]+𝑛[𝑑] 

Thus the operation +𝑛 is well defined. 

(2) If [𝑎], [𝑏], [𝑐]𝑍𝑛, then 

 [𝑎]+𝑛([𝑏]+𝑛[𝑐]) =  [𝑎]+𝑛[𝑏 + 𝑐] =  [𝑎 + (𝑏 + 𝑐)] 

                                 = [(𝑎 + 𝑏) + 𝑐] = [𝑎 + 𝑏]+𝑛[𝑐] =  ([𝑎]+𝑛[𝑏])+𝑛[𝑐]. 

(3) By definition of+𝑛, its clear that [0] is the identity element. 

(4)  If [𝑎] ∈ 𝑍𝑛, then [𝑛 − 𝑎] ∈ 𝑍𝑛, and [𝑎]+𝑛[𝑛 − 𝑎] = [𝑎 + (𝑛 − 𝑎)] = [𝑛] = [0],  

        so that [𝑎]−1 = [𝑛 − 𝑎]. 

(5) For any [𝑎], [𝑏] ∈ 𝑍𝑛, [𝑎]+𝑛[𝑏] = [𝑎 + 𝑏] = [𝑏 + 𝑎] = [𝑏]+𝑛[𝑎]. 

      Therefore (𝑍𝑛, +𝑛) is a commutative group. 

 

Example. 𝑍9 = {[0], [1], [2], [3], [4], [5], [6], [7], [8]} 

[1]−1 = [8], [5]−1 = [4], [6]−1 = [3]. 

Remark. For simplicity, we often write 𝑍𝑛 = {0, 1, 2, … , 𝑛 − 1}. 

Definition 4.8.  Let n be a fixed positive integer. Consider 𝑍𝑛  Let .𝑛 be define on 𝑍𝑛 by 

for all [𝑎], [𝑏]  ∈  𝑍𝑛 

[𝑎] .𝑛  [𝑏]  =  [𝑎𝑏]. 

(𝑍𝑛,  .𝑛 ) is a mathematical system. 

𝑍𝑛
× ={ the set of all multiplicative inverse elements}. 

 

Example. Find  𝑍9
× = {1, 2, 4, 5, 7, 8}, since 1.91=1, 2.9 5 = 1, 4.9 7 = 1, 8.9 8 = 1. 

 

 

Solve the following  problems 

Q1/ Prove that if 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛), then 𝑐𝑎 ≡  𝑐𝑏 (𝑚𝑜𝑑 𝑐𝑛). 
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Q2/   Find all solutions 𝑥, where 0 ≤  𝑥 <  15, of the equation 3𝑥 ≡  6 (𝑚𝑜𝑑 15). 

Q3/ Prove that 6𝑛 ≡  6 (𝑚𝑜𝑑 10)𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ∈ 𝑍+. 

Q4/ For any integer n, prove that either  𝑛2 ≡ 0 (𝑚𝑜𝑑 4) 𝑜𝑟 𝑛2 ≡  1 (𝑚𝑜𝑑 4). 

Q5/ Suppose 𝑎2 ≡ 𝑏2 (𝑚𝑜𝑑 𝑛), 𝑤here n is aprime number . Prove that either  

         𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛),  or 𝑎 ≡ − 𝑏 (𝑚𝑜𝑑 𝑛). 

Q6/ Find the multiplicative inverse of each nonzero element of 𝑍9. 

Q7/ In 𝑍18 find all units (list the multiplicative inverse) . 

Q8/ Write out multiplication tables for the set 𝑍15
× . 

 

5. Permutation groups. 

Definition 5.1. A permutation of a set 𝐴 is a function from 𝐴 into 𝐴 that is both one-to-

one and onto itself.  

Example.  The function  𝑓(𝑥)  =  𝑥 + 1 is a permutation of the set ℤ. 

Let 𝐴 = {1,2}, the there are four functions from 𝐴 to 𝐴, which are  

  

 

   

             𝒇𝟏                          𝒇𝟐                   𝒇𝟑                                    𝒇𝟒 

 

Thus 𝑀𝑎𝑝(𝐴) = { 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒}. Is 𝑀𝑎𝑝(𝐴) a group with respect to composition 

of functions? 

𝑓1 and 𝑓4 are onto and one to one function(bijections)  but the 𝑓2 and 𝑓3 are neither 

Injective (onto) nor surjective (one to one). 

 

Remark. The set of all permutations of the set 𝐴 will be denoted by the symbol 𝑆𝐴  

For any positive integer n, the symmetric group on the set {1, 2, 3,. . ., n} is 

1 

2 

1 

2 

2 

1 

22 

1 

2 

2 

1 

22 

1 

22 

1 

22 

1 

22 
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called the symmetric group on n elements, and is denoted by 𝑆𝑛 

 

Suppose that 𝐴 = {1, 2,… , 𝑛} 

For any 𝑓𝑆𝑛, 𝑓 = {(1, 𝑓(1)), (2, 𝑓(2)), … , (𝑛, 𝑓(𝑛))}. Also we can represent 𝑓 in  

𝑓 = (
1 2
𝑓(1) 𝑓(2)  

… 𝑛
… 𝑓(𝑛)) 

For example if 𝐴 =  {1, 2, 3, 4, 5} and  

𝑓 = (
1 2     
4 2     

3 4 5
5 3 1

) and 𝑔 = (
1 2     
3 5     

3 4 5
4 2 1

), then  

𝑔o𝑓 = (
1 2     
2 5    

3 4 5
1 4 3

)  

Theorem 5.2. Let 𝐴 be a nonempty set. Then (𝑆𝑦𝑚(𝐴), 𝑜) is a group ( called symmetric 

group of the set 𝑨).  
Proof. Clearly if 𝑓, 𝑔 ∈  𝑆𝑦𝑚(𝐴),  then 𝑓o𝑔 ∈  𝑆𝑦𝑚(𝐴). hence 𝑆𝑦𝑚(𝐴)  is closed under 

o. 

For  𝑓, 𝑔, ℎ ∈  𝑆𝑦𝑚(𝐴),  we show that (𝑓o𝑔)oℎ =  𝑓o(𝑔oh). 

(𝑓o𝑔)oℎ(𝑥) = (𝑓o𝑔)(ℎ(𝑥)) = 𝑓 (𝑔(ℎ(𝑥))) = 𝑓(𝑔oℎ(𝑥)) = 𝑓o(goℎ)(𝑥). 

I. Hence (𝑰) is satisfied. 

The identity map 𝐼𝐴 is a permutation of the set 𝐴 and is identity element such that  

𝑓o𝐼𝐴 = 𝐼𝐴o𝑓 = 𝑓. Therefore (𝑰𝑰) is satisfied. 

For proving 𝑆𝐴  has an inverse, suppose that 𝑓 ∈  𝑆𝑦𝑚(𝐴), that is 𝑓 is one to one and 

onto function. Therefore 𝑓−1 is also one to one and onto function, hence  𝑓−1 ∈

 𝑆𝑦𝑚(𝐴) such that  𝑓−1o𝑓 = 𝑓o𝑓−1 = 𝐼𝐴. Thus (𝑰𝑰𝑰) is satisfied. Hence (𝑆𝑦𝑚(𝐴), o).  ■  

 

Remark. The set of all permutations of the set 𝑁={1, 2, 3, … , n} will be denoted by the 

symbol 𝑆𝑛 and 𝑆𝑛 contains  𝑛! distinct elements. 

 

Example. Let 𝐴 = {1, 2, 3}. Then there are 3! = 6 permutations in 𝑆3, namely  
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𝑖 = 𝑓1 = (
1 2 3
1 2 3

),       𝑓2 = (
1 2 3
2 3 1

),          𝑓3 = (
1 2 3
3 1 2

) 

 

      𝑓4 = (
1 2 3
1 3 2

),        𝑓5 = (
1 2 3
3 2 1

),         𝑓6 = (
1 2 3
2 1 3

) 

 

O 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 

𝑓1 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 

𝑓2 𝑓2 𝑓3 𝑓1 𝑓6 𝑓4 𝑓5 

𝑓3 𝑓3 𝑓1 𝑓2 𝑓5 𝑓6 𝑓4 

𝑓4 𝑓4 𝑓5 𝑓6 𝑓1 𝑓2 𝑓3 

𝑓5 𝑓5 𝑓6 𝑓4 𝑓3 𝑓1 𝑓2 

𝑓6 𝑓6 𝑓4 𝑓5 𝑓2 𝑓3 𝑓1 

 

Note that 𝑓2o𝑓4 = 𝑓6,      𝑎𝑛𝑑 𝑓4o𝑓2 = 𝑓3 as the table above, we get  (𝑆3, o) forms a group 

as the symmetric group on n symbols, which is non commutative for 𝑛 ≥ 3.. . 

 

Definition 5.3. A permutation  𝑓 of a set 𝐴 is a cycle of length k if there exist 

𝑛1, 𝑛2, …  , 𝑛𝑘 ∈ 𝐴 such that  

𝑓(𝑛𝑖) = 𝑛𝑛+1, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑘 − 1, 

                                     𝑓(𝑛𝑘) =  𝑛1 𝑎𝑛𝑑  

                                     𝑓(𝑚) = 𝑚, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝐴 𝑏𝑢𝑡 𝑚 ∉ {𝑛1, 𝑛2, …  , 𝑛𝑘}. 

We write 𝑓 = (𝑛1, 𝑛2, …  , 𝑛𝑘).  

 

Example . In (𝑆6, o), if we have  

𝑓 = (
1 2 3
3 5 4

   
4 5 6
2 6 1

) = (1   3   4   2   5   6  ) and the inverse of 𝑓is  
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𝑓−1 = (
1 2 3
6 4 1

   
4 5 6
3 2 5

) 

 

Theorem 5.4. Every permutation can be written as a product of disjoint cycles. 

 

Two cycles (𝑎1, 𝑎2, . . . , 𝑎𝑛) and (𝑏1,  . . . , 𝑏𝑚) are said to be disjoint if 𝑎𝑖 ≠ 𝑏𝑗 for all i , 

j. 

 

Example. Let  

𝜎 = (
1  2  3  4  5  6  7  8
5  7  1  4  8  2  6  3

) 

1 → 5 → 8 → 3 → 1. Therefore 𝜎 contains the cycle (1 5 8 3). 

2 → 7 → 6 → 2. Therefore 𝜎 contains the cycle (2  7  6), 

Note that the cycles (1 5  8 3) and (2  7 6) are disjoint, and 𝜎 contains the product (or 

composition) (1  5  8  3)(2 7 6). 
. 

Definition 5.5.  A cycle of length two is called transposition. 

In the example above (𝑆3, o), 𝑓4, 𝑓5  𝑎𝑛𝑑  𝑓6 are transpositions. 

Lemma 5.6. Every permutation can be written a product of transpositions. 

 

That is mean 𝑓 = (𝑛1, 𝑛2, …  , 𝑛𝑘) = (𝑓 = (𝑛1, 𝑛𝑘)(𝑛1, 𝑛𝑘−1)… (𝑛1, 𝑛2) 

 

Example. In (𝑆3, o),   𝑓2 = (
1 2 3
2 3 1

) = (1   2   3) = (1   3)(1   2) 

Note that these transpositions are not disjoint and so they don’t have to commute. Since  

(1  2)(1  3) ≠ (1  3)(1  2)   
 

Definition 5.7.  A permutation of a finite set is even if it can be written as a product of 

even number of transpositions, and is odd if it can be written as a product of odd number 

of transpositions. 

For example  𝑆3 = { 𝑖, (1   2   3), (1   3   2), (2   3), (1   3), (1   2)}, then   
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𝑖, (1   2   3) 𝑎𝑛𝑑 (1   3   2) are even transpositions however (2   3), (1   2) 𝑎𝑛𝑑 (1   3) are 

odd transpositions. 

 

Theorem 5.8. Every permutation in 𝑆𝑛 can be written as a product of either an even 

number of transpositions, or an odd number of transpositions but not both. 

 

Definition 5.9.  All even permutations is called alternating group and denoted by 𝐴𝑛. 

i.e 𝐴𝑛 = {𝜎 ∈ 𝑆𝑛: 𝜎 𝑖𝑠 𝑒𝑣𝑒𝑛}. 

 

Theorem 5.10. If  𝑛 ≥ 2, the collection of all even permutations of {1, 2, … . , 𝑛}forms a 

subgroup of order 
𝑛!

2
 of the symmetric group 𝑆𝑛. 

For example  |𝑆3| = 3! = 6, then |𝐴3| =
3!

2
=
6

2
= 3.  

 

Solve the following problems: 

Q1/ Determine whether the given function is a permutation of 𝑅.  

1- 𝑓: 𝑅 ⟶ 𝑅 defined by 𝑓(𝑥)  =  𝑥 +  𝑙. 
2- 𝑓: 𝑅 ⟶ 𝑅 defined by 𝑓(𝑥)  = 𝑥2. 

3- 𝑓: 𝑅 ⟶ 𝑅 defined by 𝑓(𝑥) = −𝑥3.  
 

Q2/ Find the number of elements in the set {𝛿 ∈ 𝑆4 |𝛿(3)  =  3}. 
 

Q3/ Express the permutation of {1, 2, 3, 4, 5, 6, 7, 8} as a product of disjoint cycles, and then as   

       a product of transpositions. 1f  

       𝛾 = (
1 2 3
2 5 6

   
4 5 6
4 7 8

   
7 8
3 1

),           𝛿 = (
1 2 3
2 1 7

   
4 5 6
3 8 6

   
7 8
5 4

). 

 

Q4/ What is the order of the cycle (1  2  8   5   7)? 

 

Q5/ Consider the three permutation in 𝑆6 

       𝛾 = (
1 2 3
1 4 3

   
4 5 6
5 6 1

) ,   𝛿 = (
1 2 3
3 4 1

   
4 5 6
5 2 6

),  𝜆 = (
1 2 3
3 2 4

   
4 5 6
6 1 5

) 

Compute 

(a) γδ           (b) 𝛾𝛿2                      (c) 𝛾2𝜆                    (d) 𝜆100       (e) (𝛾𝜆)−1 
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Q6/ Compute the order of  𝜏 = (
1 2 3

5 2 10
   
4 5 6

4 6 8
   
7 8 9

9 11 1
   
10 11

3 7
 ) . For 

 

𝜎 =  (2  10  7), compute the order of 𝜎𝜏𝜎−1. Is 𝜏 an even permutation or an odd 

permutation? 

 

6. Cyclic group. 

Definition 6.1.  Let (𝐺, ) be a group. Then 𝐺 is said to be cyclic group if there exists an 

element 𝑎 ∈ 𝐺 such that every element of 𝐺 is of the form 𝑎𝑛 for some integer 𝑛. Such an 

element 𝑎 is called a generator of the group and written as 

 𝐺 =< 𝑎 >= {𝑎𝑛 | 𝑛 ∈ 𝑍}. 

Examples.  

1-  (𝑍,+) is cyclic group generated by 1 and -1. Then 𝑍 =< 1 >=< −1 > 

2- (𝑄,+) is not cyclic group. 

3- If 𝐺 = {1,−1, 𝑖, −𝑖}, where 𝑖2 = −1, then (𝐺, . ) is a cyclic group generated by 𝑖 

and  – 𝑖 and 𝐺 =< 𝑖 >=< −𝑖 >. 

4- (𝑍5, +5) is a cyclic group and 𝑍5 =< 1 >=< 2 >=< 3 >=< 4 >. 

 

Remark. In (𝑍𝑛, +𝑛), if n is prime, then every elements is generator except 0. 

 

Definition 6.2. If (𝐺, ) is a finite group, then the order of (𝑮, ) is the number of elements 

in 𝐺 and denoted by |𝐺| or 𝑜(𝐺) and if 𝐺 is infinite, then we say 𝐺 has an infinite order. 

 

Definition 6.3. Let (𝐺, ) be a group. Then the order of an element 𝒂 in 𝐺 is the least 

positive integer 𝑛 such that 𝑎𝑛 = 𝑒, where 𝑒 is the identity element of 𝐺, and denoted by 

𝑜(𝑎) = 𝑛. 

Example. (Z8, +8), Then 𝑜(Z8)=8 and 𝑜(2) = 4 where 2Z8. 
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Lemma 6.4.  Let (𝐺,∗) be a group and 𝑎, 𝑏 ∈ 𝐺 has a finite order. Then  

1- 𝑜(𝑎) = 𝑜(𝑎−1) 

2- 𝑜(𝑎) = 𝑜(𝑏 ∗ 𝑎 ∗ 𝑏−1). 

Proof. 1-  if 𝑜(𝑎) = 𝑛, then by  Theorem 3.5 we have  

(𝑎−1)𝑛 = 𝑎−𝑛 = (𝑎𝑛)−1 = 𝑒−1 = 𝑒  

Suppose that m be a least positive integer satisfyies  (𝑎−1)𝑚 = 𝑒, then  

𝑎𝑚 = (𝑎−1)−𝑚 = ((𝑎−1)𝑚)−1 = 𝑒−1 = 𝑒. 

Which is contradiction for 𝑜(𝑎)  =  𝑛, for a lest positive integer n such that (𝑎−1)𝑛 = 𝑒, 

hence 𝑜(𝑎−1) = 𝑛. 

2-H.W. 

Example. 

2- In  a group (𝑄8, . ), we find (−1)2 = 1 𝑎𝑛𝑑 𝑜(−1) = 2 𝑏𝑢𝑡 (−1) ≠ 1. 

3- In (𝑍,+) , 𝑂(1)is infinite since 1≠0, 1+1 ≠0, 1+1+1≠0, … 

           i.e 1 + 1 + 1 = 13 . 

 

Theorem 6.5. Every cyclic group is abelian. 

Proof. Let (𝐺,∗) be a cyclic group generated by an element 𝑎. That is  

𝐺 =< 𝑎 >= {𝑎𝑛 ∶  𝑛 ∈ 𝑍}.  

Let 𝑥, 𝑦 be any two elements of 𝐺, then there exist integers 𝑛 𝑎𝑛𝑑 𝑚  such that 

 𝑥 = 𝑎𝑛 𝑎𝑛𝑑 𝑦 = 𝑎𝑚. Then 

𝑥 ∗ 𝑦 = 𝑎𝑛 ∗ 𝑎𝑚 = 𝑎𝑛+𝑚 = 𝑎𝑚+𝑛 = 𝑎𝑚 ∗ 𝑎𝑛 = 𝑦 ∗ 𝑥. 

Therefore (𝐺,∗) is abelian group. 

 

Definition 6.6. Let (𝐺,∗)𝑎𝑛𝑑 (𝐻,• )be two groups, 

𝐺 × 𝐻 = {(𝑔, ℎ): 𝑔 ∈ 𝐺 𝑎𝑛𝑑 ℎ ∈ 𝐻} 
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For all (𝑔1, ℎ1), (𝑔2, ℎ2) ∈ 𝐺 × 𝐻, then 

 (𝑔1, ℎ1). (𝑔2, ℎ2) = (𝑔1 ∗ 𝑔2, ℎ1 • ℎ2) ∈ 𝐺 × 𝐻. 

H.w. Prove that (𝐺 × 𝐻, . ) is a group. 

 

Example.  describe the direct product of (𝑍2, +2)  and (𝑍3, +3). 

 

Solve the following problems 

Q1/ If (G, *) be a group and let x be an element of G of order 20. Find 𝑜(𝑥4), 𝑜(𝑥7), 𝑜(𝑥11). 
 

Q2/ Find the order of the elements  

a- (2, 2)𝑖𝑛 𝑍12 × 𝑍4 

b- ([1], (1  2))𝑖𝑛 𝑍2 × 𝑆4.   
 

Q3/ Give an example of a group with the property described, or explain why no example exists.  

    a. A finite group that is not cyclic  

    b. An infinite group that is not cyclic  

    c. A cyclic group having only one generator  

   d. An infinite cyclic group having two generators  

   e. A finite cyclic group having four generators . 

   f. A nonabelian cyclic group. 
 

Q4/ List the generators of 𝑍12. 
 

Q5/ Show that 𝑄+ is not a cyclic group. 

 

Q6/ Let 𝐺 =  {𝑎, 𝑏, 𝑐, 𝑑} be a group. Complete the following Cayley table for this group. 

                              

* a b c d 

a     

b     

c   b  

d  b   

 

 

 

7.  Subgroups. 
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Definition 7.1. Let (𝐺, ) e a group and 𝐻 be a nonempty subset of 𝐺. The pair (𝐻, ) is 

said to be a subgroup of (𝐺, ) if (𝐻, ) is itself a group. 

Example.  

(1)  (𝑍𝑒 , +) and (𝑛𝑍,+) are  a subgroup of (𝑍,+). 

(2) (𝑄 − {0}, . ) is a subgroup of (𝑅 − {0}, . ). 

(3)  Let 𝐺 = {𝑒, 𝑎, 𝑏, 𝑐} with 𝑎2 = 𝑏2 = 𝑐2 = 𝑒 and 𝑎. 𝑏 = 𝑏. 𝑎 = 𝑐, 𝑎. 𝑐 = 𝑐. 𝑎 = 𝑏 

      𝑎𝑛𝑑  𝑏. 𝑐 = 𝑐. 𝑏 = 𝑎 . The pair (G, .) is a group, known as Klein’s four-group. 

Remarks. 

1- The binary operation on the subgroup 𝐻 must be the same binary operation on the 

group 𝐺. 

2- Any group has at least two subgroups, ({𝑒}, ) the identity element 𝑒 of the group, 

and the group itself are called trivial subgroups. The other subgroups called proper 

subgroups. 

Example. 𝑅∗ is a subset of 𝑅 and both are groups. But 𝑅∗is not a subgroup of 𝑅, since the operation 

that makes 𝑅∗ a group is multiplication and the operation that makes 𝑅 a group is addition. 

 

Theorem 7.2. Let (𝐺, ) be a group and  ∅ ≠ 𝐻 ⊆ 𝐺. Then (𝐻, ) is a subgroup of (𝐺, ) 

if and only if 𝑎, 𝑏𝐻 implies 𝑎𝑏−1𝐻. 

Proof. If (𝐻, ) is a subgroup of (𝐺, ) and 𝑎, 𝑏𝐻, then 𝑏−1𝐻 and so  by the closure 

condition 𝑎𝑏−1 ∈ 𝐻  

Conversely, suppose 𝑎𝑏−1 ∈ 𝐻 for all 𝑎, 𝑏𝐻 and 𝐻 is a nonempty subset of 𝐺, then  𝐻 

contains at least one element let 𝑏, 

1- We take 𝑎 = 𝑏 to see 𝑎𝑎−1 ∈ 𝐻 that is 𝑒 ∈ 𝐻. 

2- Since 𝑏 ∈ 𝐻 𝑎𝑛𝑑 𝑏𝑦 (1) 𝑒 ∈ 𝐻 implies that 𝑏−1 = 𝑒𝑏−1 ∈ 𝐻.  

3- If 𝑎, 𝑏 ∈ 𝐻, then by (2) we have 𝑏−1 ∈ 𝐻, so that 𝑎 ∗ 𝑏 = 𝑎(𝑏−1)−1 ∈ 𝐻,hence H 

is closed with respect to the operation *. 
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4- Since  is an associative operation in 𝐺 and 𝑎, 𝑏, 𝑐 ∈ 𝐻 ⊆ 𝐺, therefore  𝐻 satisfied   

the associative law as a subset of 𝐺. 

Then (𝐻, ) is a subgroup of (𝐺, ). 

Example.  

1-  Let (𝐺, . ) = (𝑍 × 𝑍, . ) be a group and 𝐻 = {(𝑎, 𝑎):  𝑎 ∈ 𝑍}. Show that  

(𝐻, . ) be a subgroup of (𝐺, . ).  

2-  Let(𝐺𝑙2(𝑅), . ) be a group and 𝐻 = {(
𝑎 𝑏
𝑐 𝑑

) ∈ 𝐺𝑙2(𝑅): 𝑎𝑑 − 𝑏𝑐 = 1} ⊆ 𝐺𝑙2(𝑅). 

Show that (𝐻, . ) be a subgroup of (𝐺𝑙2(𝑅), . ).  

 

Definition 6.3. The center of a group (𝐺, ), denoted by 𝑐𝑒𝑛𝑡(𝐺) or 𝑍(𝐺) is the set 

𝑐𝑒𝑛𝑡(𝐺) = {𝑐𝐺 ∶   (𝑐 ∗ 𝑥 = 𝑥 ∗ 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐺}. 

Remark.  The group (𝐺, ) is commutative if and only if 𝑐𝑒𝑛𝑡(𝐺) = 𝐺. 

 

Examples.(1)  In the group (𝑄8, . ), 𝑐𝑒𝑛𝑡(𝑄8) = {1,−1}. 

(1) Klien’s four-group  

(2) (𝑆3.•) 

(3) (𝐺𝑙2(𝑅), . ) 

 

Theorem 7.4. Let (𝐺, ) be a group.  Then (𝑐𝑒𝑛𝑡(𝐺), ) is a subgroup of the group (𝐺, ). 

Proof.  Since 𝑒 ∈ 𝑐𝑒𝑛𝑡(𝐺), then 𝑐𝑒𝑛𝑡(𝐺) ≠ ∅. 

Consider any two elements  𝑎, 𝑏 ∈ 𝑐𝑒𝑛𝑡(𝐺), we must prove that 𝑎𝑏−1 ∈ 𝑐𝑒𝑛𝑡(𝐺).  

We know for all 𝑥 ∈ 𝐺, we have  

(𝑎 ∗ 𝑏−1) ∗ 𝑥 = 𝑎 ∗ (𝑏−1 ∗ 𝑥) = 𝑎 ∗ (𝑥 ∗ 𝑏−1) = (𝑎 ∗ 𝑥) ∗ 𝑏−1 = (𝑥 ∗ 𝑎) ∗ 𝑏−1

= 𝑥 ∗ (𝑎 ∗ 𝑏−1) 

which implies 𝑎 ∗ 𝑏−1 ∈ 𝑐𝑒𝑛𝑡(𝐺) . Then  by Theorem 7.2 we get (𝑐𝑒𝑛𝑡(𝐺), )  is a 

subgroup of (𝐺, ). 
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Theorem 7.5. If (𝐻1, ∗) and (𝐻2, ∗) are two subgroups of the group (𝐺, ), then 

 (𝐻1 ∩ 𝐻2, ) is also a subgroup of (𝐺, ). 

Proof. Since the sets 𝐻1 and  𝐻2  contains the identity element of (𝐺, ), the intersection 

𝐻1 ∩ 𝐻2 ≠ ∅. 

Now suppose that 𝑎 𝑎𝑛𝑑 𝑏 are any two elements of 𝐻1 ∩ 𝐻2, then 𝑎, 𝑏 ∈ 𝐻1  and 𝑎, 𝑏 ∈

𝐻2. Since (𝐻1, )and (𝐻2,∗) are subgroups, it follows that 𝑎𝑏−1 ∈ 𝐻1 𝑎𝑛𝑑 𝑎𝑏
−1 ∈ 𝐻2, 

then 𝑎𝑏−1 ∈ 𝐻1 ∩ 𝐻2, which implies (𝐻1 ∩ 𝐻2, ) is a subgroup of (𝐺, ). 

 

Remark.(1)  If (𝐻𝑖 , ∗) is an arbitrary indexed collection of subgroups of the group (𝐺, ), 

then (∩ 𝐻𝑖 , ) is also a subgroup of (𝐺, ). 

(2) The union of two subgroups (𝐻1, )  and( 𝐻2,∗)  of the group (𝐺, )  need not be 

subgroup of (𝐺, ).  

For example. ({0, 6}, +12) and ({0, 4, 8}, +12)  are two subgroups of the group (𝑍12, +12), 

then the union is ({0, 4, 6, 8}, +12) is not subgroup of (𝑍12, +12). 

 

Theorem 7.6.  Let (𝐻1, ) and( 𝐻2,∗)  be two subgroups of the group (𝐺, ). Then  

(𝐻1U𝐻2, ) is a subgroup of (𝐺, ) iff 𝐻1 ⊆ 𝐻2 𝑜𝑟 𝐻2 ⊆ 𝐻1. 

Proof. Suppose that 𝐻1 ⊆ 𝐻2 𝑜𝑟 𝐻2 ⊆ 𝐻1, then 𝐻1U𝐻2 = 𝐻2 𝑜𝑟 𝐻1U𝐻2 = 𝐻1. 

Since 𝐻1  and 𝐻2 are subgroups, then 𝐻1 ∪ 𝐻2 is a subgroup of 𝐺. 

Conversely, suppose that (𝐻1U𝐻2, ) is a subgroup of (𝐺, ) such that  

𝐻1 ⊄ 𝐻2 𝑎𝑛𝑑 𝐻2 ⊄ 𝐻1, then there exists an elements 𝑎 𝑎𝑛𝑑 𝑏 such that  

  𝑎 ∈ 𝐻1 −𝐻2 and  𝑏 ∈ 𝐻2 −𝐻1.  

Since 𝐻1  ∪ 𝐻2 is a subgroup of 𝐺, then 𝑎𝑏−1 ∈ 𝐻1 ∪ 𝐻2 

 𝑎𝑏−1 ∈ 𝐻1 𝑜𝑟 𝑎𝑏
−1 ∈ 𝐻2 

Suppose 𝑏−1 ∈ 𝐻2  𝑎 = 𝑎𝑏−1 ∗ 𝑏 ∈ 𝐻2, which is contradiction, and if 𝑎𝑏−1 ∈ 𝐻1 
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 𝑏−1 = 𝑎−1 ∗ 𝑎𝑏−1 ∈ 𝐻1  b ∈ H, which is contradiction. Then either  

𝐻1 ⊆ 𝐻2 𝑜𝑟 𝐻2 ⊆ 𝐻1. 

 

Remark. Let (𝐻𝑖 , ) be an indexed collection of subgroups of the group (𝐺, ). Suppose 

the family of subsets {Hi} has the property that for any two of its members 𝐻𝑖 and 𝐻𝑗 there 

exists a set 𝐻𝑘 (depending on 𝑖 𝑎𝑛𝑑 𝑗) in {𝐻𝑖} such that 

 𝐻𝑖 ⊆ 𝐻𝑘  𝑎𝑛𝑑 𝐻𝑗 ⊆ 𝐻𝑘. Then (U𝐻𝑖 , ) is also a subgroup of (𝐺, ). 

 

Definition 7.7. If (𝐺,∗) is an arbitrary group and ∅ ≠ 𝑆 ⊆ 𝐺, then the symbol (S) will 

represent the set  

(𝑆) =∩ {𝐻 |𝑆 ⊆ 𝐻; (𝐻,∗)𝑖𝑠 𝑎 𝑠𝑢𝑏𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 (𝐺,∗)}. 

 

Theorem 7.8 . The pair ((𝑆),∗) is a subgroup of (𝐺,∗), known the subgroup generated by 

the set 𝑆. 

 

Definition 7.9  Let (𝐺,∗) be a group and 𝑎 be an element in 𝐺.  Then a cyclic subgroup 

((𝑎),∗) is called a subgroup generated by an element 𝑎. 

 

Example.  In (𝑍4,  +4) a subgroup generated by 2 is ([2]) = { [0], [2]} 

 

Theorem 7.10. Every subgroup of cyclic group is cyclic. 

Proof. Let (𝐺, )  be a cyclic group generated by the element 𝑎  and let (𝐻, )  be a 

subgroup of (𝐺, ). 

If 𝐻 = {𝑒}, then 𝐻 =< 𝑒 > is cyclic.  

If 𝐻 ≠ {𝑒}, then there exist 𝑥 ∈ 𝐻 such that 𝑥 = 𝑎𝑚 for some 𝑚𝑍. 
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If 𝑎𝑚 ∈ 𝐻, where 𝑚 ≠ 0, then 𝑎−𝑚 ∈ 𝐻, hence 𝐻 must contains positive powers of 𝑎. Let 

𝑛 be the smallest positive integer such that 𝑎𝑛 ∈ 𝐻.  

we must to show that 𝐻 = (𝑎𝑛).  

Let 𝑎𝑘 ∈ 𝐻 ⇒ (𝑎𝑘)𝑛 ∈ 𝐻, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝑍, therefore (𝑎𝑛) ⊆ 𝐻. 

By the Division Algorithm there exist integers 𝑞 𝑎𝑛𝑑 𝑟 for which  

𝑘 = 𝑛𝑞 + 𝑟, 0 ≤ 𝑟 < 𝑛.  

Since both 𝑎𝑛, 𝑎𝑘 ∈ 𝐻, and  𝑟 = 𝑘 − 𝑛𝑞, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑥𝑟 = 𝑥𝑘−𝑛𝑞 ∈ 𝐻 

If r>0, we have contradiction to the assumption that 𝑎𝑛 is a minimal positive power of 

𝑎 𝑖𝑛 𝐻. Accordingly 𝑟 =  0 𝑎𝑛𝑑 𝑘 = 𝑛𝑞 ⇒𝑎𝑘 = (𝑎𝑛)𝑞 ∈ (𝑎𝑛). 

𝐻 ⊆ (𝑎𝑛). Consequently 𝐻 = (𝑎𝑛). 

 

Examples Let (𝑍𝑛, +𝑛) is cyclic group generated by < 1 >. Then  every subgroups are 

cyclic. 

 

Definition 7.11. Let (𝐺,∗) be a group and 𝐻,𝐾 be nonempty subsets of 𝐺. The product of 

𝐻 𝑎𝑛𝑑 𝐾 is the set 𝐻 ∗ 𝐾 = {ℎ ∗ 𝑘: ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}. 

 

Example.  

1- Let (𝑍8,   +8), 𝐻 = {1,5} and 𝐾 = {2, 4, 6}. Then  

𝐻+8𝐾 = {1+82, 1+84, 1+86, 5+82, 5+84, 5+86} = {3, 5, 7, 1}.  

Hence  (𝐻+8𝐾,+8) is not a subgroup of (𝑍8,   +8). 

2- Let (𝑆3,•), 𝐻 = {𝑖, (1  2)} 𝑎𝑛𝑑  𝐾 = {𝑖, (1  3)}. Then 

𝐻 • 𝐾 = {𝑖 • 𝑖, 𝑖 • (1  3), (1  2) • 𝑖, (1  2) • (1  3)} = {𝑖, (1  3), (1  2), (1  3  2)} 

Hence (𝐻 • 𝐾, •) is not a subgroup of (𝑆3,•). 
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Theorem 7.12. If (𝐻,∗) and (𝐾,∗) are subgroups of the group (𝐺,∗) such that 𝐻 ∗ 𝐾 =

𝐾 ∗ 𝐻, then (𝐻 ∗ 𝐾,∗) is a subgroup of (𝐺,∗). 

Proof. Note that 𝐻 ∗ 𝐾 = 𝐾 ∗ 𝐻   is not mean ℎ ∗ 𝑘 = 𝑘 ∗ ℎ, 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑘 ∈ 𝐾, 

but it means 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑘 ∈ 𝐾, there exist ℎ1 ∈ 𝐻 𝑎𝑛𝑑 𝑘1 ∈ 𝐾 such that  ℎ ∗ 𝑘 =

𝑘1 ∗ ℎ1. 

Since 𝑒 ∈ 𝐻 𝑎𝑛𝑑 𝑒 ∈ 𝐾, then 𝑒 = 𝑒 ∗ 𝑒 ∈ 𝐻 ∗ 𝐾, hence 𝐻 ∗ 𝐾 ≠ ∅. Let 𝑥, 𝑦 ∈ 𝐻 ∗ 𝐾.  

We must to show that 𝑥 ∗ 𝑦−1 ∈ 𝐻 ∗ 𝐾.  

Now let 𝑥 = ℎ1 ∗ 𝑘1 and 𝑦 = ℎ2 ∗ 𝑘2, where ℎ1, ℎ2 ∈ 𝐻 𝑎𝑛𝑑 𝑘1, 𝑘2 ∈ 𝐾.  Hence 

𝑥 ∗ 𝑦−1 = (ℎ1 ∗ 𝑘1) ∗ (ℎ2 ∗ 𝑘2)
−1 = (ℎ1 ∗ 𝑘1) ∗ (𝑘2

−1 ∗ ℎ2
−1) = ℎ1 ∗ (𝑘1 ∗ 𝑘2

−1) ∗ ℎ2
−1) 

Since (𝐾,∗) is a subgroup of (𝐺,∗), then 𝑘1
−1 ∗ 𝑘2

−1 ∈ 𝐾 and therefore 

𝑘1 ∗ 𝑘2
−1 ∗ ℎ2

−1 ∈ 𝐾 ∗ 𝐻 and 𝐾 ∗ 𝐻 = 𝐻 ∗ 𝐾, 

then there exist elements ℎ𝐻 𝑎𝑛𝑑 𝑘𝐾 such that 𝑘1 ∗ 𝑘2
−1 ∗ ℎ2

−1 = ℎ ∗ 𝑘, we conclude 

that 𝑥 ∗ 𝑦−1 = ℎ1 ∗ (ℎ ∗ 𝑘) = (ℎ1 ∗ ℎ) ∗ 𝑘 ∈ 𝐻 ∗ 𝐾.  

Hence (𝐻 ∗ 𝐾,∗) is a subgroup of (𝐺,∗). 

 

Corollary 7.13. If (𝐻,∗) 𝑎𝑛𝑑 (𝐾,∗) are subgroups of the commutative group (𝐺,∗), then 

(𝐻 ∗ 𝐾,∗) is a subgroup of (𝐺,∗). 

Solve the following  

Q1/ Find all cyclic subgroups of 𝑍15. 

 

Q2/ Find all cyclic subgroups of 𝑍20
× . 

Q3/ Let 𝐺 be an abelian group, and let 𝑛 be a fixed positive integer. Show that 

                 𝑁 = { 𝑔 ∈ 𝐺|𝑔 =  𝑎𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ 𝐺} is a subgroup of 𝐺. 

 

Q4/ If G is an abelian group and if 𝐻 =  {𝑎 ∈  𝐺 | 𝑎2  =  𝑒}, show that H is a subgroup of G. Give an  

       example of a nonabelian group for which the H is not a subgroup. 

 

 

Q5/ In the group of symmetries of the equilateral triangle, find: 

     a) all subgroups.  

     b) The center of the group . 
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Q6/ list the elements of the subgroup generated by the given subset.  

   1. The subset {2, 4} of 𝑍12                             2. The subset {2, 6} of 𝑍12 
   3. The subset {6, 12} of 𝑍18                           4. The subset {15, 30} of 𝑍36. 
 

Q7/ Let (H, *) be a subgroup of f the group (G, *) and the set N(H) be defined by 

    𝑁(𝐻)  =  {𝑎 ∈ 𝐺:  𝑎 ∗ 𝐻 ∗ 𝑎−1  = 𝐻}. Prove that the pair (N(H), *) is a subgroup of (G, *),     

    called the normalize of H in G. 

 

Q8/ Let 𝐺 be a group, with subgroup 𝐻. Show that 𝐾 = {(𝑥, 𝑥) ∈  𝐺 ×  𝐺| 𝑥 ∈  𝐻} is a 

       subgroup of 𝐺 × 𝐺. 

 

Q9/ In 𝑍20, find the order of the subgroup <16>; find the order of <14>. 

 

Q10/ Let (𝑀(ℝ),) be a group of all real continuous functions over R and let 𝐹 = {𝑓 ∈ 𝑀(ℝ): 𝑓 is 

differentiable}  and ℎ = {𝑓 ∈ 𝑀(ℝ): 𝑓(1) = 0}. Show that (𝐻,) is  subgroup of the group (𝑀(ℝ),). 
 

 

 

 

 

8. Cosets and Lagrange’s Theorem  

 

Definition 8.1. Let (𝐻,∗) be a subgroup of the group (𝐺,∗) and let 𝑎 ∈ 𝐺. The set  

𝑎 ∗ 𝐻 = {𝑎 ∗ ℎ: ℎ ∈ 𝐻} is called left coset of 𝐻 𝑖𝑛 𝐺. The element 𝑎 is representative of 

𝑎 ∗ 𝐻 𝑎𝑛𝑑 𝐻 ∗ 𝑎 = {ℎ ∗ 𝑎: ℎ ∈ 𝐻} is called a right coset of 𝐻 𝑖𝑛 𝐺. 

 

Remark. If 𝑒 is the identity element of (𝐺, ∗), then 

 𝑒 ∗ 𝐻 =  { 𝑒 ∗ ℎ: ℎ ∈ 𝐻} = {ℎ: ℎ ∈ 𝐻} = 𝐻. That is 𝐻 itself is a left coset of 𝐻. 

 

Example . Let (𝑍10, +10) be a group and 𝐻 = {0, 5} be a subgroup of (𝑍10, +10). 

1+10𝐻 = {1, 6},    2+10𝐻 = {2, 7},    3+10𝐻 = {3, 8},   4+10𝐻 = {4, 9}, 5+10𝐻 = {5, 0} 

6+10𝐻 = {1, 6},    7+10𝐻 = {2, 7},    8+10𝐻 = {3, 8},   9+10𝐻 = {4, 9}. 

There are only five distinct cosets. 

 



 
 

26 
 

Theorem 8.2. If (𝐻,∗) is a subgroup of the group (𝐺,∗), then 𝑎 ∗ 𝐻 = 𝐻 if and only if 

 𝑎 ∈ 𝐻. 

Proof. Suppose that  𝑎 ∗ 𝐻 = 𝐻.  Since  𝑒 ∈ 𝐻 , then 𝑎 =  𝑎 ∗ 𝑒 ∈ 𝑎 ∗ 𝐻 =  𝐻 ⟹ 𝑎 ∈ 𝐻. 

Conversely, suppose that 𝑎 ∈ 𝐻. Since H is closed under * operation, hence for all ℎ ∈ 𝐻, 

then 𝑎 ∗ ℎ ∈ 𝐻, therefore 𝑎 ∗ 𝐻 ⊆ 𝐻. The opposite inclusion by ℎ ∈ 𝐻, hence  

ℎ = 𝑒 ∗ ℎ = (𝑎 ∗ 𝑎−1) ∗ ℎ = 𝑎 ∗ (𝑎−1 ∗ ℎ) ∈ 𝑎 ∗ 𝐻 and consequently 𝐻 ⊆ 𝑎 ∗ 𝐻. 

Therefore 𝐻 = 𝑎 ∗ 𝐻. 

 

Theorem 8.3. If (𝐻 ,∗) is a subgroup of the group (𝐺,∗), then 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻 if and only 

if 𝑎−1 ∗ 𝑏 ∈ 𝐻. 

Proof. Suppose that 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻.  Then 𝑓𝑜𝑟 𝑎𝑙𝑙  ℎ ∈ 𝐻 , there exist ℎ1 ∈ 𝐻 such that  

𝑏 ∗ ℎ1 = 𝑎 ∗ ℎ. From this we get  

𝑎−1 ∗ 𝑏 = ℎ ∗ ℎ1
−1. 

Since (𝐻,∗) is a subgroup, then  𝑎−1 ∗ 𝑏 = ℎ ∗ ℎ1
−1 ∈ 𝐻 

Conversely, let 𝑎−1 ∗ 𝑏 ∈ 𝐻. Then by Theorem 8.2 (𝑎−1 ∗ 𝑏) ∗ 𝐻 = 𝐻. This implies that 

for any ℎ ∈ 𝐻, there exist an element ℎ′ ∈ 𝐻 such that  

ℎ = (𝑎−1 ∗ 𝑏) ∗ ℎ′ ⇔ 𝑎 ∗ ℎ = 𝑏 ∗ ℎ′ ⇔ 𝑎 ∗ 𝐻 ⊆ 𝑏 ∗ 𝐻. 

At the same way we get 𝑏 ∗ 𝐻 ⊆ 𝑎 ∗ 𝐻, consequently 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻. 

 

Example.  Let  (𝐺,∗) = (𝑍12, +12) and 𝐻 = {0, 4, 8}. Then all left cosets are  

0+12𝐻 = {0, 4, 8} = 4+12𝐻 = 8+12𝐻 

1+12𝐻 = {1, 5, 9} = 5+12𝐻 = 9+12𝐻 

2+12𝐻 = {2, 6, 10} = 6+12𝐻 = 10+12𝐻 

3+12𝐻 = {3, 7, 11} = 7+12𝐻 = 11+12𝐻 

and the distinct left cosets are {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, {3, 7, 11}. 
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Note that the number of distinct left cosets equal 
𝑂(𝐺)

𝑂(𝐻)
  is called the index of 𝐻 𝑖𝑛 𝐺 and 

the number of elements in each cosets are equal . 

 

Theorem 8.4. If (𝐻,∗)  is a subgroup of the group (𝐺,∗) , then either the coset 𝑎 ∗

𝐻 𝑎𝑛𝑑 𝑏 ∗ 𝐻 are disjoint or else 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻 

Proof. Suppose that (𝑎 ∗ 𝐻) ∩ (𝑏 ∗ 𝐻) ≠ ∅, then there exist 𝑐 ∈ 𝑎 ∗ 𝐻 ∩ 𝑏 ∗ 𝐻 

⇒𝑐 ∈ 𝑎 ∗ 𝐻 𝑎𝑛𝑑 𝑐 ∈ 𝑏 ∗ 𝐻. Since 𝑐 ∈ 𝑎 ∗ 𝐻, there exist an element ℎ1, ℎ2 ∈ 𝐻 such that 

𝑐 = 𝑎 ∗ ℎ1 and 𝑐 = 𝑏 ∗ ℎ2. It follows that 𝑎 ∗ ℎ1 = 𝑏 ∗ ℎ2 ⇒ 𝑎−1 ∗ 𝑏 = ℎ1 ∗  ℎ2
−1.  

Since (𝐻,∗) is a subgroup, then ℎ1 ∗  ℎ2
−1 ∈ 𝐻,that is 𝑎−1 ∗ 𝑏 ∈ 𝐻. By Theorem 7.3 we get 

𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻. 

 

Theorem 8.5. If (𝐻,∗) is a subgroup of the group (𝐺,∗), then the left(right) cosets of 

𝐻 𝑖𝑛 𝐺 forms a partition of the set 𝐺. 

Proof. If  each 𝑎 ∈ 𝐺, then 𝑎 ∈ 𝑎 ∗ 𝐻. Sine each element can belong to one and only one 

left coset of 𝐻 𝑖𝑛 𝐺. Thus  

𝐺 =⋃ 𝑎 ∗ 𝐻
𝑎∈𝐺

 

Hence the set 𝐺 is a partitioned by 𝐻 into disjoint sets, each of which has exactly as many 

elements as 𝐻. 

 

Theorem 8.6.(Lagrange theorem) Let (𝐻,∗) be a subgroups of a finite group (𝐺,∗). Then 

the order of 𝐻and the index of 𝐻 𝑖𝑛 𝐺 are divides the order of 𝐺. 

Proof. Since 𝐺 is a finite group, then 𝐺 = {𝑎1, 𝑎2, … , 𝑎𝑛}, (𝐻,∗) is a subgroup of (𝐺,∗) of 

order 𝑘 and the index of 𝐻 𝑖𝑛 𝐺 is 𝑟. 

Hence there exist 𝑟 distinct left cosets of 𝐻 𝑖𝑛 𝐺 say 𝑎1 ∗ 𝐻, 𝑎2 ∗ 𝐻,… , 𝑎𝑛 ∗ 𝐻. 

Thus by Theorem 8.5, we get  
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𝐺 = (𝑎1 ∗ 𝐻) ∪ (𝑎2 ∗ 𝐻) ∪ …∪ (𝑎𝑟 ∗ 𝐻) and  |𝑎𝑖 ∗ 𝐻| = |𝐻| = 𝑘, 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑟. 

|𝐺| = |𝑎1 ∗ 𝐻| + |𝑎2 ∗ 𝐻| + …+ |𝑎𝑟 ∗ 𝐻| = 𝑘 + 𝑘 +⋯+ 𝑘⏟        
𝑟−𝑡𝑖𝑚𝑒𝑠

= 𝑟. 𝑘

= (𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝐻 𝑖𝑛 𝐺)(𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝐻) 

Consequently order of 𝐻 is divide the order of 𝐺.  

. 

Corollary 8.7. If (𝐺,∗) is a group of order n, then the order of any element 𝑒 ≠ 𝑎 ∈ 𝐺 is a 

factor of 𝑛, and 𝑎𝑛 = 𝑒. 

Proof. Let the element 𝑎  in the group (𝐺,∗)  have order 𝑘 . Then the cyclic subgroup 

generated by 𝑎 is of order 𝑘. 

 

Let =< 𝑎 > |𝐻| = 𝑘. By Theorem 8.6 𝑘 is divisor of  𝑛, that is 𝑛 = 𝑟𝑘 for some 𝑟 ∈

𝑍+.   Hence  

𝑎𝑛 = 𝑎𝑟𝑘 = (𝑎𝑘)𝑟 = 𝑒𝑟 = 𝑒. 

 

Theorem 8.8.  Every group (𝐺,∗) of prime order is cyclic. 

Proof. Let (𝐺,∗) be a group such that |𝐺| = 𝑝, 𝑝 is prime, and let 𝐻 be a cyclic subgroup 

of 𝐺 generated by 𝑒 ≠ 𝑎 ∈ 𝐺; i.e 𝐻 = (𝑎). By Theorem 8.6 |𝐻| divides |𝐺|, then either 

|𝐻| = 1or |𝐻| = 𝑝. Since |𝐻| ≠ 1, then must be |𝐻| = 𝑝 = |𝐺|. Therefore 𝐺 = (𝑎). 

 

Remark. The converse of Lagrange theorem is not true in general, for example the group 

(𝐴4, 𝑜) is of order 12, then the factors of 12 are 1, 2, 3, 4, 6, 12. Then 𝐴4 has no subgroup 

of order 6. 

 

Solve the following Problems  

Q1/ List the left cosets of the subgroup  

      (a) H = {i; (13)} of 𝑆3. 
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      (b) (𝑍𝑒 , +) 𝑜𝑓 (𝑍, +), 

      (c) (𝑍,+) 𝑜𝑓 (𝑄,+), 

      (d) (< 4 >,+12) 𝑜𝑓 (𝑍12, +12). 

      (f) ((1  3), 0) of 𝑆3 × 𝑍2 

       (f) Find all left cosets of the subgroup {𝑅360, 𝐷1 } of the group 𝐷4 given by Table. 

 

 

 

Q2/ Give an example of a group (𝐺,∗) and a subgroup (𝐻,∗) of (𝐺,∗) such that 𝑎𝐻 =  𝑏𝐻, but  

         𝐻𝑎 ≠ 𝐻𝑏 for some 𝑎, 𝑏 ∈  𝐺 . 
 

Q3/ Let 𝐺 be a group generated by 𝑎, 𝑏 such that 𝑂(𝑏)  =  2, 𝑂(𝑎)  =  6, and (𝑎𝑏)2  =  𝑒. Show that 

(a) 𝑎𝑏𝑎 =  𝑏, 
(b) (𝑎2𝑏)2  =  𝑒, 

(c) 𝑏𝑎2𝑏 =  𝑎4, 
 

Q3/ Let 𝐺 =  {𝑎, 𝑏, 𝑐, 𝑑} be a group. Complete the following Cayley table for this group. 

                              

* a b c d 

a a    

b  d a  

c     

d     

 

Q4/ find the index [𝐺: 𝐻], if 𝐺 = 𝑍6 × 𝑍4 and 𝐻 = {0} × 𝑍4  

Q5/ Let G be a finite group and 𝐴 𝑎𝑛𝑑 𝐵  be subgroups of G such that 𝐴 ⊆  𝐵 ⊆  𝐺. Prove that 

        [𝐺 ∶  𝐴]  =  [𝐺 ∶  𝐵][𝐵 ∶  𝐴]. 
 

Q6/ Can an element of an infinite group have finite order? Explain. 

 

Q7/ Suppose 𝐻 is a subgroup of a group 𝐺, and [𝐺 ∶  𝐻] =  2.  Suppose also that 𝑎 and 𝑏 are in 𝐺, but 

not in 𝐻. Show that 𝑎𝑏 ∈ 𝐻. 

 

Q8/ Prove that every proper subgroup of a group of order 𝑝2 (𝑝 aprime) is cyclic. 
 

 

 

 

9. Normal subgroups and quotient groups. 
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Definition 9.1. A subgroup (𝐻,∗) of the group (𝐺,∗) is said to be normal(or invariant) in 

(𝐺,∗) if and only if every left coset of 𝐻 in 𝐺 is also a right coset of 𝐻 in 𝐺( i.e. 𝑎 ∗ 𝐻 =

𝐻 ∗ 𝑎 for every 𝑎 ∈ 𝐺). 

Example.   Let 𝑉 = {𝑒, 𝑎, 𝑏, 𝑐} with  𝑎𝑏 = 𝑏𝑎 = 𝑐, 𝑏𝑐 = 𝑐𝑏 = 𝑎, 𝑎𝑐 = 𝑐𝑎 = 𝑏 𝑎𝑛𝑑  

𝑎2 = 𝑏2 = 𝑐2 = 𝑒.   If 𝐻 = {𝑒, 𝑎}, then 𝑒𝐻 = 𝐻 = 𝐻𝑒 

𝑏𝐻 = {𝑏, 𝑐} = 𝐻𝑏 

𝑐𝐻 = {𝑐, 𝑏} = 𝐻𝑐 

𝑎𝐻 = {𝑎, 𝑒} = 𝐻𝑎 

Therefore 𝐻 is normal subgroup of 𝑉. 

 

Theorem 9.2. Let (𝐻,∗)  be a subgroup of the group (𝐺,∗) . Then (𝐻,∗)  is a normal 

subgroup of (𝐺,∗) if and only if 𝑎 ∗ 𝐻 ∗ 𝑎−1 ⊆ 𝐻 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝐺. 

Proof. Suppose that 𝑎 ∗ 𝐻 ∗ 𝑎−1 ⊆ 𝐻 for each 𝑎 ∈ 𝐺. We must prove that 𝑎 ∗ 𝐻 = 𝐻 ∗ 𝑎  

Let 𝑎 ∗ ℎ ∈ 𝑎 ∗ 𝐻.    

Now 𝑎 ∗ ℎ = (𝑎 ∗ ℎ) ∗ 𝑒 = ((𝑎 ∗ ℎ) ∗ (𝑎−1 ∗ 𝑎)) = ((𝑎 ∗ ℎ ∗ 𝑎−1) ∗ 𝑎). 

Since 𝑎 ∗ ℎ ∗ 𝑎−1 ∈ 𝑎 ∗ 𝐻 ∗ 𝑎−1 ⊆ 𝐻, then there exist ℎ1 ∈ 𝐻 such that 

 𝑎 ∗ ℎ = (𝑎 ∗ ℎ ∗ 𝑎−1) ∗ 𝑎 = ℎ1 ∗ 𝑎 𝑎𝑛𝑑 ℎ1 ∗ 𝑎 ∈ 𝐻 ∗ 𝑎, so we conclude 𝑎 ∗ 𝐻 ⊆ 𝐻 ∗ 𝑎 . 

We obtain the opposite inclusion, 𝐻 ∗ 𝑎 ⊆ 𝑎 ∗ 𝐻, by similar way upon observing that our 

hypothesis also implies  

𝑎−1 ∗ 𝐻 ∗ 𝑎 = 𝑎−1 ∗ 𝐻 ∗ (𝑎−1)−1 ⊆ 𝐻.  

Then 𝐻 ∗ 𝑎 = 𝑎 ∗ 𝐻 for all 𝑎 ∈ 𝐺. Therefore 𝐻 is normal subgroup of 𝐺. 

Conversely, Suppose 𝑎 ∗ 𝐻 = 𝐻 ∗ 𝑎 for each 𝑎 ∈ 𝐺.  

Let 𝑎 ∗ ℎ1 ∗ 𝑎
−1 ∈ 𝑎 ∗ 𝐻 ∗ 𝑎−1, ℎ1 ∈ 𝐻.  

Since 𝑎 ∗ 𝐻 = 𝐻 ∗ 𝑎, then there exist ℎ2 ∈ 𝐻 such that 𝑎 ∗ ℎ1 = ℎ2 ∗ 𝑎.  

Consequently  

𝑎 ∗ ℎ1 ∗ 𝑎
−1 = (ℎ2 ∗ 𝑎) ∗ 𝑎

−1 = ℎ2 ∗ (𝑎 ∗ 𝑎
−1) = ℎ2, which implies 𝑎 ∗ 𝐻 ∗ 𝑎−1 ⊆ 𝐻.   
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Example. Let (𝑆3, 𝑜).  Then 𝐻 = {𝑒, (1  2  3), ( 1  3  2)} is normal subgroup but  

{𝑒, (1  2)},   {𝑒, (1  3)} 𝑎𝑛𝑑  {𝑒, (2  3)} are not normal subgroups of  (𝑆3, 𝑜).   

 

Theorem 9.3.  Let (𝐺,∗) be a group. Then (𝑐𝑒𝑛𝑡 𝐺,∗) is normal subgroup of (𝐺,∗). 

Proof. By Theorem 6.4 (𝑐𝑒𝑛𝑡 𝐺,∗) is a subgroup of (𝐺,∗). Then we have only to show that 

𝑎 ∗ 𝑐𝑒𝑛𝑡𝐺 ∗ 𝑎−1 ⊆ 𝑐𝑒𝑛𝑡 𝐺  for all 𝑎 ∈ 𝐺.  

Let 𝑎 ∗ 𝑐 ∗ 𝑎−1 ∈ 𝑎 ∗ 𝑐𝑒𝑛𝑡 𝐺 ∗ 𝑎−1, for 𝑐 ∈ 𝑐𝑒𝑛𝑡 𝐺.  

Since 𝑐 ∈ 𝑐𝑒𝑛𝑡 𝐺, then 𝑐 ∗ 𝑎 = 𝑎 ∗ 𝑐, for all 𝑎 ∈ 𝐺. 

Now 𝑎 ∗ 𝑐 ∗ 𝑎−1 = 𝑐 ∗ 𝑎 ∗ 𝑎−1 = 𝑐 ∗ 𝑒 = 𝑐 ∈ 𝑐𝑒𝑛𝑡 𝐺.  

Therefore  𝑎 ∗ 𝑐𝑒𝑛𝑡 𝐺 ∗ 𝑎−1 ⊆ 𝑐𝑒𝑛𝑡 𝐺 , hence by Theorem 8.2 (𝑐𝑒𝑛𝑡 𝐺, ∗)  is normal 

subgroup of (𝐺,∗).  

 

Theorem 9.4.  If  (𝐻,∗) is a subgroup of the group with [𝐺:𝐻] = 2, then (𝐻,∗) is a normal 

subgroup of the group (𝐺,∗). 

Proof.  Since [𝐺:𝐻] = 2, then there exist exactly two cosets 𝐻 and 𝐺 − 𝐻. 

Let 𝑎 ∈ 𝐺. Then either 𝑎 ∈ 𝐻 𝑜𝑟 𝑎 ∈ 𝐺 − 𝐻.  

If 𝑎 ∈ 𝐻, then 𝑎 ∗ 𝐻 = 𝐻 = 𝐻 ∗ 𝑎, hence 𝐻 is a normal subgroup. 

If 𝑎 ∈ 𝐺 − 𝐻, then 𝐻 ∩ 𝑎 ∗ 𝐻 = ∅ ⇒ 𝐺 = 𝐻 ∪ (𝑎 ∗ 𝐻) and 𝐻 ∩ 𝐻 ∗ 𝑎 = ∅ ⇒ 𝐺 = 𝐻 ∪

(𝐻 ∗ 𝑎). Therefore  𝑎 ∗ 𝐻 = 𝐻 ∗ 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐺. hence 𝐻 is a normal subgroup of 𝐺. 

 

Definition 9.5. If (𝐻,∗) is normal subgroup of the group (𝐺,∗), then the collection of 

distinct cosets of 𝐻 in 𝐺 is denoted by 𝐺/𝐻 and defined as follows: 

𝐺/𝐻 =  {𝑎 ∗ 𝐻 ∶ 𝑎 ∈ 𝐺}. 

 

A binary operation  is defined on 𝐺/𝐻 by  
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(𝑎 ∗ 𝐻)(𝑏 ∗ 𝐻) = (𝑎 ∗ 𝑏) ∗ 𝐻 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∗ 𝐻, 𝑏 ∗ 𝐻𝐺/𝐻. 

We must prove that  is well defined. 

Let 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻 𝑎𝑛𝑑 𝑐 ∗ 𝐻 = 𝑑 ∗ 𝐻. We must prove that (𝑎 ∗ 𝑐) ∗ 𝐻 = (𝑏 ∗ 𝑑) ∗ 𝐻 

Now since 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻 ⇒ 𝑎−1 ∗ 𝑏 ∈ 𝐻 and 𝑐 ∗ 𝐻 = 𝑑 ∗ 𝐻 ⇒ 𝑐−1 ∗ 𝑑 ∈ 𝐻. 

Now  

(𝑎 ∗ 𝑐)−1 ∗ (𝑏 ∗ 𝑑) = 𝑐−1 ∗ (𝑎−1 ∗ 𝑏) ∗ 𝑑 = 𝑐−1 ∗ 𝑑 ∗ (𝑑−1 ∗ (𝑎−1 ∗ 𝑏) ∗ 𝑑). 

Since 𝑎−1 ∗ 𝑏 ∈ H ⇒ 𝑑−1 ∗ (𝑎−1 ∗ 𝑏) ∗ 𝑑 ∈ 𝑑−1 ∗ 𝐻 ∗ (𝑑−1)−1 ⊆ 𝐻  

and Since H is closed, we get 𝑐−1 ∗ 𝑑 ∈ 𝐻, hence  

(𝑎 ∗ 𝑐)−1 ∗ (𝑏 ∗ 𝑑) ∈ 𝐻 ⇒ (𝑎 ∗ 𝑐) ∗ 𝐻 = (𝑏 ∗ 𝑑) ∗ 𝐻 

⇒ (𝑎 ∗ 𝐻)(𝑐 ∗ 𝐻) = (𝑏 ∗ 𝐻)(𝑑 ∗ 𝐻). Therefore  is well defined. 

 

Theorem 9.6. If (𝐻,∗) is a normal subgroup of the group (𝐺,∗), then (𝐺/𝐻,) forms a 

group, known as the quotient group of 𝐺 by 𝐻. 

Proof.  By definition we observe that 𝐺/𝐻  is closed under operation . 

1- associativity of  on 𝐺/𝐻, 

[(𝑎 ∗ 𝐻)(𝑏 ∗ 𝐻)](𝑐 ∗ 𝐻) = ((𝑎 ∗ 𝑏) ∗ 𝐻)(𝑐 ∗ 𝐻)  

                                                   = (𝑎 ∗ (𝑏 ∗ 𝑐)) ∗ 𝐻 

                                                         = (𝑎 ∗ 𝐻)((𝑏 ∗ 𝑐) ∗ 𝐻) 

                                                        =(𝑎 ∗ 𝐻)[(𝑏 ∗ 𝐻)(𝑐 ∗ 𝐻)]. 

Hence  is associative. 

2- 𝐻 = 𝑒 ∗ 𝐻 is the identity element of 𝐺/𝐻, where 𝑒 is the identity element of 𝐺. 

(𝑎 ∗ 𝐻)(𝑒 ∗ 𝐻) = (𝑎 ∗ 𝑒) ∗ 𝐻 = 𝑎 ∗ 𝐻 = (𝑒 ∗ 𝑎) ∗ 𝐻 = (𝑒 ∗ 𝐻)(𝑎 ∗ 𝐻). 

3- The inverse of 𝑎 ∗ 𝐻 is 𝑎−1 ∗ 𝐻, where 𝑎−1 is the inverse of a in 𝐺. 

Now 

 (𝑎 ∗ 𝐻)(𝑎−1 ∗ 𝐻) = (𝑎 ∗ 𝑎−1) ∗ 𝐻 = 𝑒 ∗ 𝐻 = (𝑎−1 ∗ 𝑎) ∗ 𝐻 = (𝑎−1 ∗ 𝐻)(𝑎 ∗ 𝐻). 
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Hence (𝐺/𝐻,)  is a group. 

 

Remark. We have |
𝐺

𝑁
| = [𝐺 ∶  𝑁]. In particular, if 𝐺 is a finite group, then 

 |𝐺/𝑁|  =  |𝐺|/|𝑁|. 

 

Solve the following Problems  

Q1/ Let 𝐻 be a normal subgroup of a group 𝐺. Prove that if 𝐺 is commutative, then so is the  

      quotient group 𝐺/𝐻. 

 

Q2/ Suppose (𝐻,∗) 𝑎𝑛𝑑 (𝐾,∗) are normal subgroups of the group (𝐺,∗) with 𝐻 ∩ 𝐾 = [𝑒}.  

         Show that ℎ ∗ 𝑘 = 𝑘 ∗ ℎ 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑘 ∈ 𝐾. 

 

Q3/ Prove that if the quotient group (𝐺 𝑐𝑒𝑛(𝐺), ⊗)⁄  is cyclic , then (𝐺,∗) is a commutative  

         group. 

 

Q4/ Let (𝐻,∗) be a proper subgroup of (𝐺,∗) such that 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝐺/𝐻, 𝑥𝑦 ∈  𝐻. Prove  

         that (𝐻,∗) is a normal subgroup of (𝐺,∗). 
 

Q5/ Show that every subgroup of an abelian group is normal. 

 

Q6/ Show that every group of prime order is simple. 

Q7/ Prove that the quotient group of an abelian group is abelian. 

 

Q8/ (a) Give an example of an abelian group 𝐺/𝐻 such that 𝐺 is not abelian.Explain. 

       (b) Give an example of a cyclic group 𝐺/𝐻 such that 𝐺 is not cyclic. Explain. 

 

Q9/ Let 𝐻,𝐾 be normal subgroups of a group 𝐺. If 𝐺/𝐻 =  𝐺/𝐾 then show that 

𝐻 =  𝐾. 
Q10/ Let 𝐻 be a normal subgroup of a group 𝐺. If 𝑥𝑦𝑥−1𝑦−1  ∈  𝐻 , for all 𝑥 , 𝑦 ∈ 𝐺, then show that  

       𝐺/𝐻 is abelian. 

 

Q11/ If 𝐻 is a subgroup of a group 𝐺 and 𝑁 a normal subgroup of 𝐺 then show that 𝐻 ∩  𝑁 is a normal  

          subgroup of 𝐻. 

 

 

10.  Homomorphisms. 
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Definition 9.1. If (𝐺,∗)  and (𝐻, 𝑜)  are groups, then a function 𝑓 ∶  𝐺 ⟶  𝐻  is a 

homomorphism if  𝑓(𝑥 ∗  𝑦)  =  𝑓(𝑥) 𝑜 𝑓(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝐺. 

 

Examples. 

1- Let (𝐺,∗)  and (𝐺′, 𝑜) be two groups. Then the function 𝑓 ∶  𝐺 −→  𝐺′  such that 

𝑓(𝑥) =  𝑒′ 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈  𝐺is a homomorphism and called a trivial homomorphism. In 

fact, 

𝑓(𝑥 ∗  𝑦)  =  𝑒′ =  𝑒′ 𝑜 𝑒′ =  𝑓(𝑥) 𝑜 𝑓(𝑦) 

 

2-  Let (𝐺,∗) be any group and 𝑓: 𝐺 → 𝐺 defined by 𝑓(𝑥) = 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐺 is a  

          is a homomorphism and is called an identity homomorphism.  In fact, 

𝑓(𝑥 ∗  𝑦) =  𝑥 ∗  𝑦 =  𝑓(𝑥) ∗  𝑓(𝑦), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐺. 

Definition 9.2. A homomorphism 𝑓 from the group (𝐺,∗) into group (𝐺’, 𝑜) is called an 

isomorphism if 𝑓 is one-to-one and onto function. Two groups 𝐺  and 𝐺′  are called 

isomorphic, denoted by 𝐺 ≅ 𝐺′, if there exists an isomorphism between them. 

 

Example.  Let (𝑅,+) and (𝑅+, . ) be two groups, where 𝑅 is the set of real numbers, and 

𝑓: 𝑅 → 𝑅+ defined by 𝑓(𝑥) = 𝑒𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑅. Show that 𝑓 is an isomorphism. 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑅, we have  

𝑓(𝑥 + 𝑦) =  𝑒𝑥+𝑦 = 𝑒𝑥 .  𝑒𝑦 = 𝑓(𝑥).  𝑓(𝑦).   

Hence 𝑓 is a homomorphism. 

Suppose that 𝑓(𝑥) = 𝑓(𝑦)  ⇒  𝑒𝑥 = 𝑒𝑦 ⇒ 𝑥 = 𝑦.  Hence 𝑓 is one-to-one. 

 

Since 𝑓(𝑥)  =  𝑒𝑥 is defined 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑅 and its inverse 𝑔(𝑥)  =  𝑙𝑛 𝑥 is also defined 

 𝑎𝑙𝑙 𝑥 ∈  𝑅+, that is 𝑓(ln 𝑥) = 𝑒ln𝑥 = 𝑥. Hence 𝑓 is onto. 

Therefore 𝑓 is an isomorphism and (𝑅, +) ≅ (𝑅+, . ). 
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Definition 9.3. An isomorphism 𝑓 from (𝐺,∗) into itself is called an automorphisms.  

The set of all automorphisms of 𝐺 is denoted by 𝐴𝑢𝑡(𝐺) 

 

Example. A function  𝑓: (𝑍,+) ⟶ (𝑍,+) defined by 𝑓(𝑛) =  −𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑍. 

Hence  𝑓 is an automorphisms. 

 

Theorem 9.4.  Let  𝑓: (𝐺,∗) ⟶ (𝐺′, 𝑜) is a group homomorphism. Then  

1-  𝑓(𝑒)  = 𝑒′, where 𝑒 and 𝑒′ are identity elements of 𝐺 and 𝐺′ respectively. 

2- 𝑓(𝑥−1) = (𝑓(𝑥))−1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐺. 

3- 𝑓(𝑥𝑛) = (𝑓(𝑥))𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐺 𝑎𝑛𝑑 𝑛 ∈ 𝑍. 

4- If 𝑂(𝑥) = 𝑛, then 𝑂(𝑓(𝑥)) is divides 𝑛. 

Proof. 

1- For all 𝑥 ∈ 𝐺, we have  

𝑒 ∗  𝑥 = 𝑥 = 𝑥 ∗ 𝑒 ⟹ 𝑓(𝑥)𝑜 𝑒′ = 𝑓(𝑥) =  𝑓(𝑒 ∗ 𝑥) =  𝑓(𝑥)𝑜𝑓(𝑒). 

Hence by cancellation law we get  𝑒′ = 𝑓(𝑒). 

2- H.w 

3- By using induction, if 𝑛 =  0, then 𝑓(𝑥0) = 𝑓(𝑒) = 𝑒′, that is the statement is true. 

If  𝑛 =  1, then 𝑓(𝑥1) = 𝑓(𝑥), that is the statement is true too. 

Suppose the statement is true for 𝑛 such that 𝑛 is a positive integer, that is  

𝑓(𝑥𝑛) = (𝑓(𝑥))𝑛.  

Now 𝑓(𝑥𝑛+1) = 𝑓(𝑥𝑛 ∗ 𝑥) = 𝑓(𝑥𝑛)𝑜𝑓(𝑥) = (𝑓(𝑥))
𝑛
𝑜𝑓(𝑥) = (𝑓(𝑥))𝑛+1. 

Finally, if 𝑛 < 0, put 𝑛 = −𝑚, such that 𝑚 is positive integer.  Hence  

𝑓(𝑥𝑛) = (𝑓(𝑥−𝑚) = (𝑓(𝑥𝑚))−1 = (𝑓(𝑥)𝑚)−1 = (𝑓(𝑥))−𝑚 = (𝑓(𝑥))𝑛.  

4- H.w. 

Theorem 9.5. Every finite cyclic group of order n is isomorphic to the group (𝑍𝑛, +𝑛). 
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Proof.  Let (𝐺,∗) be a cyclic group of order 𝑛 generated by 𝑎.  Hence by Theorem 6.11 

𝐺 = (𝑎) = {𝑒, 𝑎, 𝑎2, . . .  , 𝑎𝑛−1}. 

Let 𝑓: 𝐺 ⟶ 𝑍𝑛 be a function defined by 𝑓(𝑎𝑘) = [𝑘], 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝑘 < 𝑛. 

To prove that 𝑓 is one-to-one , suppose that  

𝑓(𝑎𝑖) = 𝑓(𝑎𝑗) ⟹ [𝑖] = [𝑗] ⟹ 𝑖 ≡ 𝑗(𝑚𝑜𝑑 𝑛) 

Hence there exist an integer 𝑙 such that 𝑖 − 𝑗 = 𝑙𝑛 ⟹ 𝑖 = 𝑗 + 𝑙𝑛, therefore, 

𝑎𝑖 = 𝑎𝑗+𝑙𝑛 = 𝑎𝑗 , that is 𝑓 is one-to-one.  

It is clear that is 𝑓 is onto. 

Now 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 , 𝑎𝑗 ∈ 𝐺, 𝑓(𝑎𝑖 ∗ 𝑎𝑗) = 𝑓(𝑎𝑖+𝑗) = [𝑖 + 𝑗] = [𝑖]+𝑛[𝑗] = 𝑓(𝑎
𝑖)+𝑛𝑓(𝑎

𝑗). 

Hence 𝑓 is an isomorphism and (𝐺,∗) ≅ (𝑍𝑛, +𝑛). 

 

Theorem 9.6. Every infinite cyclic group is isomorphic with the group (𝑍,+). 

Proof.  Let (𝐺,∗) be an infinite cyclic group generated by 𝑎.  Hence  

𝐺 = (𝑎) = {𝑎𝑛 ∶ 𝑛 ∈ 𝑍}. 

Such that 𝑎𝑖 ≠ 𝑎𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 

Let 𝑓: 𝐺 ⟶ 𝑍 be a function defined by 𝑓(𝑎𝑘) = 𝑘, 𝑘 ∈ 𝑍. 

To prove that 𝑓 is one-to-one , suppose that  

𝑓(𝑎𝑖) = 𝑓(𝑎𝑗) ⟹ 𝑖 = 𝑗 ⟹ 𝑎𝑖 = 𝑎𝑗 . 

Hence 𝑓 is one-to-one.  

It is clear that is 𝑓 is onto. 

Now 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 , 𝑎𝑗 ∈ 𝐺, 𝑓(𝑎𝑖 ∗ 𝑎𝑗) = 𝑓(𝑎𝑖+𝑗) = 𝑖 + 𝑗 == 𝑓(𝑎𝑖) + 𝑓(𝑎𝑗). 

Hence 𝑓 is an isomorphism, therefore,  (𝐺,∗) ≅ (𝑍, +)  

  

Corollary.  Any two cyclic groups of the same order are isomorphic. 

 

Example. Show that the two groups (𝑄,+) and( 𝑄+, . ) are not isomorphic. 
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Suppose that there exists an isomorphism 𝑓: (𝑄, +) ⟶ (𝑄+, . ). 

Let 3 ∈ 𝑄+.  Since 𝑓 is onto, then there an element 𝑥 ∈ 𝑄 such that 𝑓(𝑥) = 3. 

𝑓(𝑥) = 𝑓 (
𝑥

2
+
𝑥

2
) = 𝑓 (

𝑥

2
) . 𝑓 (

𝑥

2
) = (𝑓 (

𝑥

2
))
2

= 3. 

But it is contradicting, the fact 𝑓 (
𝑥

2
) is a rational number and there is no exists a rational 

number equal to 3. 

 

Theorem 9.7.  Let 𝑓 be a homomorphism from the group (𝐺,∗) into the group (𝐺′, 𝑜). 

Then 

1- If (𝐻,∗) is a subgroup of (𝐺,∗), then (𝑓(𝐻), 𝑜) is a subgroup of (𝐺′, 𝑜).  

2- If (𝐾, 𝑜) is a subgroup of (𝐺′, 𝑜), then (𝑓−1(𝐾), ∗) is a subgroup of (𝐺,∗). 

Proof. (1) 𝑓(𝐻) = { 𝑓(𝑥):  𝑥 ∈ 𝐻}  

Since 𝑒𝐻, then 𝑓(𝑒) ∈ 𝑓(𝐻) ⟹ 𝑓(𝐻) ≠ ∅.  

Let 𝑓(𝑥), 𝑓(𝑦) ∈ 𝑓(𝐻), 𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝐻.   

Now  𝑓(𝑥)𝑜 𝑓(𝑦)−1 = 𝑓(𝑥)𝑜 𝑓(𝑦−1) = 𝑓(𝑥 ∗ 𝑦−1) ∈ 𝑓(𝐻) , Since  𝑥 ∗ 𝑦−1 ∈ 𝐻 . 

Therefore by Theorem 6.2, we get  𝑓(𝐻) is a subgroup of 𝐺′. 

(2) H.W. 

 

Theorem 9.8.  Let 𝑓 be a homomorphism from the group (𝐺,∗) into the group (𝐺′, 𝑜). 

Then 

1- If (𝐾, 𝑜) is a normal subgroup of (𝐺′, 𝑜), then (𝑓−1(𝐾), ∗)  is a normal subgroup 

of (𝐺,∗).  

2- If 𝑓(𝐺) = 𝐺′ and (𝐻,∗) is a normal subgroup of (𝐺,∗), then (𝑓(𝐻), 𝑜) is a normal 

subgroup of (𝐺′, 𝑜). 

Proof. (1) By theorem 8.7 (𝑓−1(𝐾), ∗)  is a subgroup of (𝐺,∗). 
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     Now to show that (𝑓−1(𝐾), ∗)  is a normal subgroup of (𝐺,∗), suppose 𝑥 ∈ 𝑓−1(𝐾) 

and 𝑔 ∈ 𝐺. Since 𝑓 is a homomorphism, then we have  

𝑓(𝑔 ∗ 𝑥 ∗ 𝑔−1) = 𝑓(𝑔)𝑜𝑓(𝑥)𝑜 𝑓(𝑔)−1 = 𝑓(𝑔)𝑜𝑓(𝑥)𝑜𝑓(𝑔−1), Since  𝑓(𝑥) ∈ 𝐾, 𝑓(𝑔) ∈

𝐺′ and (𝐾,∗) is a normal subgroup of (𝐺′, 𝑜). 

Therefore 𝑓(𝑔)𝑜𝑓(𝑥)𝑜𝑓(𝑔−1) ∈ 𝐾 ⟹ 𝑔 ∗ 𝑥 ∗ 𝑔−1 ∈ 𝑓−1(𝐾) . Hence (𝑓−1(𝐾),∗)  is a 

normal subgroup of (𝐺,∗). 

Definition 9.9. Let 𝑓 be a homomorphism from the group (𝐺,∗) into the group (𝐺′, 𝑜) and 

Let 𝑒′ be the idenitiy element of (𝐺′, 𝑜). Then kerenel of 𝒇, denoted by 𝑘𝑒𝑟 𝑓, is the set 

ker 𝑓 = {𝑎 ∈ 𝐺 ∶   𝑓(𝑎) = 𝑒′}. 

Theorem 9.10.  If 𝑓 is  a homomorphism from the group (𝐺,∗) into the group (𝐺′, 𝑜), 

Then (𝑘𝑒𝑟 𝑓,∗) is a normal subgroup of (𝐺,∗).  

Proof. Since ({𝑒′}, 𝑜) is a normal subgroup of (𝐺′, 𝑜) and ker 𝑓 = 𝑓−1({𝑒′}), then by 

Theorem 9.8 (ker 𝑓,∗) is a normal subgroup of the group (𝐺, ∗). 

 

Theorem 9.11.  Let 𝑓 be a homomorphism from the group (𝐺,∗) into the group (𝐺′, 𝑜). 

Then 𝑓 is one-to-one if and only if ker 𝑓 = {𝑒}. 

Proof. Suppose  the function 𝑓 is one-to-one.  Let 𝑥 ∈ ker 𝑓 ⟹ 𝑓(𝑥) = 𝑒′ = 𝑓(𝑒). 

Since  𝑓 is one-to-one, we get 𝑥 = 𝑒 ⟹ ker 𝑓 = {𝑒}. 

Conversely, suppose that ker 𝑓 = {𝑒}. Let 𝑥, 𝑦 ∈ 𝐺 and 𝑓(𝑥) = 𝑓(𝑦). 

To prove 𝑓 is one-to-one, we must show that 𝑥 = 𝑦.   But if  

                    𝑓(𝑥) = 𝑓(𝑦)⟹𝑓(𝑥)𝑜𝑓−1(𝑦) = 𝑒′ 

                                        ⟹ 𝑓(𝑥)𝑜𝑓(𝑦−1) = 𝑒′(𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚) 

                                        ⟹ 𝑓(𝑥 ∗ 𝑦−1) = 𝑒′. 

Which implies 𝑥 ∗ 𝑦−1 ∈ ker 𝑓.  But ker 𝑓 = {𝑒}.  Therefore 𝑥 ∗ 𝑦−1 = 𝑒 ⟹ 𝑥 = 𝑦. 

 

Theorem 9.12. (Cayley’s Theorem)If (𝐺,∗) is an arbitrary group, then  
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(𝐺,∗) ≅ (𝐹𝐺 , 𝑜). 

Proof. 𝐹𝐺 = {𝑓𝑎 ∶ 𝑎 ∈ 𝐺},  we define the function 𝑓𝑎: 𝐺 ⟶ 𝐺 𝑏𝑦 𝑓𝑎(𝑥) = 𝑎 ∗ 𝑥, 𝑥 ∈ 𝐺. 

(𝑓𝑎 is called the left multiplication function). 

Now define the function 𝑓: 𝐺 ⟶ 𝐹𝐺 by 𝑔(𝑎) = 𝑓𝑎, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ∈ 𝐺. 

It is clear that the function is onto.  If   

𝑓(𝑎) = 𝑓(𝑏) ⟹ 𝑓𝑎 = 𝑓𝑏 ⟹ 𝑓𝑎(𝑥) = 𝑓𝑏(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐺 ⟹ 𝑎 ∗ 𝑥 = 𝑏 ∗ 𝑥 ⟹ 𝑎 = 𝑏.  

Which show that 𝑓 is one-to-one. 

We proof that 𝑓 is a homomorphism: 

𝑓(𝑎 ∗ 𝑏) = 𝑓𝑎∗𝑏 = 𝑓𝑎𝑜𝑓𝑏 = 𝑓(𝑎)𝑜𝑓(𝑏). 

Hence 𝑓 is an isomorphism and (𝐺,∗) ≅ (𝐹𝐺 , 𝑜). 

 

Example. Consider (𝐺,∗) = (𝑅#, +) , for 𝑎 ∈ 𝑅# is the left-multiplication function 𝑓𝑎 ,  

defined by 𝑓𝑎(𝑥) = 𝑎 + 𝑥,    𝑥 ∈  𝑅
#. 

 

11. The Fundamental of Isomorphisms Theorems. 

 Theorem 10.1. (First Isomorphism Theorem)   

If 𝑓 is a homomorphism from the group (𝐺,∗) onto the group (𝐺′, 𝑜).  Then                          

                                          (𝐺 ker 𝑓⁄ ,   ⊗) ≅ (𝐺′, 𝑜). 

Proof.  Put 𝑘𝑒𝑟 𝑓 =  𝐾. We define a function 𝜑: 𝐺 𝐾⁄ ⟶ 𝐺′ by  

        𝜑(𝑥 + 𝐾) = 𝑓(𝑥),   𝑓𝑜𝑟 𝑥 ∈ 𝐺. 

We must show that 𝜑 is well defined, suppose 𝑥 + 𝐾 = 𝑦 + 𝐾 ⟹ 𝑥 ∗ 𝑦−1 ∈ 𝐾 = ker 𝑓. 

Therefore 𝑓(𝑥 ∗ 𝑦−1) = 𝑒′. But f is homomorphism, then  

  𝑓(𝑥)𝑜𝑓(𝑦−1) = 𝑒′⟹ 𝑓(𝑥)𝑜(𝑓(𝑦))−1 = 𝑒′ 

⟹ 𝑓(𝑥) = 𝑓(𝑦) ⟹  𝜑(𝑥 + 𝐾) = 𝜑(𝑦 + 𝐾). 

Hence 𝜑 is well defined. 

Now to show that 𝜑 is a homomorphism, suppose that  



 
 

40 
 

            𝜑((𝑥 ∗ 𝐾)⊗ (𝑦 ∗ 𝐾)) = 𝜑((𝑥 ∗ 𝑦) ∗ 𝐾) 

                                                  = 𝑓(𝑥 ∗ 𝑦) 

                                                 = 𝑓(𝑥)𝑜𝑓(𝑦) 

                                                 = 𝜑(𝑥 ∗ 𝐾)𝑜𝜑(𝑦 ∗ 𝐾). 

Hence 𝜑 is a homomorphism. 

Let 𝜑(𝑥 ∗ 𝐾) = 𝜑(𝑦 ∗ 𝐾) ⟹ 𝑓(𝑥) = 𝑓(𝑦) ⟹ 𝑓(𝑥)𝑜(𝑓(𝑦))−1 = 𝑒′. 

Since  𝑓 is a homomorphism, therefore  

𝑓(𝑥)𝑜𝑓(𝑦−1) = 𝑒′ ⟹ 𝑓(𝑥 ∗ 𝑦−1) = 𝑒′⟹ 𝑥 ∗ 𝑦−1 ∈ 𝐾 ⟹ 𝑥 ∗ 𝐾 = 𝑦 ∗ 𝐾. 

Hence   𝜑 is one-to-one. 

Finally, for all 𝑧 ∈ 𝐺′ there exists 𝑦 ∈ 𝐺  such that 𝑧 = 𝑓(𝑦) = 𝜑(𝑦 + 𝐾). 

Hence 𝜑 is onto. Therefore 𝜑 is an isomorphism and   (𝐺 𝐾⁄ ,   ⊗) ≅ (𝐺′, 𝑜). 

Lemma 10.2. If (𝐻,∗) is a subgroup of the group (𝐺,∗) and (𝐾,∗) is a normal subgroup of 

(𝐺,∗), then (𝐻 ∩ 𝐾,∗) is a normal subgroup og the group (𝐻,∗). 

Proof.  Let ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑙 ∈ 𝐻 ∩ 𝐾 ⟹ 𝑙 ∈ 𝐻 𝑎𝑛𝑑 𝑙 ∈ 𝐾. 

Since (𝐻,∗) is a subgroup of the group (𝐺,∗), then ℎ ∗ 𝑙 ∗ ℎ−1 ∈ 𝐻 and  

Since (𝐾,∗) is a normal subgroup of the group (𝐺,∗), then ℎ ∗ 𝑙 ∗ ℎ−1 ∈ 𝐾. 

Hence  ℎ ∗ 𝑙 ∗ ℎ−1 ∈ 𝐻 ∩ 𝐾, 𝑓𝑜𝑟 𝑎𝑙  ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑙 ∈ 𝐻 ∩ 𝐾 , therefore (𝐻 ∩ 𝐾,∗)  is a 

normal subgroup og the group (𝐻,∗). 

 

Theorem 10.3. (Second Isomorphism Theorem) 

If (𝐻,∗) is a subgroup of the group (𝐺,∗) and (𝐾,∗) is a normal subgroup of (𝐺,∗), then 

𝐻 ∗ 𝐾 𝐾 ≅⁄ 𝐻 𝐻 ∩ 𝐾⁄ . 

Proof.  First we must to show that (𝐾,∗) is a normal subgroup of (𝐻 ∗ 𝐾,∗) and by 

lemma 9.2 we have (𝐻 ∩ 𝐾,∗) is a normal subgroup of (𝐻,∗).  

We prove the theorem by using Theorem 9.1, then so we define a function  

𝜑:𝐻 ∗ 𝐾 ⟶ 𝐻 𝐻 ∩ 𝐾⁄  by 𝜑(ℎ ∗ 𝑘) = ℎ ∗ (𝐻 ∩ 𝐾), 𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑘 ∈ 𝐾. 
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We show that 𝜑 is well defind  

Let ℎ ∗ 𝑘 = ℎ1 ∗ 𝑘1, 𝑓𝑜𝑟 ℎ1, ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑘1, 𝑘 ∈ 𝐾. 

⟹ℎ1
−1 ∗ ℎ = 𝑘1 ∗ 𝑘

−1 ⟹ ℎ1
−1 ∗ ℎ ∈ 𝐻 ∩ 𝐾. 

By Theorem 6.18 we get ℎ1 ∗( 𝐻 ∩ 𝐾) = ℎ ∗ (𝐻 ∩ 𝐾) ⟹ 𝜑(ℎ1 ∗ 𝑘) = 𝜑(ℎ ∗ 𝑘). 

To show that 𝜑 is onto.  Suppose ℎ ∗ 𝑘, ℎ1 ∗ 𝑘1 ∈ 𝐻 ∗ 𝐾, 𝑓𝑜𝑟 ℎ, ℎ1 ∈ 𝐻 𝑎𝑛𝑑 𝑘, 𝑘1 ∈ 𝐾. 

Since (𝐾,∗) is a normal subgroup of (𝐺,∗), then 

 ℎ1
−1 ∗ 𝑘 ∗ ℎ1 ∈ 𝐾. put 𝑘2 = ℎ1

−1 ∗ 𝑘 ∗ ℎ1 ⟹ ℎ1 ∗ 𝑘2 = 𝑘 ∗ ℎ1. 

 𝜑((ℎ ∗ 𝑘) ∗ (ℎ1 ∗ 𝑘1)) = 𝜑(ℎ ∗ ℎ1 ∗ 𝑘 ∗ 𝑘1) 

 

= (ℎ ∗ ℎ1) ∗ (𝐻 ∩ 𝐾) 

 

= (ℎ ∗ (𝐻 ∩ 𝐾))⊗ (ℎ1 ∗ (𝐻 ∩ 𝐾)) 

= 𝜑(ℎ ∗ ℎ1) ⊗ 𝜑(𝑘 ∗ 𝑘1) 

Hence 𝜑 is a homorphism. 

For all ℎ ∗ (𝐻 ∩ 𝐾) ∈ 𝐻 𝐻 ∩ 𝐾⁄ , for ℎ ∈ 𝐻, then 𝜑(ℎ ∗ 𝑒) = ℎ ∗ (𝐻 ∩ 𝐾). 

Hence 𝜑 is onto. 

By Theorem 10.1, we get 𝐻 ∗ 𝐾 ker𝜑 ≅⁄ 𝐻 𝐻 ∩ 𝐾⁄ . 

Now  

                          ker𝜑 = {ℎ ∗ 𝑘 ∶ ℎ ∈ 𝐻,   𝑘 ∈ 𝐾;  𝜑(ℎ ∗ 𝑘) = 𝐻 ∩ 𝐾} 

                                    = {ℎ ∗ 𝑘 ∶ ℎ ∈ 𝐻,   𝑘 ∈ 𝐾; ℎ ∗ (𝐻 ∩ 𝐾) = 𝐻 ∩ 𝐾} 

= {ℎ ∗ 𝑘 ∶ ℎ ∈ 𝐻,   𝑘 ∈ 𝐾; ℎ ∈ 𝐻 ∩ 𝐾} = 𝐾 

Therefore  𝐻 ∗ 𝐾 𝐾 ≅⁄ 𝐻 𝐻 ∩ 𝐾.⁄  

Theorem 10.4. (Third Isomorphism Theorem) 

If (𝐻,∗) and (𝐾,∗) are normal subgroups of the group (𝐺,∗) and (𝐻,∗) is a subgroup of 

(𝐾,∗), then 

1- (𝐾 𝐻⁄ ,⊗) is a normal subgroup of the group (𝐺 𝐻⁄ ,⊗) and  
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2-    
𝐺 𝐻⁄

𝐾 𝐻⁄
≅ 𝐺 𝐾⁄ .   

Proof.  1- H.W. 

2- We prove the theorem by using Theorem 9.1, then so we define a function  

𝜑:𝐺 𝐻⁄ ⟶ 𝐺 𝐾⁄  by 𝜑(𝑥 ∗ 𝐻) = 𝑥 ∗ 𝐾, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∗ 𝐻 ∈ 𝐺 𝐻⁄ . 

We show that 𝜑 is well defined.  Suppose that 𝑥 ∗ ℎ, 𝑦 ∗ 𝐻 ∈ 𝐺 𝐻, 𝑓𝑜𝑟  𝑥, 𝑦 ∈ 𝐺⁄  and  

 𝑥 ∗ ℎ =  𝑦 ∗ 𝐻 ⟹ 𝑥−1 ∗ 𝑦 ∈ 𝐻 ⊆ 𝐾 ⟹ 𝑥−1 ∗ 𝑦 ∈ 𝐾 ⟹ 𝑥 ∗ 𝐾 = 𝑦 ∗ 𝐾. 

Hence 𝜑(𝑥 ∗ 𝐻) = 𝜑(𝑦 ∗ 𝐻), that is 𝜑 is well defined. 

Let 𝑥 ∗ ℎ, 𝑦 ∗ 𝐻 ∈ 𝐺 𝐻, 𝑓𝑜𝑟  𝑥, 𝑦 ∈ 𝐺⁄ .  Then  

                      𝜑((𝑥 ∗ 𝐻)⊗ (𝑦 ∗ 𝐻)) = 𝜑((𝑥 ∗ 𝑦) ∗ 𝐻) 

= (𝑥 ∗ 𝑦 ∗ 𝐾) 

                                                      = (𝑥 ∗ 𝐾)⊗ (𝑦 ∗ 𝐾) 

                                                      = 𝜑(𝑥 ∗ 𝐻)⊗ 𝜑(𝑦 ∗ 𝐻) 

Hence 𝜑 is a homomorphism. 

It is clear by definition 𝜑 is onto. 

By Theorem 10.1, we get 𝐺 𝐻⁄ ⁄ 𝑘𝑒𝑟 𝜑 ≅ 𝐺 𝐾⁄ . 

Now  

                          ker𝜑 = {𝑥 ∗ 𝐻 ∈
𝐺

𝐻
∶ 𝜑(𝑥 ∗ 𝐻) = 𝐾} 

= {𝑥 ∗ 𝐻 ∈
𝐺

𝐻
∶ (𝑥 ∗ 𝐾) = 𝐾} = {𝑥 ∗ 𝐻 ∈

𝐺

𝐻
∶ 𝑥 ∈ 𝐾} =

𝐾

𝐻
 

                                     

Therefore    
𝐺 𝐻⁄

𝐾 𝐻⁄
≅ 𝐺 𝐾⁄ . 
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Solve the following Problems  

Q1/  Determine whether the indicated function 𝑓 is a homomorphism from the first group into  

         the second group.  If 𝑓 is a homomorphism, determine its kernel. 

 

a) 𝑓: (ℝ∗, . ) ⟶ (ℝ∗, . ) defined by 𝑓(𝑎) = 𝑎3,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℝ∗. 
b)  𝑓: (ℝ,+) ⟶ (ℝ,+) defined by 𝑓(𝑎) = 3𝑎,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℝ. 
c) 𝑓: (𝑍8, +8) ⟶ (𝑍8, +8) defined by 𝑓([𝑎]) = [5𝑎], 
d) Let 𝐺 = {𝑎, 𝑎2, 𝑎3, 𝑎4, 𝑎5 = 𝑒} be the cyclic group generated by 𝑎. 

𝑓: (𝑍5, +5) ⟶ 𝐺 defined by 𝑓(𝑛) = 𝑎𝑛,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑍5. 

 
 Let 𝐺 =  {𝑎 , 𝑎2, 𝑎3, … , 𝑎12 = 𝑒} be a cyclic group generated by 𝑎. Show that 𝑓 ∶  𝐺 →  𝐺  

       defined by 𝑓(𝑥) =  𝑥4, for all 𝑥 ∈  𝐺, is a group homomorphism. Find 𝐾𝑒𝑟(𝑓). 
 

Q2/ Let 𝐺 be an abelian group. Show that 𝑓 ∶  𝐺 →  𝐺 defined by 𝑓(𝑥)  = 𝑥−1, for all 𝑥 ∈  𝐺,  

       is an automorphism.   

 
Q3/ Let 𝐺 =  {1 , −1} be a group under multiplication. Show that 𝑓: (𝑍, +) → 𝐺 defined by  

𝑓(𝑛)  = {
   1          𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
−1          𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

 

        is onto group homomorphism. Find 𝐾𝑒𝑟(𝑓).  
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Q4/ Let (𝐺,∗)  be a finite commutative group. Let 𝑛 ∈  𝑍 be such that n and |G| are relatively  

         prime. Show that the function 𝑓 ∶  𝐺 ⟶ 𝐺 defined by 𝑓(𝑎) = 𝑎𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈  𝐺 is an  

         isomorphism of (𝐺,∗)  onto (𝐺,∗). 
. 

Q5/ Let G be a group and 𝐴 𝑎𝑛𝑑 𝐵 be normal subgroups of 𝐺 such that 𝐴 ≅  𝐵. Show by an  

           example  that 𝐺/𝐴 ≇  𝐺/𝐵. 

 

Q6/  Consider two groups (𝑍,+) 𝑎𝑛𝑑 (𝐺, . ) 𝑤𝑖𝑡ℎ 𝐺 = {−1, 1, −𝑖, 𝑖} where 𝑖2 = −1. Show that  

         the mapping defined by 𝑓(𝑛) = (−𝑖)𝑛, 𝑓𝑜𝑟 𝑛 ∈ 𝑍 is a homomrphism  from (𝑍,+) onto (𝐺,∗)  
         and determine 𝑘𝑒𝑟 𝑓.  
 

Q7/ Prove that every proper subgroup of a group of order 𝑝2 (𝑝 aprime) is cyclic. 

 

Q8/ Show that  (a) (𝑍20/< 5 >, ⊗) ≅  (𝑍5,   +5). 

                 (b) (3𝑍/9𝑍, ⊗) ≅  (𝑍3,   +3). 

Q9/ Let (𝐺,∗) ≅ (𝐺′, °).   

(a) If 𝐺 is abelain group then so is 𝐺’.  

(b) If 𝐺 is cyclic group then so is 𝐺’.  

 

 

 

. 

 

 

 

 

 

 

 

 


