Chapter one
Group theory

1. Basics
N =4{0,1,2, 3,4...}. The set of natural numbers.
Z={..,—2,—-1,0,1,2,...} The set of all integers.
Z# — The set of nonnegative integers

Q={], y=0:x, yez}. The set of rational numbers

Q* — The set of positive rational numbers

Q* — The set of nonzero rational numbers.
Irr ={3x,s.t.x > 0and x € Q}. Some positive real numbers are irrational.
R — The set of real numbers

R* — The set of positive real numbers

R* = {x € R, x # 0}. The set of nonzero real numbers
C={x+yi:x,y € R}. The set of complex numbers

C* — The set of nonzero complex numbers

The order or cardinality of a set A will be denoted by |A]|. If A is a finite set the

order of A is simply the number of elements of A.

Definition 1.1.The Cartesian product of two sets A and B is collection

AxB={(a.b)lae A.be Bl
Definition 1.2. For any set X, the power set of X, written P(X), is defined to be the set

P(X) = {A| Ais asubset of X}.



Example. Let X = {1,2,3}. Then

P(X) = {0,{1}{2},{3}{1,2}{1,3},{2,3},{1,2,3}}.
Here P(X) has 23 elements.

Definition 1.3. Principle of Well-Ordering: Every nonempty subset of Z*# has a smallest
(least) element, ie.,if @ = S € Z*, then there exists x € S such that x < y for all

y € S.

Theorem 1.4. (Division Algorithm) Let x,y € Z with y # 0. Then there exist unique
integersgandr suchthat = gy + r, 0 < r < |y|.

Definition 1.5
(i) Aninteger p > 1 is called prime if the only divisors of p are +1 and +p.

(if) Two integers x and y are called relatively prime if gcd(x,y) = 1.

We shall use the following notation for some common sets of numbers.

2. Groups

Definition 2.1. Let S be a nonempty set. Any function = from Cartesian product S x S to
S called binary operation on S. Then for all x, y € S we shall write #(x, y)as x * y.
Examples.
1- Ordinary addition and multiplication is a binary operation.
2- Ordinary subtraction is a binary operation on the set of integers but not binary
operation on the set of Z*.
3- The set of odd integers is binary operation under multiplication (.) but not binary
operation under addition (+).

4- - Let A be anonempty set and P(A) be the set of all subsets of A(power set



of A). Then nand U are binary operations on P(A).
Definition 2.2. A mathematical system is a nonempty set of elements together with one

or more binary operations defined on this set.

Examples.
1- (Z,+), (Z,.), (P(A), n) are Mathematical system.
2- (nZ,,+,.) is Mathematical system but (Z,, +,.) is not Mathematical system.
3- LetS ={1,—1,i,—i}, withi? = —1and (') is a multiplication operation defined

on S. Then (S, .) is a mathematical system.

Definition 2.3. A group G consists of a set G together with a binary operation * for
which the following properties are satisfied:
M (x xy) »z = x % (y * z) forall elements x, y and z of G (the Associative Law);
(11) there exists an element e of G (known as the identity element of &) such that

e * x = x = x * e, forall elements x of G,
(111) for each element x of G there exists an element x” of G (known as the inverse of x)

suchthat x * x" = e = x' * x (where e is the identity element of G).

The order |G| of a finite group G is the number of elements of G.

Examples. 1- (Z,+),(R,+), (R —{0},.) and (M,,x»(R), +) are groups.
2- (P(A),A) isagroup, but (P(A4),n) and (P(A),U) are not groups.

Example. Let S = {a, b, c}. Let « be the binary operation on S with the following
composition table:

a (T
S QTR
S| |0 (T
aQ |Q (0




Then it is not associative; for example (aeb)e c =ce c = c,ae (be c)=ae a=
b.

Definition 2.4. A group G is called an abelian group ( or commutative) if the binary
operation of G is commutative (x*y = y*x for all x,y eG).

Then e« is not commutative; for example aboveas a eb =c,be a = a.

Examples.
1

Let a be any nonzero real number and consider the set G of integral multiples of a

G = {na|n € Z}. Then (G, +) is a commutative group .

2- Let * be a binary operation defined of the set Q* as follows:
axb= ag;b,for all a,b € Q*. Show that (Q*,*) is a commutative group.
3- LetS = R—{—1} and * defined of S as follows:

axb=a+b+ab,foralla b €S.Show that (S,*) is a group.
4- Let Qg = {1, i, £j, tk} with
i2 =j2 = k2 =—-1
i.j=k jk=i k.i=j
ji=-k kj=-1 ik=—j

Then (Qg, .)is not a commutative group and is said a quaternion group.

Definition 2.5. A Semigroup is a pair (S, #) consisting of a nonempty set S together
with an associative binary operation * defined on S.

Example. (P(A4),n) and (P(A),U) are semigroups for any set A.

SOLVED PROBLEMS:

Q1/Determine if the following sets G with the operation indicated form a group. If not, point out

which of the group axioms fail.



(@) G =setof all integers,a*b=a-h.

(b) G = set of all integers, a*b =a + b + ab.

(c) G = set of nonnegative integers,a*b =a + b.

(e)G = Z*,axb = max {a,b},

G =2x1Z(ab)* (e,d)= (a +eb + d),

(9) G = R* xR¥ (a,b) x (e,d) = (ae + bd,ad +.bd).

Q2/ Let S be the set of all real numbers # — 1, Define *onSbya*b=a+ b + ab.
(a) Show that * gives a binary operation on S.
(b) Show that (S, *) is a group.

(c) Find the solution of the equation 2*x*3=7 in S.

3- Elementary Properties of Groups.

Lemma 3.1.

1- A group G has exactly one identity element e satisfyinge *xx = x = x x e for all

x € G.

2- An element x of a group G has exactly one inverse x~1 .

3- x"Ht=xforallx€aG.

4- Ifx,y € G,then (x *y) 1 =y L xx71,

5- The cancellation laws holds in that if x * y = x x z or yx x = z * x implies y= z.
Proof. (1) Suppose that (G,*) has two identity elements e; and e,.
Sincee; *a = a*e; =a and e,*a = a*e, = a, forallaingG.
In particular if e, is identity element, then e; *e,= e,. But e, is also identity element, so
we have e, *e,= e;. Thus we obtain e; = e, *e,= e, and consequently e; = e,. That is if
the group has an identity element, then there is a unique. m

(5) Since a € G, thenthereisa™! € G.

Multiplying the equation a * b = a = ¢ on the left side by a™1, we obtain



alx(axb)=atx(ax*c).
The by (I1), this becomes
(al*xa)*b=(a1*a)*c

Hence e« b = e * ¢, therefore b = c. =

Theorem 3.2. The group (G, *) is abelian if and only if

(axb)P=at«b71 forallab €G.

Proof. Suppose that G is Abelain group. Hence by Theorem 3.1 part (4) we have

(ax*b)P=b1xal=alxpL

Conversely, suppose that (a * b)™t = a1 x b~1. Hence

(axb) ™ x(bxa)=(a"t*b™")*(b*a)
=alx(btxb)xa=al*xexa=alxa=ce.

Thatiswe get (a*b)™1 x (b *a) = e, thereforeaxb=b+a. m
Corollary 3.3. The only solution of the group equation x * x = x is x = e.
Definition 3.4. In any group (G, #), the integral powers of an element x € G are defined

by
x™ = x*xx*..xx (n-factors)

x° = e,
X = T e T = (7T where n € Z*.
n-—times
Theorem 3.5. Let (G, ) be agroup, x € G and n,m € Z. Then
1- xM s xM = xNHM = M ;4 2. (xn)m = x"M — (xm)n.

3-x" = (x™)7L, 4- " = e.



Remark. If additive notation is employed for an Abelain group then the notation ‘x™ ’ is
replaced by ‘nx’ for all integers n and elements x of the group. Then the theorem 3.5

states that (m + n)x = mx + nx and (mn)x = m(n(x)) for all integers m and n.

Solve the following problems

Q1/ If G is an abelian group, prove that (a * b)* = a™ = b™ for all integers n.

Q2/ Let (G,.) be agroup such that (a * b)?> = a? = b? forevery a, b € G. Prove that the group
IS commutative.

Q3/ If G is agroup in which a? = e forall a € G, show that G is abelian.

Q4/ Let G be a group, and suppose that a and b are any elements of G. Show that
(aba 1™ = ab™a™?, for any positive integer n.

4. Integers Modulo n

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be
congruent modulo n, written a = b(mod n) if and only if a — b = kn for some integer
k or (a — b) is divisible by n.
Examples 1- 26 = 2(mod 3). 2- 15 = 7(mod 2)

1- 3 £ 2(mod 4) 4- —2 = 6(mod 8)
Theorem 4.2. Let n be a fixed positive integer and a, b are arbitrary integers. Then a =
b(mod n) if and only if a and b have the same remainder when divided by n.
Proof. Leta = b(mod n) =a — b = kn or a = b + kn for some integer k,
and let b = gn + r when divided by n and r is remainder, 0 < r < n.
Nowa=b+kn=qgqn+r+kn=(q+k)n+r,
then a has the same remainder of b when divided by n.
Conversely, leta =gn+rand b =q,n+r, q;,9, €2,(0 < r < n).
Nowa—b=(qgn+r)— (gn+7)=(q, —q2)n
Therefore a = b(mod n).



Theorem 4.3. Let n be a fixed positive integer and a, b, c and d are arbitrary integers.
Then:

1- a = a(mod n).

2- If a = b(mod n), then b = a(mod n).

3- If a = b(mod n) and b = c(mod n), then a = c(mod n).

4- If a = b(mod n) and ¢ = d(mod n),thena + ¢ = b + d(mod n)

and a.c = b.d(mod n).

5- If a = b(mod n), then a.c = b.c(mod n).

6- If a = b(mod n), then a* = b*(mod n) for every positive integer k.
Proof. H.W.
Remark. The converse of part (5) is not true, for example 5.2 = 1.2(mod 8) but 5 =
1(mod 8).

Theorem 4.4. If ca = ab(mod n) and c is relatively prime to n, then a = b(mod n).
Proof. If ca = cb(mod n), then c(a — b) = kn for some integer k.
Since c is relatively prime to n, then n is not divide c. Thus n must divide a — b, that is

a = b(mod n).

Definition 4.5. For an arbitrary integer a, let [a] denote the set of all integer numbers
congruent to a modulo n:

[al ={xeZ /x=a(modn)} = {xeZ /| x = a+ kn for some integer k }.
We call [a] the congruence class modulo n determined by a, and a is a representative of
this class.

Examples.
1- Z, ={[1],12], ..., [n — 1]}.



2-1fn=3,then [0] ={x € Z /x = 0(mod 3)}
= {x€Z/x=3k,forsomek € Z}
= {..,—6,-3,0,3,6,..} = [3] = [6] = [-3]
[1]={x € Z /x =1(mod 3)}
={x€Z/x=1+3k forsomek €Z}
={..,—8,-5-2,1,4,7,..}
We see that every integer lies in one of these classes. Integers in the same congruence
class are congruent modulo 3, while integers in different classes are incongruent modulo
3.
Remark. We select the smallest nonnegative integer for each congruence

class to represent it.

Theorem 4.6. Let n be a positive integer and Z,, be as defined above. Then:
1- Foreach [a] € Z,, [a] # O.
2- If [a] € Z, and b € [a], then [a] = [b].
3- For any [a], [b] € Z,, such that [a] # [b], then [a] N [b] = @..
4- U{[al,a € Z} = Z.

Proof.

Theorem 4.7. For each positive integer n, the mathematical system (Z,,, +,,) forms a
commutative group. Known as the group of integers modulo n.

Proof. (1) A binary operation +, may be defined on Z,, as follows:

For each [a], [b] € Z,, let [a]+,[b] = [a + b].

To prove that +,, is well defined

Let [a] = [b] and [c] = [d].

Now a € [a] = [b] and c€ [c] = [d]



=a = b(modn)and c = d(modn)=(a+c) =(b+d)(modn)=a+c € [b+d]
=la+c] =[b+d]or[a]+,[c] = [b]+,[d]
Thus the operation +,, is well defined.
(2) If [a], [b], [c] €Z,, then
la]+n([b]+nlc]) = [a]+n[b +c] = [a+ (b + )]
= [(a+Db) +c]=la+b]tnlc] = ([a]talb]D+n[c].
(3) By definition of+,,, its clear that [0] is the identity element.
(4) If[a] € Z,,,then [n —a] € Z,, and [a]+,[n —a] = [a + (n — a)] = [n] = [0],
sothat [a]™! = [n — a].
(5) For any [a], [b] € Z,,, [a]+,[b] = [a + b] = [b + a] = [b]+,[a].

Therefore (Z,,, +,,) is a commutative group.

Example. Z, = {[0], [1], [2], [3], [4], [5], [6], [7], [8]}
[1]7 = [8],[5]7" = [4].[6]™* = [3].
Remark. For simplicity, we often write Z, = {0, 1,2, ...,n — 1}.
Definition 4.8. Let n be a fixed positive integer. Consider Z,, Let ., be define on Z,, by
forall [a], [pb] € Z,
la] .. [p] = [ab].
(Z,, ) is amathematical system.

Zyx ={ the set of all multiplicative inverse elements}.

Example. Find Z3 = {1,2,4,5,7,8},since 1.41=1,2.45=1,4.47 = 1,848 = 1.

Solve the following problems
Q1/ Prove thatif a = b (mod n), then ca

cb (mod cn).

10



Q2/ Find all solutions x, where 0 < x < 15, of the equation 3x = 6 (mod 15).
Q3/ Prove that 6™ = 6 (mod 10)for anyn € Z™.
Q4/ For any integer n, prove that either n? = 0 (mod 4) or n?> = 1 (mod 4).
Q5/ Suppose a? = b? (mod n), where n is aprime number . Prove that either
a = b (modn), ora = — b (mod n).
Q6/ Find the multiplicative inverse of each nonzero element of Z,,.
Q7/ In Z,g4 find all units (list the multiplicative inverse) .

Q8/ Write out multiplication tables for the set Z7%.

5. Permutation groups.
Definition 5.1. A permutation of a set A is a function from A into A that is both one-to-
one and onto itself.
Example. The function f(x) = x + 1 is a permutation of the set Z.

Let A = {1,2}, the there are four functions from A to A, which are

1 1
2 2 R =
f1 f3 fa

Thus Map(A) = { f1,f2 f3 fa}- 1S Map(A) a group with respect to composition
of functions?

f1 and f, are onto and one to one function(bijections) but the £, and f; are neither
Injective (onto) nor surjective (one to one).

Remark. The set of all permutations of the set A will be denoted by the symbol S,

For any positive integer n, the symmetric group on the set {1, 2, 3,.. ., n}is

11



called the symmetric group on n elements, and is denoted by S,,

Suppose that A = {1, 2, ...,n}
Forany feS,,, f ={(1,f(1)),(2,f(2)), ..., (n, f(n))}. Also we can represent f in
1 2 .. n
=Gy r o r)
Forexample if A = {1,2,3,4,5}and

G313 Pmea=( D] P

9f=(; 5 14 3

Theorem 5.2. Let A be a nonempty set. Then (Sym(A), o) is a group ( called symmetric
group of the set A4).

Proof. Clearly if f,g € Sym(A), then fog € Sym(A). hence Sym(A) is closed under

0.

For f,g,h € Sym(A), we show that (fog)oh = fo(goh).
(fog)oh(x) = (fog)(h(x)) = f (9(h(x))) = f(goh(x)) = fo(goh) (x).
I.  Hence (1) is satisfied.
The identity map 1, is a permutation of the set A and is identity element such that
fol, = I4of = f. Therefore (II) is satisfied.
For proving S, has an inverse, suppose that f € Sym(A), that is f is one to one and
onto function. Therefore f 1 is also one to one and onto function, hence f~1 €

Sym(A) such that f~1of = fof "1 = I, Thus (III) is satisfied. Hence (Sym(4),0). =

Remark. The set of all permutations of the set N={1, 2, 3, ..., n} will be denoted by the

symbol S,, and S,, contains n! distinct elements.

Example. Let A = {1, 2, 3}. Then there are 3! = 6 permutations in S5, namely

12



1 2 3 1 2 3 1 2 3
l=f1=(1 2 3)’ f2=(2 3 1)' f3=(3 1 2)
1 2 3 1 2 3 1 2 3
f4:(1 3 2)’ f5:(3 2 ]_)' f6=(2 1 3)
o f1 fZ f3 ﬁ} f5 f6
fi fi f2 f3 4 Js e
fa f2 f3 h fe fa Is
f3 f3 f f2 s e fa
i 2 fs fs f f /s
fs fs fe fa f3 h f2
fe fe fa fs f2 5 h

Note that f,of, = fs, and fyof, = f5 as the table above, we get (S3,0) forms a group

as the symmetric group on n symbols, which is non commutative forn > 3...

Definition 5.3. A permutation f of a set A is a cycle of length k if there exist
ny, Ny, ... , Ny € Asuch that
f(my) =nypyq foralll<i<k-—1,
f(y) = ny and
fm) =m, forallm € Abutm & {n,,n,, ... ,ng}.

We write f = (ny,ny, ... ,Ng).

Example . In (Sg, 0), if we have

f=(l 23456

3 5 42 6 1)=(1 3 4 2 5 6 )andtheinverse of fis
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1. (1 2 3 4 5 6
/== (6 4 13 2 5)
Theorem 5.4. Every permutation can be written as a product of disjoint cycles.

Two cycles (a,, ay, ..., ay)and (by, ..., by,) are said to be disjoint if a; # b; forall i,
J.

Example. Let
J=(12345678)
57148263
1-5-8- 3 - 1. Therefore o contains the cycle (15 8 3).

2 -7 - 6 — 2. Therefore g contains the cycle (2 7 6),

Note that the cycles (15 8 3) and (2 7 6) are disjoint, and o contains the product (or
composition) (1 5 8 3)(27 6).

Definition 5.5. A cycle of length two is called transposition.

In the example above (S3,0), f4, fs and f, are transpositions.

Lemma 5.6. Every permutation can be written a product of transpositions.

Thatismean f = (nq,ny, ... ,ng) = (f = (n, i) Ny, Ng—1) ... (ny,ny)

Example. In (S;, 0), f2=(; g i)=(1 2 3)=(1 3)(1 2)

Note that these transpositions are not disjoint and so they don’t have to commute. Since
12@a3)+@a3@a 2

Definition 5.7. A permutation of a finite set is even if it can be written as a product of
even number of transpositions, and is odd if it can be written as a product of odd number
of transpositions.

Forexample S; ={i,(1 2 3), (1 3 2),(2 3),(1 3),(1 2)},then
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i,(1 2 3)and (1 3 2) areeven transpositions however (2 3),(1 2)and (1 3) are

odd transpositions.

Theorem 5.8. Every permutation in S,, can be written as a product of either an even
number of transpositions, or an odd number of transpositions but not both.

Definition 5.9. All even permutations is called alternating group and denoted by A4,,.

I.e A, = {0 € S,;:0is even}.

Theorem 5.10. If n > 2, the collection of all even permutations of {1, 2, ....,n}forms a

subgroup of order "?' of the symmetric group S,,.

For example |S3| = 3! = 6, then |A5] = 33' = g = 3.

Solve the following problems:

Q1/ Determine whether the given function is a permutation of R.
1- f:R — Rdefinedby f(x) = x + L.
2- f:R — R defined by f(x) = x2.
3- f:R — R defined by f(x) = —x5.

Q2/ Find the number of elements in the set {§ € S, |§(3) = 3}.

Q3/ Express the permutation of {1, 2, 3, 4, 5, 6, 7, 8} as a product of disjoint cycles, and then as
a product of transpositions. 1f
y:(12345678) 6:(12345678)
2 564 7 83 1/ 2 1 73 8 65 4/

Q4/ What is the order of thecycle (1 2 8 5 7)?

Q5/ Consider the three permutation in S
(1 2 3 4 5 6 (1 2 34 5 6y, (1 2 34 5 6
y_(1 4 35 6 1)’5_(3 4 15 2 6)”1_(3 2 46 1 5)
Compute
(a) vd (b) y6? (c) y*2 (O N ON(Z
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1 2 3 4 5 67 8 910 11

QG/Computetheorderofrz(5 2 104 6 89 11 1 3 7

).For

o = (2 10 7), compute the order of aro~1. Is T an even permutation or an odd

permutation?

6. Cyclic group.
Definition 6.1. Let (G, #) be a group. Then G is said to be cyclic group if there exists an
element a € G such that every element of G is of the form a™ for some integer n. Such an
element a is called a generator of the group and written as
G=<a>={a"|neZ}
Examples.
1- (Z,+) iscyclic group generated by 1and -1. Then Z =< 1 >=< -1 >
2- (Q,+) is not cyclic group.
3- If G = {1,-1,i,—i}, where i? = —1, then (G,.) is a cyclic group generated by i
and -iand G =< i >=< —i >.
4- (Zs, +5)isacyclicgroupand Z; =< 1 >=< 2 >=< 3 >=<4 >,

Remark. In (Z,,, +,), if nis prime, then every elements is generator except 0.

Definition 6.2. If (G, #) isa finite group, then the order of (G, #) is the number of elements

in G and denoted by |G| or o(G) and if G is infinite, then we say G has an infinite order.

Definition 6.3. Let (G, #) be a group. Then the order of an element a in G is the least
positive integer n such that a™ = e, where e is the identity element of G, and denoted by
o(a) =n.

Example. (Zs, +s), Then o(Zs)=8 and o(2) = 4 where 2eZs.
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Lemma 6.4. Let (G,*) beagroup and a, b € G has a finite order. Then
1- o(a) = o(a™ 1)
2- o(a) =o(b*ax*b™1).
Proof. 1- if o(a) = n, then by Theorem 3.5 we have
(@H)r=gm=(@)l=el=e¢
Suppose that m be a least positive integer satisfyies (a~1)™ = e, then
a®=((@H™m=((a)y™M1l=et=eC.
Which is contradiction for o(a) = n, for a lest positive integer n such that (a™1)" = e,
hence o(a™!) = n.
2-H.W.
Example.
2- In agroup (Qg,.), we find (—1)?2 = 1 and o(—1) = 2 but (—1) # 1.
3- In (Z,4),0(D)is infinite since 1#0, 1+1 #0, 1+1+1+0, ...
lel+1+1 =13,

Theorem 6.5. Every cyclic group is abelian.

Proof. Let (G,*) be a cyclic group generated by an element a. That is

G=<a>={a": neZ}.

Let x, y be any two elements of G, then there exist integers n and m such that

x =a"and y = a™. Then
xxy=atxa™=a"M =™ =qgMxa" =y=xx.

Therefore (G,*) is abelian group.

Definition 6.6. Let (G,*)and (H,» )be two groups,
GXxXH={(g,h):g €Gand h € H}
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Forall (g, hy), (g5, h,) € G X H, then

(91, h1). (g2, hy) = (g1 %92, hy*hy) €EG XH.
H.w. Prove that (G X H,.) Is a group.

Example. describe the direct product of (Z, +,) and (Z3 +3).

Solve the following problems
Q1/ If (G, *) be a group and let x be an element of G of order 20. Find o(x*), 0(x7), o(x!1).

Q2/ Find the order of the elements
a- (2, Z)lnzlz XZ4
b- ([1], (1 2))inZ, x S,.

Q3/ Give an example of a group with the property described, or explain why no example exists.
a. A finite group that is not cyclic
b. An infinite group that is not cyclic
c. A cyclic group having only one generator
d. An infinite cyclic group having two generators
e. A finite cyclic group having four generators .

f. A nonabelian cyclic group.

Q4/ List the generators of Z;,.

Q5/ Show that Q™ is not a cyclic group.

Q6/ Let G = {a, b, c,d} be a group. Complete the following Cayley table for this group.

* a b C d

o0 |T|o
(o

7. Subgroups.
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Definition 7.1. Let (G, #) e a group and H be a nonempty subset of G. The pair (H, #) is
said to be a subgroup of (G, *) if (H, #) is itself a group.
Example.
(1) (Z.,+) and (nZ,+) are asubgroup of (Z,+).
(2) (Q —{0},.) is asubgroup of (R —{0},.).
(3) LetG ={e,a,b,c}witha? =b?>=c?=eanda.b=b.a=c,ac=c.a=b
and b.c = c.b = a. The pair (G, .) is a group, known as Klein’s four-group.
Remarks.
1- The binary operation on the subgroup H must be the same binary operation on the
group G.
2- Any group has at least two subgroups, ({e}, #) the identity element e of the group,
and the group itself are called trivial subgroups. The other subgroups called proper
subgroups.

Example. R* is a subset of R and both are groups. But R*is not a subgroup of R, since the operation
that makes R* a group is multiplication and the operation that makes R a group is addition.

Theorem 7.2. Let (G, *) beagroupand @ #= H € G. Then (H, #) is a subgroup of (G, *)
if and only if a, b eH implies a#b~! eH.
Proof. If (H, #) is a subgroup of (G, #) and a, beH, then b~1 €H and so by the closure
condition a#b~1 € H
Conversely, suppose a#b~1 € H for all a, bH and H is a nonempty subset of G, then H
contains at least one element let b,

1- Wetakea = btosee a*a™! € H thatis e € H.

2- Since b € H and by (1) e € H impliesthat b = e#b™1 € H.

3- Ifa,b € H,thenby (2) we have b~ € H,sothata xb = a*(b~1)~! € H,hence H

Is closed with respect to the operation *.
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4- Since * is an associative operation in G and a, b,c € H < G, therefore H satisfied
the associative law as a subset of G.
Then (H, #) is a subgroup of (G, *).
Example.
1- Let (G,.) =(Zx Z,.)beagroupand H = {(a, a): a € Z}. Show that
(H,.) be a subgroup of (G,.).

a b
c d

Show that (H,.) be a subgroup of (GI,(R),.).

2- Let(Gl,(R), .)beagroupand H = {( ) € Gl,(R):ad — bc = 1} € Gl,(R).

Definition 6.3. The center of a group (G, #), denoted by cent(G) or Z(G) is the set
cent(G) ={ceG: (cxx=xx*c forallx € G}.

Remark. The group (G, #) is commutative if and only if cent(G) = G.

Examples.(1) Inthe group (Qg,.), cent(Qg) = {1, —1}.
(1) Klien’s four-group
(2) (S50
(3) (GL(R), .)

Theorem 7.4. Let (G, #) be agroup. Then (cent(G), *) is a subgroup of the group (G, *).
Proof. Since e € cent(G), then cent(G) # @.
Consider any two elements a, b € cent(G), we must prove that a*b~! € cent(G).
We know for all x € G, we have

(axb™VDxx=axbtxx)=ax(x*b ) =(@axx)*b1=(x*a)«b7?!

=x*(axb™1)

which implies a * b~ € cent(G). Then by Theorem 7.2 we get (cent(G), #) is a
subgroup of (G, *).
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Theorem 7.5. If (H;, *) and (H,, *) are two subgroups of the group (G, *), then

(H, N H,, #) is also a subgroup of (G, #).

Proof. Since the sets H; and H, contains the identity element of (G, *), the intersection
H,NH, # @.

Now suppose that a and b are any two elements of H; N H,, thena,b € H; and a,b €
H,. Since (Hy, #)and (H,,*) are subgroups, it follows that a*b~! € H; and a*b™! € H,,
then a#b~1 € H; N H,, which implies (H, N H,, #) is a subgroup of (G, #).

Remark.(1) If (H;, *) isanarbitrary indexed collection of subgroups of the group (G, #),
then (N H;, #) is also a subgroup of (G, *).

(2) The union of two subgroups (H,, #*) and( H,,*) of the group (G, *) need not be
subgroup of (G, #).

For example. ({0, 6}, +,,) and ({0, 4, 8}, +,,) are two subgroups of the group (Z;,, +12),
then the union is ({0, 4, 6, 8}, +,,) is not subgroup of (Z;,, +15).

Theorem 7.6. Let (Hy, #) and( H,,*) be two subgroups of the group (G, #). Then

(H,UH,, *) is a subgroup of (G, #) iff H, € H, or H, & H;.

Proof. Suppose that H; < H, or H, € H,,then H{UH, = H, or H{UH, = H;.

Since H, and H, are subgroups, then H; U H, is a subgroup of G.

Conversely, suppose that (H; U H,, #) is a subgroup of (G, #) such that

H, ¢ H, and H, ¢ Hy, then there exists an elements a and b such that
a€H,—H,and b € H, — H,.

Since H; U H, is a subgroup of G, then a#h~1 € H, U H,

=a*h ' €H ora*h! €H,

Suppose #*b~1 € H, = a = a#*b~! * b € H,, which is contradiction, and if a=b~! € H,
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=bl=alxax»~1 € H = b € H, which is contradiction. Then either
H, € H,or H, © H;.

Remark. Let (H;, #*) be an indexed collection of subgroups of the group (G, #). Suppose
the family of subsets {Hi} has the property that for any two of its members H; and H; there
exists a set H;, (depending on i and j) in {H;} such that

H; € Hy and H; € Hy. Then (UH;, #) is also a subgroup of (G, #).

Definition 7.7. If (G,*) is an arbitrary group and @ # S € G, then the symbol (S) will

represent the set
(S) =n{H |S € H; (H,*)is a subgroup of (G,*)}.

Theorem 7.8 . The pair ((S),*) is a subgroup of (G,*), known the subgroup generated by
the set S.

Definition 7.9 Let (G,*) be a group and a be an element in G. Then a cyclic subgroup

((a),*) is called a subgroup generated by an element a.

Example. In (Z,, +,) asubgroup generated by 2 is ([2]) = { [0], [2]}

Theorem 7.10. Every subgroup of cyclic group is cyclic.

Proof. Let (G, #*) be a cyclic group generated by the element a and let (H, #) be a
subgroup of (G, #).

If H = {e}, then H =< e > is cyclic.

If H #+ {e}, then there exist x € H such that x = a™ for some meZ.
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If a™ € H, where m # 0,then a™™ € H, hence H must contains positive powers of a. Let
n be the smallest positive integer such that a™ € H.

we must to show that H = (a™).

Let a® € H = (a®*)* € H, for all k € Z, therefore (a™) € H.

By the Division Algorithm there exist integers q and r for which

k=ng+r, 0<r<n.

Since both a®, a* € H,and r = k — nq, therefore x” = x¥ " € H

If r>0, we have contradiction to the assumption that a™ is a minimal positive power of
a in H. Accordingly r = 0 and k = nq =a* = (a™)? € (a").

H < (a™). Consequently H = (a™).

Examples Let (Z,,, +,) is cyclic group generated by < 1 >. Then every subgroups are

cyclic.

Definition 7.11. Let (G,*) be a group and H, K be nonempty subsets of G. The product of
Hand K istheset H* K ={h*k: h € H, k € K}.

Example.
1- Let (Zg, +g), H ={1,5}and K ={2,4,6}. Then
H+gK = {1442, 1454, 1+46,5+g2,5+g4, 5+56} = {3,5,7, 1}.
Hence (H+gK, +3) is not a subgroup of (Zg, +3).
2- Let (S5,0), H=1{i,(1 2)}and K = {i,(1 3)}. Then
HeK={ieiie(13),(12)ei(12)e(13)}={(13),01 2),313 2)}
Hence (H ¢ K, ) is not a subgroup of (S3,e).
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Theorem 7.12. If (H,*) and (K,*) are subgroups of the group (G,*) such that H * K =
K * H, then (H = K,*) is a subgroup of (G,*).

Proof. Note that H* K =K *H is not mean h*k =k «h, forallh € Hand k € K,
but it means for all h € H and k € K, thereexist h; € H and k; € K suchthat h x k =
ky * hy.
Sincee€e Hande € K,thene=exe€ H+*K,hence H xK + @. Letx,y € H x K.
We must to show that x * y™1 € H « K.

Now let x = h; xk, and y = h, *x k,, where hy,h, € H and k;, k, € K. Hence

x kY7 = (hy xhy) % (hy % kp) ™ = (hy * hey) % (kg B3 Y) = hy = (kg % k7Y B3
Since (K,*) is a subgroup of (G,x), then k;* =« k5! € K and therefore

kyxk;'+«h;'€e KxHand K *H = H * K,

then there exist elements he H and k<K such that k; * k51 = h;1 = h * k, we conclude
thatx«y 1 =h, *(h+«k)=(h xh)*k € H =K.

Hence (H * K,*) is a subgroup of (G,*).

Corollary 7.13. If (H,*) and (K,*) are subgroups of the commutative group (G,*), then
(H = K,*) is a subgroup of (G,*).

Solve the following

Q1/ Find all cyclic subgroups of Z;.

Q2/ Find all cyclic subgroups of Z;.
Q3/ Let G be an abelian group, and let n be a fixed positive integer. Show that
N ={g€Glg = a™ for some a € G} is a subgroup of G.

Q4/ If G is an abelian group and if H = {a € G | a? = e}, show that H is a subgroup of G. Give an

example of a nonabelian group for which the H is not a subgroup.

Q5/ In the group of symmetries of the equilateral triangle, find:
a) all subgroups.
b) The center of the group .
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Q6/ list the elements of the subgroup generated by the given subset.
1. The subset {2, 4} of Z;, 2. The subset {2, 6} of Z,,
3. The subset {6, 12} of Z 4 4. The subset {15, 30} of Z3;.

Q7/ Let (H, *) be a subgroup of f the group (G, *) and the set N(H) be defined by

N(H) = {a € G: a *H xa~! = H}. Prove that the pair (N(H), *) is a subgroup of (G, *),
called the normalize of H in G.

Q8/ Let G be a group, with subgroup H. Show that K = {(x,x) € G X G|x € H}isa
subgroup of G X G.

Q9 In Z,,, find the order of the subgroup <16>; find the order of <14>.

Q10/ Let (M(R), @) be a group of all real continuous functions over R and let F = {f € M(R): f is
differentiable} and h = {f € M(R): f(1) = 0}. Show that (H, @) is subgroup of the group (M (R), ®).

8. Cosets and Lagrange’s Theorem

Definition 8.1. Let (H,*) be a subgroup of the group (G,*) and let a € G. The set
a*H ={ax*h:h € H}is called left coset of H in G. The element a is representative of
a*xHand H+a ={h+*a:h € H}is called aright coset of H in G.

Remark. If e is the identity element of (G, *), then
e xH = {e xh:heH}={h:he€ H}=H.Thatis H itself is a left coset of H.

Example . Let (Z,,, +,0) be agroup and H = {0, 5} be a subgroup of (Z,y, +10)-
1+10H = {1, 6}, 2+10H = {2, 7}, 3+10H = {3, 8}, 4‘+10H = {4‘, 9}, 5+10H = {5, 0}
6+10H = {1, 6}, 7+10H = {2, 7}, 8+10H = {3, 8}, 9+10H = {4, 9}

There are only five distinct cosets.
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Theorem 8.2. If (H,*) is a subgroup of the group (G,*), thena * H = H if and only if

a € H.

Proof. Suppose that a* H = H. Since e € H ,thena = axe€a*H = H = a € H.
Conversely, suppose that a € H. Since H is closed under * operation, hence for all h € H,
then a = h € H, therefore a * H € H. The opposite inclusion by h € H, hence
h=exh=(a*xa)*h=ax*(a"!xh)€a=Hand consequently H € a * H.
Therefore H = a * H.

Theorem 8.3. If (H ,*) is a subgroup of the group (G,*), thena x H = b = H if and only
ifa l«b€eH.
Proof. Suppose thata x H = b * H. Then for all h € H , there exist h; € H such that
b * hy = a * h. From this we get
alxb=~hx*hil
Since (H,*) is a subgroup, then a™*«b =hxh1 € H
Conversely, let a™! « b € H. Then by Theorem 8.2 (a™! * b) « H = H. This implies that
for any h € H, there exist an element A’ € H such that
h=(a'«b)xh' ©a*xh=bxh"©&axHCh=xH.

At the same way we get b * H € a = H, consequently a x H = b = H.

Example. Let (G,x) = (Z,,, +12) and H = {0, 4, 8}. Then all left cosets are
04+,H ={0,4,8} = 4+,,H = 8+,,H
1+,,H ={1,5,9} = 5+,,H = 9+,,H
24+1,H = {2,6,10} = 6+,,H = 10+,,H
34,,H ={3,7,11} = 74+,,H = 114+,H
and the distinct left cosets are {0, 4, 8},{1,5,9},{2,6,10},{3,7,11}.
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Note that the number of distinct left cosets equal % is called the index of H in G and

the number of elements in each cosets are equal .

Theorem 8.4. If (H,*) is a subgroup of the group (G,*), then either the coset a *
H and b = H are disjointorelsea+*H = b« H

Proof. Suppose that (a* H) N (b« H) # @, thenthereexistc e a* HNb x H
=>c€axHandc €bx*H.Since c € a* H, there exist an element h,, h, € H such that
c=axh;andc =b=xh,. Itfollowsthata*h, =b*h, >a ' *b =h; x h;*.

Since (H,*) is asubgroup, then h; x h;! € Hthatisa™! * b € H. By Theorem 7.3 we get
axH =>bx*H.

Theorem 8.5. If (H,*) is a subgroup of the group (G,*), then the left(right) cosets of
H in G forms a partition of the set G.
Proof. If each a € G, then a € a * H. Sine each element can belong to one and only one

left coset of H in G. Thus
G = U axH
aeaG

Hence the set G is a partitioned by H into disjoint sets, each of which has exactly as many

elements as H.

Theorem 8.6.(Lagrange theorem) Let (H,*) be a subgroups of a finite group (G,*). Then
the order of Hand the index of H in G are divides the order of G.

Proof. Since G is a finite group, then ¢ = {a,, a,, ...,a,}, (H,*) isasubgroup of (G,*) of
order k and the index of H in G is r.

Hence there exist r distinct left cosets of H in G say a, * H,a, * H, ..., a,, * H.

Thus by Theorem 8.5, we get

27



G=(a;*H)U(a,*H)U ..U(a,+*H)and |a; *H|=|H| =k, fori=1,2,..,r.
G| =|ay *H| + |ag *H| + ..+ |a, *H|=k+k+-+k=1.k

r—tfmes
= (index of H in G)(order of H)

Consequently order of H is divide the order of G.

Corollary 8.7. If (G,*) is a group of order n, then the order of any elemente # a € G isa
factor of n, and a™ = e.
Proof. Let the element a in the group (G,*) have order k. Then the cyclic subgroup

generated by a is of order k.

Let =< a >= |H| = k. By Theorem 8.6 k is divisor of n, that isn = rk for some r €
Z*. Hence

an — ark — (ak)r — er = e.

Theorem 8.8. Every group (G,*) of prime order is cyclic.

Proof. Let (G,*) be a group such that |G| = p, p is prime, and let H be a cyclic subgroup
of G generated by e # a € G;i.e H = (a). By Theorem 8.6 |H| divides |G|, then either
|H| = 1or |H| = p. Since |H| # 1, then must be |H| = p = |G|. Therefore G = (a).

Remark. The converse of Lagrange theorem is not true in general, for example the group
(A4, o) isof order 12, then the factors of 12 are 1, 2, 3, 4, 6, 12. Then A, has no subgroup

of order 6.

Solve the following Problems

Q1/ List the left cosets of the subgroup
(@) H = {i: (13)} of S,.
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(b) (Ze, +) of (Z,+),

(©) (Z,+) of (Q, 1),

(d) (<4 >, +12) of (Z12,*+12)-

(M (2 3),0)of S5 x Z,

(f) Find all left cosets of the subgroup {R;z4, D; } of the group D, given by Table.

Q2/ Give an example of a group (G,*) and a subgroup (H,*) of (G,*) such that aH = bH, but
Ha # Hb forsome a,b € G.

Q3/ Let G be a group generated by a, b such that 0(b) = 2,0(a) = 6,and (ab)?> = e. Show that

(@) aba = b,
(b) (a®b)? = e,
(c) ba’b = a*,

Q3/Let G = {a, b, c,d} be a group. Complete the following Cayley table for this group.

* a b c d

d a

o0 | Tl

Q4/ find the index [G: H], If G = Zg x Z, and H = {0} X Z,

Q5/ Let G be a finite group and A and B be subgroups of G suchthat A € B < G. Prove that
[G: A] = [G: B][B: A].

Q6/ Can an element of an infinite group have finite order? Explain.

Q7/ Suppose H is a subgroup of a group G, and [G : H] = 2. Suppose also that a and b are in G, but
not in H. Show that ab € H.

Q8/ Prove that every proper subgroup of a group of order p? (p aprime) is cyclic.

9. Normal subgroups and quotient groups.
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Definition 9.1. A subgroup (H,*) of the group (G,*) is said to be normal(or invariant) in
(G,x) if and only if every left coset of H in G is also a right coset of Hin G(i.e.a* H =
H = a for every a € G).
Example. LetV ={e,a,b,c}with ab =ba =c,bc =cb =a,ac =ca = b and
a’ =b?>=c?>=e. IfH=/{e,a},theneH = H = He

bH = {b,c} = Hb

cH = {c,b} = Hc

aH ={a,e} = Ha

Therefore H is normal subgroup of V.

Theorem 9.2. Let (H,x) be a subgroup of the group (G,*). Then (H,*) is a normal
subgroup of (G,*) ifandonlyif a * H *a™* € H for each a<G.

Proof. Suppose that a * H x a~1 € H for each a € G. We must prove thata « H = H * a
Letaxh €ax*H.

Nowaxh=(axh)xe=((axh)x(a*xa)) =((axh*a™?) *a).

Sinceaxh*a ! €axHx*a ! < H,then there exist h; € H such that
axh=(axh*a)*a=h;*aand hy *a € H xa, so we conclude a * H € H * a.
We obtain the opposite inclusion, H * a € a = H, by similar way upon observing that our
hypothesis also implies

alxHxa=a1+«H=x(a 1)1 cH.

Then H xa = a = H for all a € G. Therefore H is normal subgroup of G.

Conversely, Suppose a * H = H * a for each a € G.

Letaxh,*xa*€a*xH=+a1,h, €H.

Since a * H = H * a, then there exist h, € H such that a x h; = h, * a.

Consequently

axh;,*a = (hy*a)*a ! =h,*(axa1) = h,, whichimpliesa «H «a™! C H.
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Example. Let (S5,0). Then H ={e, (1 2 3), (1 3 2)}is normal subgroup but
{e, (1 2)}, {e, (1 3)}and {e, (2 3)} are not normal subgroups of (S3,0).

Theorem 9.3. Let (G,*) be a group. Then (cent G,*) is normal subgroup of (G,*).
Proof. By Theorem 6.4 (cent G,*) is a subgroup of (G,*). Then we have only to show that
axcentG a1 € cent G foralla € G.

Letaxc*xa ' €axcentG a1, forc € centG.

Sincec € cent G,thenc*a =a*c, forall a € G.

l=c%xe=cE€Ecentq.

Nowa*c*xal=c*xaxa”
Therefore a = cent G xa™! € cent G, hence by Theorem 8.2 (cent G, =) is normal

subgroup of (G,*).

Theorem 9.4. If (H,x) is asubgroup of the group with [G: H] = 2, then (H,*) is anormal
subgroup of the group (G,*).

Proof. Since [G: H] = 2, then there exist exactly two cosets H and G — H.

Leta € G. Theneithera € Hora € G — H.

Ifa € H,thena * H=H = H * a, hence H is a normal subgroup.

If aeG—H,then HNa*H=0=>G=HU(axH)and HNH*xa=0=G =HU

(H * a). Therefore a* H = H * a for all a € G. hence H is a normal subgroup of G.

Definition 9.5. If (H,*) is normal subgroup of the group (G,*), then the collection of
distinct cosets of H in G is denoted by G /H and defined as follows:
G/H = {a*H:a€G}.

A binary operation ® is defined on G/H by
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(axH)®(b*xH)=(axb)*H foralla*H,b+HeG/H.
We must prove that ® is well defined.
LetaxH=b*Handc*H =d*H.Wemust provethat (axc)*H = (b*d) *H
NowsinceaxH =bxH=>a '+*beHandc*H=d=«H=c'*d€ H.
Now
(axc)tx(bxd)=ct*x(@t«b)xd=ctxdx(d1*(alxb)=d).
Sincea '«xbeH=>d 'x(al+xb)xded«Hx(d ) 1cH

and Since H is closed, we get ¢~ = d € H, hence
(axc)t+«(bxd)eH=>(axc)*H=(bxd)*H
= (a* H)®(c* H) = (b * H)®(d * H). Therefore ® is well defined.

Theorem 9.6. If (H,*) is a normal subgroup of the group (G,*), then (G/H,®) forms a
group, known as the quotient group of G by H.
Proof. By definition we observe that G/H is closed under operation ®.
1- associativity of ® on G/H,
[(a*H)®(b*H)]®(c*H) = ((a * b) * H)®(c * H)
= (a*(b*c))*H
= (a * H)®((b * C) * H)
=(a * H)®[(b * H)®(c * H)].
Hence ® is associative.
2- H = e = H is the identity element of G/H, where e is the identity element of G.
(axH)®(e+xH)=(axe)xH=a*H=(exa)*H = (exH)®(ax*H).
3- Theinverse of a = H is a™! = H, where a~1 is the inverse of a in G.
Now
(axH)&a'+*H)=(a*xa)*H=exH=(at*a)*H = (a1« H)®(a * H).
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Hence (G/H,®) isa group.

Remark. We have |%| =[G : N]. In particular, if G is a finite group, then

|G/N| = |G|/IN|.

Solve the following Problems

Q1/ Let H be a normal subgroup of a group G. Prove that if G is commutative, then so is the
quotient group G/H.

Q2/ Suppose (H,*) and (K,*) are normal subgroups of the group (G,*) with H N K = [e}.
Showthath+*k =k xh forallh € Hand k € K.

Q3/ Prove that if the quotient group (G /cen(G), ®) is cyclic, then (G,) is a commutative
group.

Q4/ Let (H,*) be a proper subgroup of (G,*) such that for all x,y € G/H,xy € H.Prove
that (H,*) is a normal subgroup of (G,*).

Q5/ Show that every subgroup of an abelian group is normal.

Q6/ Show that every group of prime order is simple.
Q7/ Prove that the quotient group of an abelian group is abelian.

Q8/ (a) Give an example of an abelian group G /H such that G is not abelian.Explain.
(b) Give an example of a cyclic group G/H such that G is not cyclic. Explain.

Q9/ Let H, K be normal subgroups of a group G. If G/H = G /K then show that
H = K.
Q10/ Let H be a normal subgroup of a group G. If xyx~1y~1 € H, forall x,y € G, then show that
G /H is abelian.

Q11/ If H is a subgroup of a group G and N a normal subgroup of G then show that H N N is a normal
subgroup of H.

10. Homomorphisms.
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Definition 9.1. If (G,*) and (H, o) are groups, then a function f: G — H is a
homomorphism if f(x * y) = f(x)o f(y) forallx,y € G.

Examples.
1- Let (G,*) and (G', o)be two groups. Then the function f: G —— G’ such that
f(x) = €' forany x € Gisahomomorphism and called a trivial homomorphism. In

fact,

fxxy) =¢ =eoe = f(x)0f)

2- Let (G,x)beanygroupand f:G — G defined by f(x) = x forallx € G isa
Is @ homomorphism and is called an identity homomorphism. In fact,
foxy)=xxy = fx)* f(y), forallx,y €G.
Definition 9.2. A homomorphism f from the group (G,*) into group (G’,0) is called an
isomorphism if f is one-to-one and onto function. Two groups G and G are called

isomorphic, denoted by G = ', if there exists an isomorphism between them.

Example. Let (R,+) and (R™, .) be two groups, where R is the set of real numbers, and
f:R - R* defined by f(x) = e* for all x € R. Show that f is an isomorphism.

forall x,y € R, we have

fx+y)= eV =e*. e¥ =f(x). f(y).

Hence f is a homomorphism.

Suppose that f(x) = f(y) = e* = e¥ = x = y. Hence f is one-to-one.

Since f(x) = e*is defined for all x € R and its inverse g(x) = In x is also defined
all x € R*, thatis f(Inx) = e™* = x. Hence f is onto.

Therefore f is an isomorphism and (R, +) = (RY, .).
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Definition 9.3. An isomorphism f from (G,*) into itself is called an automorphisms.

The set of all automorphisms of G is denoted by Aut(G)

Example. A function f:(Z,4+) — (Z,+) defined by f(n) = —n, for alln € Z.

Hence f is an automorphisms.

Theorem 9.4. Let f:(G,*) — (G', o) is agroup homomorphism. Then

1- f(e) = €', where e and e’ are identity elements of G and G’ respectively.

2- f(x™ D) = (x) L forallx € G.

3- f(x™) =(f(x)™ forallx e Gandn € Z.

4- If O(x) = n, then O(f(x)) is divides n.
Proof.

1- Forall x € G, we have

exx =x=x*e = f(x)oe' =f(x)= f(exx)= f(x)of(e).

Hence by cancellation law we get e’ = f(e).

2- Hw

3- By using induction, if n = 0, then f(x°) = f(e) = €', that is the statement is true.
If n = 1,then f(x!) = f(x), that is the statement is true too.
Suppose the statement is true for n such that n is a positive integer, that is

f&™) = ()™

Now f(x™*1) = f(x™  x) = fF(x™)of (x) = (f())"of (x) = (F(x)™*.
Finally, if n < 0, put n = —m, such that m is positive integer. Hence

fGM =™ =™ =™ =FfE)™=FC)™
4- H.w.

Theorem 9.5. Every finite cyclic group of order n is isomorphic to the group (Z,,, +,,).
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Proof. Let (G,*) be a cyclic group of order n generated by a. Hence by Theorem 6.11
G = (a) ={e,a,a? ..,at
Let f: G — Z,, be a function defined by f(a*) = [k], for all 0 < k < n.
To prove that f is one-to-one , suppose that
f(a) = f(a!) = [i] = [[] = i = j(mod n)
Hence there exist an integer [ such thati — j = In = i = j + In, therefore,
a' = /" = g/, that is f is one-to-one.
It is clear that is f is onto.
Now for all a,a’ € G, f(a' * @) = f(a') = [i + j] = [{]+, U] = f(a")+.f(a)).
Hence f is an isomorphism and (G,*) = (Z,, +,).

Theorem 9.6. Every infinite cyclic group is isomorphic with the group (Z, +).
Proof. Let (G,*) be an infinite cyclic group generated by a. Hence
G=()={a":nezZ}
Suchthat a® # a’, for all i # j
Let f: G — Z be a function defined by f(a*) =k, k € Z.
To prove that f is one-to-one , suppose that
fla)=f(ad)=i=j=a =d.
Hence f is one-to-one.
It is clear that is f is onto.
Now forall a',a’ € G, f(a' @) = f(a't) =i +j == f(a') + f(a)).

Hence f is an isomorphism, therefore, (G,x) = (Z,+)
Corollary. Any two cyclic groups of the same order are isomorphic.

Example. Show that the two groups (Q, +) and( Q*, .) are not isomorphic.
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Suppose that there exists an isomorphism f: (Q, +) — (Q%, .).
Let 3 € Q*. Since f is onto, then there an element x € Q such that f(x) = 3.

10=r(+)=r() ()= () =3

But it is contradicting, the fact f (;—C) Is a rational number and there is no exists a rational

number equal to 3.

Theorem 9.7. Let f be a homomorphism from the group (G,*) into the group (G’, 0).
Then
1- If (H,*) is a subgroup of (G,*), then (f(H), o) is a subgroup of (G’, o).
2- If (K, 0) is a subgroup of (G',0), then (f ~1(K), =) is a subgroup of (G,*).
Proof. (1) f(H) = {f(x): x € H}
Since ecH, then f(e) € f(H) = f(H) # 0.
Let f(x), f(y) € f(H),forx,y €H.
Now f(x)o f() ™' =f(x)ofy™) =flx+y ) €f(H) , Since x*y '€H .
Therefore by Theorem 6.2, we get f(H) is a subgroup of G'.
(2) H.W.

Theorem 9.8. Let f be a homomorphism from the group (G,*) into the group (G', 0).
Then
1- If (K, 0) is a normal subgroup of (G’, 0), then (f ~1(K), *) is a normal subgroup
of (G,*).
2- If f(G) = G' and (H,*) is a normal subgroup of (G,*), then (f(H), o) is a normal
subgroup of (G’, o).
Proof. (1) By theorem 8.7 (f ~1(K), *) is a subgroup of (G,*).
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Now to show that (f~1(K), *) is a normal subgroup of (G,*), suppose x € f~1(K)
and g € G. Since f is a homomorphism, then we have
flg=x*g™) = f(gof(x)o f(g)~" = f(g)of (x)of(g™), Since f(x) € K,f(g) €
G' and (K,*) is a normal subgroup of (G’, o).
Therefore f(g)of(x)of(g ) EK = g*x*xg 1t € f71(K). Hence (f~1(K),*) is a
normal subgroup of (G,*).
Definition 9.9. Let f be a homomorphism from the group (G,*) into the group (G, 0) and
Let e’ be the idenitiy element of (G’, o). Then kerenel of f, denoted by ker f, is the set
kerf={a€eG: f(a)=-¢'}.
Theorem 9.10. If fis a homomorphism from the group (G,*) into the group (G’, 0),
Then (ker f,*) is a normal subgroup of (G,*).
Proof. Since ({e'}, 0) is a normal subgroup of (G’, o) and ker f = f~1({e'}), then by
Theorem 9.8 (ker f,*) is a normal subgroup of the group (G, *).

Theorem 9.11. Let f be a homomorphism from the group (G,*) into the group (G’, 0).
Then f is one-to-one if and only if ker f = {e}.
Proof. Suppose the function f is one-to-one. Letx e ker f = f(x) =e' = f(e).
Since f is one-to-one, we get x = e = Ker f = {e}.
Conversely, suppose that ker f = {e}. Letx,y € G and f(x) = f(y).
To prove f is one-to-one, we must show that x = y. Butif
f) = f=f0)of *(y) =¢

= f(x)of(y™1) = e'(f is homorphism)

= flxxy™) =¢".
Which implies x * y~1 € ker f. Butker f = {e}. Thereforex*y™ 1 =e = x = y.

Theorem 9.12. (Cayley’s Theorem)If (G,*) is an arbitrary group, then
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(G,*) = (Fg,0).

Proof. F; = {f, : a € G}, we define the function f,: G — G by f,(x) = a*x,x € G.
(f is called the left multiplication function).
Now define the function f: G — F; by g(a) = f,, for eacha € G.
It is clear that the function is onto. If
fla)=fb)=f,=f, = f,(x) =f(x),forallx e G = a*x=b*x = a=0>b.
Which show that f is one-to-one.
We proof that f is a homomorphism:

fla*b) = fap = faofy = f(@)of (b).

Hence f is an isomorphism and (G,*) = (Fg;, o).

Example. Consider (G,*) = (R*,+), for a € R¥is the left-multiplication function £,
defined by f,(x) =a+x, x € R

11.The Fundamental of Isomorphisms Theorems.
Theorem 10.1. (First Isomorphism Theorem)

If £ is @ homomorphism from the group (G,*) onto the group (G', 0). Then

(G/kerf’ @) = (G',0).
Proof. Put ker f = K.We define a function ¢: G/K — G' by
p(x+K)=f(x), forx€Q.

We must show that ¢ is well defined, suppose x + K =y + K = x*y~1 € K = ker f.
Therefore f(x x y~1) = e’. But f is homomorphism, then

fof(y™) =e' = fo(fO)) " =¢
= f)=f)= ¢x+K) =9y +K).

Hence ¢ is well defined.

Now to show that ¢ is a homomorphism, suppose that
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o((x*K)® *K)) = p((x *y) *K)
= flx*y)
= f(x)of(y)
= @(x * K)ogp(y * K).
Hence ¢ is a homomorphism.
Letp(x*K) = p(y *K) = f(x) = f(y) = f(x)o(f ()" =¢".
Since f is a homomorphism, therefore
fof(y H=e'=flxxy H=e"=x+xy 1eK=x*K=y*K.
Hence ¢ is one-to-one.

Finally, for all z € G’ there exists y € G suchthat z = f(y) = ¢(y + K).
Hence ¢ is onto. Therefore ¢ is an isomorphism and (G/K, ®) = (G',0).

Lemma 10.2. If (H,*) is a subgroup of the group (G,*) and (K,*) is a normal subgroup of
(G,*), then (H N K,*) is a normal subgroup og the group (H,*).

Proof. Lethe Handle HNK =1l € Handl € K.

Since (H,*) is a subgroup of the group (G,*),thenh xl«h™! € H and

Since (K,*) is a normal subgroup of the group (G,*),then h* [l * h™! € K.

Hence hxl+«h '€ HNK,foral he Handl € HNK , therefore (HNK,x) is a
normal subgroup og the group (H,*).

Theorem 10.3. (Second Isomorphism Theorem)
If (H,*) is a subgroup of the group (G,*) and (K,*) is a normal subgroup of (G,*), then
H+xK/K=H/HNnK.
Proof. First we must to show that (K,*) is a normal subgroup of (H * K,*) and by
lemma 9.2 we have (H n K,*) is a normal subgroup of (H,*).
We prove the theorem by using Theorem 9.1, then so we define a function
p:HxK > H/HNKby@p(h+k)=h*(HNK),forallh € Hand k € K.
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We show that ¢ is well defind

Leth*k =hy xky,for hy,h € Hand k., k € K.
=hil*h=k xk"!= hi'*xhe HNK.

By Theorem 6.18 we get hy *( HNK) = h* (HNK) = @(h; xk) = @(h * k).

To show that ¢ is onto. Suppose h xk,h, xk, € H* K, for h,h, € Hand k,k, € K.
Since (K,*) is a normal subgroup of (G,*), then

hilxk+h, € K.putk, = hilxk+*h; = h; xk, = k = h,.

‘P((h* k) * (hy * k1)) =@(h*hy xk*k;)

= (h*hy) x (HNK)

=(hx(HNK))® (hy* (HNK))
= @(h*hy) @ @k * ky)
Hence ¢ is a homorphism.
Forallh« (HNK)e H/HN K, forh € H,then p(h*xe) = h* (H N K).
Hence ¢ is onto.
By Theorem 10.1, we get H * K/kerp =H/H N K.
Now
kero ={thxk:h€H, keK; p(hxk)=HnNK}

={h+*k:h€H keK,hx(HNK)=HNK}

={hxk:heH keK;heHNnK}=K
Therefore H+*K/K =H/H N K.
Theorem 10.4. (Third Isomorphism Theorem)
If (H,*) and (K,*) are normal subgroups of the group (G,*) and (H,*) is a subgroup of
(K,*), then

1- (K/H,®) is a normal subgroup of the group (G/H,®) and
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6/n
K/H

Proof. 1- HW.

2- We prove the theorem by using Theorem 9.1, then so we define a function
¢:G/H—> G/Kbypx*H)=xx*K,forallx+*H € G/H.

We show that ¢ is well defined. Suppose that x x h,y « H € G/H, for x,y € G and

2- = G /K.

xxh=y«H=x1l+syeHCK=x1xyeK=x+K=yx*K.
Hence ¢(x x H) = @(y * H), that is ¢ is well defined.
Letx*h,y+*H € G/H, for x,y €G. Then
o((x*H) ® (v * H)) = ((x * y) x H)
= (x*y*K)
=(x*K)® (y *K)
= @(x*H) @ p(y * H)
Hence ¢ is a homomorphism.
It is clear by definition ¢ is onto.
By Theorem 10.1, we get G/H / ker ¢ = G /K.

Now

ker(pz{x*Hegzgo(x*H)zK}

{ el (x * K) K} { el eK} d
* H Y * H H

Therefore /2 ~ G/K.
K/H
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Solve the following Problems

Q1/ Determine whether the indicated function f is a homomorphism from the first group into
the second group. If f is a homomorphism, determine its kernel.

a) f:(R*.) — (R*.)defined by f(a) = a3, foralla € R*

b) f:(R,+) — (R, +) defined by f(a) = 3a, foralla € R.

) f:(Zs +e) — (Zs +sg) defined by f([a]) = [5a],

d) LetG = {a,a? a a* a® = e} be the cyclic group generated by a.
f:(Zs, +5) — G defined by f(n) = a", foralln € Zs.

LetG = {a,a? a3, ...,a'* = e} be acyclic group generated by a. Show that f : ¢ — G
defined by f(x) = x* forall x € G, isagroup homomorphism. Find Ker(f).

Q2/ Let G be an abelian group. Show that f : G — G defined by f(x) = x71, forallx € G,
IS an automorphism.

Q3/Let G = {1,—1} be agroup under multiplication. Show that f: (Z, +) — G defined by
1 if niseven

fm :{—1 if nisodd

is onto group homomorphism. Find Ker(f).
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QA4/ Let (G,*) be a finite commutative group. Let n € Z be such that n and |G| are relatively
prime. Show that the function f : G — G defined by f(a) = a™ foralla € Gisan
isomorphism of (G,*) onto (G,*).

Q5/ Let G be a group and A and B be normal subgroups of G such that A = B. Show by an
example that G/A % G/B.

QG6/ Consider two groups (Z,+) and (G,.) with G = {—1,1,—i,i} where i?> = —1. Show that
the mapping defined by f(n) = (=)™, for n € Z is a homomrphism from (Z,+) onto (G,*)
and determine ker f.

Q7/ Prove that every proper subgroup of a group of order p? (p aprime) is cyclic.

Q8/ show that (a) (Z,0/<5 >, Q) = (Zs, +5).
(b) BZ/9Z, @) = (Z3, +3).
Q9/ Let (G,*) = (G',°).
(@) If G is abelain group then so is G’.
(b) If G is cyclic group then so is G'.
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