Chapter one

Group theory

1. Basics

$\mathbb{N}=\{0,1,2,3,4 \ldots\}$. The set of natural numbers.
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ The set of all integers.
$\mathbb{Z}^{\#}$ - The set of nonnegative integers
$\mathbb{Q}=\left\{\frac{x}{y}, y \neq 0: x, y \in \mathbb{Z}\right\}$. The set of rational numbers
\mathbb{Q}^{+}- The set of positive rational numbers
\mathbb{Q}^{*} - The set of nonzero rational numbers.
$\operatorname{Irr}=\{\exists x$, s.t. $x>0$ and $x \notin \mathbb{Q}\}$. Some positive real numbers are irrational.
\mathbb{R} - The set of real numbers
\mathbb{R}^{+}- The set of positive real numbers
$\mathbb{R}^{*}=\{x \in \mathbb{R}, x \neq 0\}$. The set of nonzero real numbers
$\mathbb{C}=\{x+y i: x, y \in \mathbb{R}\}$. The set of complex numbers
$\mathbb{C}^{*}-$ The set of nonzero complex numbers

The order or cardinality of a set A will be denoted by $|A|$. If A is a finite set the order of A is simply the number of elements of A.

Definition 1.1.The Cartesian product of two sets A and B is collection

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

Definition 1.2. For any set X, the power set of X, written $P(X)$, is defined to be the set

$$
P(X)=\{A \mid A \text { is a subset of } X\} .
$$

Example. Let $X=\{1,2,3\}$. Then

$$
P(X)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

Here $P(X)$ has 2^{3} elements.

Definition 1.3. Principle of Well-Ordering: Every nonempty subset of $\mathbb{Z}^{\#}$ has a smallest (least) element, i.e., if $\emptyset \neq S \subseteq \mathbb{Z}^{\#}$, then there exists $x \in S$ such that $x \leq y$ for all $y \in S$.

Theorem 1.4. (Division Algorithm) Let $x, y \in Z$ with $y \neq 0$. Then there exist unique integers q and r such that $=q y+r, 0 \leq r<|y|$.

Definition 1.5

(i) An integer $p>1$ is called prime if the only divisors of p are ± 1 and $\pm p$.
(ii) Two integers x and y are called relatively prime if $\operatorname{gcd}(x, y)=1$.

We shall use the following notation for some common sets of numbers.

2. Groups

Definition 2.1. Let S be a nonempty set. Any function * from Cartesian product $S \times S$ to S called binary operation on S. Then for all $x, y \in S$ we shall write $*(x, y)$ as $x * y$. Examples.

1- Ordinary addition and multiplication is a binary operation.
2- Ordinary subtraction is a binary operation on the set of integers but not binary operation on the set of \mathbb{Z}^{+}.

3- The set of odd integers is binary operation under multiplication (.) but not binary operation under addition (+).

4- - Let A be a nonempty set and $P(A)$ be the set of all subsets of A (power set
of A). Then \cap and U are binary operations on $P(A)$.
Definition 2.2. A mathematical system is a nonempty set of elements together with one or more binary operations defined on this set.

Examples.

1- $(Z,+),(Z,),.(P(A), \cap)$ are Mathematical system.
2- $\left(n Z_{e},+,.\right)$ is Mathematical system but $\left(Z_{o},+,.\right)$ is not Mathematical system.
3- Let $S=\{1,-1, i,-i\}$, with $i^{2}=-1$ and (\cdot) is a multiplication operation defined on S . Then $(S,$.$) is a mathematical system.$

Definition 2.3. A group G consists of a set G together with a binary operation $*$ for which the following properties are satisfied:
(I) $(x * y) * z=x *(y * z)$ for all elements x, y and z of G (the Associative Law);
(II) there exists an element e of G (known as the identity element of G) such that $e * x=x=x * e$, for all elements x of G;
(III) for each element x of G there exists an element x^{\prime} of G (known as the inverse of x) such that $x * x^{\prime}=e=x^{\prime} * x$ (where e is the identity element of G).

The order $|G|$ of a finite group G is the number of elements of G.

Examples. 1- $(Z,+),(R,+),(R-\{0\},$.$) and \left(M_{n \times n}(R),+\right)$ are groups.
2- $(P(A), \Delta)$ is a group, but $(P(A), \cap)$ and $(P(A), U)$ are not groups.
Example. Let $S=\{a, b, c\}$. Let \bullet be the binary operation on S with the following composition table:

\bullet	a	b	c
a	b	c	a
b	a	c	a
c	b	b	c

Then it is not associative; for example $(a \bullet b) \bullet c=c \bullet c=c, a \bullet(b \bullet c)=a \bullet a=$ b.

Definition 2.4. A group G is called an abelian group (or commutative) if the binary operation of G is commutative $(x * y=y * x$ for all $x, y \in G)$.

Then \bullet is not commutative; for example above as $a \bullet b=c, b \bullet a=a$.

Examples.

1- Let a be any nonzero real number and consider the set G of integral multiples of a $G=\{n a \mid n \in Z\}$. Then $(G,+)$ is a commutative group.

2- Let $*$ be a binary operation defined of the set Q^{+}as follows:
$a * b=\frac{a . b}{3}$, for all $a, b \in Q^{+}$. Show that $\left(Q^{+}, *\right)$ is a commutative group.
3- Let $S=\mathbb{R}-\{-1\}$ and $*$ defined of S as follows:
$a * b=a+b+a b$, for all $a, b \in S$. Show that $(S, *)$ is a group.
4- Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ with

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1 \\
i . j=k, \quad j . k=i, \quad k . i=j \\
j . i=-k, \quad k . j=-1, \quad i . k=-j
\end{gathered}
$$

Then $\left(Q_{8},.\right)$ is not a commutative group and is said a quaternion group.

Definition 2.5. A Semigroup is a pair $(S, *)$ consisting of a nonempty set S together with an associative binary operation $*$ defined on S .

Example. $(P(A), \mathrm{n})$ and $(P(A), \mathrm{U})$ are semigroups for any set A.

SOLVED PROBLEMS:

Q1/Determine if the following sets G with the operation indicated form a group. If not, point out which of the group axioms fail.
(a) $\mathrm{G}=$ set of all integers, $a * b=a-b$.
(b) $\mathrm{G}=$ set of all integers, $a * b=a+b+a b$.
(c) $\mathrm{G}=$ set of nonnegative integers, $a * b=a+b$.
(e) $G=Z^{+}, a * b=\max \{a, b\}$,
(f) $G=Z \times Z,(a, b) *(e, d)=(a+e, b+d)$,
$(g) G=R^{\#} \times R^{\#},(a, b) *(e, d)=(a e+b d, a d+. b d)$.

Q2/ Let S be the set of all real numbers $\neq-1$, Define * on S by $a * b=a+b+a b$.
(a) Show that * gives a binary operation on S.
(b) Show that $(\mathrm{S}, *)$ is a group.
(c) Find the solution of the equation $2 * x * 3=7$ in S.

3- Elementary Properties of Groups.

Lemma 3.1.

1- A group G has exactly one identity element e satisfying $e * x=x=x * e$ for all $x \in G$.

2- An element x of a group G has exactly one inverse x^{-1}.
3- $\left(x^{-1}\right)^{-1}=x$, for all $x \in G$.
4- If $x, y \in G$, then $(x * y)^{-1}=y^{-1} * x^{-1}$.
5- The cancellation laws holds in that if $x * y=x * z$ or $\mathrm{y} * x=z * x$ implies $\mathrm{y}=z$.
Proof. (1) Suppose that $(G, *)$ has two identity elements e_{1} and e_{2}.
Since $e_{1} * a=a * e_{1}=a$ and $e_{2} * a=a * e_{2}=a$, for all a in G.
In particular if e_{1} is identity element, then $e_{1} * e_{2}=e_{2}$. But e_{2} is also identity element, so we have $e_{1} * e_{2}=e_{1}$. Thus we obtain $e_{1}=e_{1} * e_{2}=e_{2}$ and consequently $e_{1}=e_{2}$. That is if the group has an identity element, then there is a unique.
(5) Since $a \in G$, then there is $a^{-1} \in G$.

Multiplying the equation $a * b=a * c$ on the left side by a^{-1}, we obtain

$$
a^{-1} *(a * b)=a^{-1} *(a * c)
$$

The by (II), this becomes

$$
\left(a^{-1} * a\right) * b=\left(a^{-1} * a\right) * c
$$

Hence $e * b=e * c$, therefore $b=c$.

Theorem 3.2. The group ($G, *$) is abelian if and only if $(a * b)^{-1}=a^{-1} * b^{-1}$, for all $a, b \in G$.

Proof. Suppose that G is Abelain group. Hence by Theorem 3.1 part (4) we have $(a * b)^{-1}=b^{-1} * a^{-1}=a^{-1} * b^{-1}$.
Conversely, suppose that $(a * b)^{-1}=a^{-1} * b^{-1}$. Hence

$$
\begin{aligned}
(a * b)^{-1} *(b * a)= & \left(a^{-1} * b^{-1}\right) *(b * a) \\
& =a^{-1} *\left(b^{-1} * b\right) * a=a^{-1} * e * a=a^{-1} * a=e .
\end{aligned}
$$

That is we get $(a * b)^{-1} *(b * a)=e$, therefore $a * b=b * a$.

Corollary 3.3. The only solution of the group equation $x * x=x$ is $x=e$.

Definition 3.4. In any group ($G, *$), the integral powers of an element $x \in G$ are defined by

$$
\begin{aligned}
& x^{n}=x * x * \ldots * x \quad \text { (n-factors) } \\
& x^{0}=e \\
& x^{-n}=\underbrace{x^{-1} * x^{-1} * \ldots * x^{-1}}_{n-\text { times }}=\left(x^{-1}\right)^{n}, \quad \text { where } n \in \mathbb{Z}^{+} .
\end{aligned}
$$

Theorem 3.5. Let ($G, *$) be a group, $x \in G$ and $n, m \in \mathbb{Z}$. Then
1- $x^{n} * x^{m}=x^{n+m}=x^{m} * x^{n}$.
2- $\left(x^{n}\right)^{m}=x^{n m}=\left(x^{m}\right)^{n}$.
3- $x^{-n}=\left(x^{n}\right)^{-1}$,
4- $e^{n}=e$.

Remark. If additive notation is employed for an Abelain group then the notation ' x ' ' is replaced by ' $n x$ ' for all integers n and elements x of the group. Then the theorem 3.5 states that $(m+n) x=m x+n x$ and $(m n) x=m(n(x))$ for all integers m and n.

Solve the following problems

Q1/ If G is an abelian group, prove that $(a * b)^{n}=a^{n} * b^{n}$ for all integers n.
Q2/Let $(G,$.$) be a group such that (a * b)^{2}=a^{2} * b^{2}$ for every $a, b \in G$. Prove that the group is commutative.
Q3/ If G is a group in which $a^{2}=e$ for all $a \in G$, show that G is abelian.
Q4/ Let G be a group, and suppose that a and b are any elements of G. Show that $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$, for any positive integer n.

4. Integers Modulo n

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n, written $a \equiv b(\bmod n)$ if and only if $a-b=k n$ for some integer k or $(a-b)$ is divisible by n.
Examples $1-26 \equiv 2(\bmod 3) . \quad 2-15 \equiv 7(\bmod 2)$

$$
1-3 \not \equiv 2(\bmod 4) \quad 4--2 \equiv 6(\bmod 8)
$$

Theorem 4.2. Let n be a fixed positive integer and a, b are arbitrary integers. Then $a \equiv$ $b(\bmod n)$ if and only if a and b have the same remainder when divided by n.
Proof. Let $a \equiv b(\bmod n) \Rightarrow a-b=k n$ or $a=b+k n$ for some integer k, and let $b=q n+r$ when divided by n and r is remainder, $\quad 0 \leq r<n$.
Now $a=b+k n=q n+r+k n=(q+k) n+r$,
then a has the same remainder of b when divided by n.
Conversely, let $a=q_{1} n+r$ and $b=q_{2} n+r, q_{1}, q_{2} \in z,(0 \leq r<n)$.
Now $a-b=\left(q_{1} n+r\right)-\left(q_{2} n+r\right)=\left(q_{1}-q_{2}\right) n$
Therefore $a \equiv b(\bmod n)$.

Theorem 4.3. Let n be a fixed positive integer and a, b, c and d are arbitrary integers. Then:

1- $a \equiv a(\bmod n)$.
2- If $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.
3- If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
4- If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$ and $a . c \equiv b . d(\bmod n)$.

5- If $a \equiv b(\bmod n)$, then $a . c \equiv b . c(\bmod n)$.
6- If $a \equiv b(\bmod n)$, then $a^{k} \equiv b^{k}(\bmod n)$ for every positive integer k.
Proof. H.W.
Remark. The converse of part (5) is not true, for example $5.2 \equiv 1.2(\bmod 8)$ but $5 \equiv$ $1(\bmod 8)$.

Theorem 4.4. If $c a=a b(\bmod n)$ and c is relatively prime to n, then $a \equiv b(\bmod n)$. Proof. If $c a=c b(\bmod n)$, then $c(a-b)=k n$ for some integer k.
Since c is relatively prime to n, then n is not divide c. Thus n must divide $a-b$, that is $a \equiv b(\bmod n)$.

Definition 4.5. For an arbitrary integer a, let $[a]$ denote the set of all integer numbers congruent to a modulo n :

$$
[a]=\{x \in Z / x \equiv a(\bmod n)\}=\{x \in Z / x \equiv a+\text { kn for some integer } k\} .
$$

We call $[a]$ the congruence class modulo n determined by a, and a is a representative of this class.

Examples.

$$
1-Z_{n}=\{[1],[2], \ldots,[n-1]\} .
$$

$$
\begin{aligned}
& \text { 2- If } n=3 \text {, then }[0]=\{x \in Z / x \equiv 0(\bmod 3)\} \\
& =\{x \in Z / x=3 k, \text { for some } k \in Z\} \\
& =\{\ldots,-6,-3,0,3,6, \ldots\}=[3]=[6]=[-3] \\
& {[1]=\{x \in Z / x \equiv 1(\bmod 3)\}} \\
& =\{x \in Z / x=1+3 k, \text { for some } k \in Z\} \\
& =\{\ldots,-8,-5,-2,1,4,7, \ldots\}
\end{aligned}
$$

We see that every integer lies in one of these classes. Integers in the same congruence class are congruent modulo 3 , while integers in different classes are incongruent modulo 3.

Remark. We select the smallest nonnegative integer for each congruence class to represent it.

Theorem 4.6. Let n be a positive integer and Z_{n} be as defined above. Then:
1- For each $[a] \in Z_{n},[a] \neq \varnothing$.
2 - If $[a] \in Z_{n}$ and $b \in[a]$, then $[a]=[b]$.
3- For any $[a],[b] \in Z_{n}$ such that $[a] \neq[b]$, then $[a] \cap[b]=\emptyset$..
$4-\cup\{[a], a \in Z\}=Z$.

Proof.

Theorem 4.7. For each positive integer n, the mathematical system $\left(Z_{n},+_{n}\right)$ forms a commutative group. Known as the group of integers modulo n.

Proof. (1) A binary operation $+_{n}$ may be defined on Z_{n} as follows:
For each $[a],[b] \in Z_{n}$, let $[a]+_{n}[b]=[a+b]$.
To prove that $+_{n}$ is well defined
Let $[a]=[b]$ and $[c]=[d]$.
Now $a \in[a]=[b]$ and $c \in[c]=[d]$
$\Rightarrow a \equiv b(\bmod n)$ and $c \equiv d(\bmod n) \Rightarrow(a+c)=(b+d)(\bmod n) \Rightarrow a+c \in[b+d]$ $\Rightarrow[a+c]=[b+d]$ or $[a]+_{n}[c]=[b]+_{n}[d]$

Thus the operation $+_{n}$ is well defined.
(2) If $[a],[b],[c] \in Z_{n}$, then

$$
\begin{aligned}
{[a]+{ }_{n}\left([b]++_{n}[c]\right)=} & {[a]+_{n}[b+c]=[a+(b+c)] } \\
& =[(a+b)+c]=[a+b]+{ }_{n}[c]=\left([a]+{ }_{n}[b]\right)+_{n}[c] .
\end{aligned}
$$

(3) By definition of ${ }_{n}$, its clear that [0] is the identity element.
(4) If $[a] \in Z_{n}$, then $[n-a] \in Z_{n}$, and $[a]+{ }_{n}[n-a]=[a+(n-a)]=[n]=[0]$, so that $[a]^{-1}=[n-a]$.
(5) For any $[a],[b] \in Z_{n},[a]+_{n}[b]=[a+b]=[b+a]=[b]+{ }_{n}[a]$.

Therefore $\left(Z_{n},+_{n}\right)$ is a commutative group.

Example. $Z_{9}=\{[0],[1],[2],[3],[4],[5],[6],[7],[8]\}$

$$
[1]^{-1}=[8],[5]^{-1}=[4],[6]^{-1}=[3] .
$$

Remark. For simplicity, we often write $Z_{n}=\{0,1,2, \ldots, n-1\}$.
Definition 4.8. Let n be a fixed positive integer. Consider Z_{n} Let ${ }_{. n}$ be define on Z_{n} by for all $[a],[b] \in Z_{n}$

$$
[a]_{\cdot n}[b]=[a b] .
$$

$\left(Z_{n}, \cdot n\right)$ is a mathematical system.
$Z_{n}^{\times}=\{$the set of all multiplicative inverse elements $\}$.

Example. Find $Z_{9}^{\times}=\{1,2,4,5,7,8\}$, since $1.91=1,2.95=1,4.97=1,8.98=1$.

Solve the following problems

Q1/ Prove that if $a \equiv b(\bmod n)$, then $c a \equiv c b(\bmod c n)$.

Q2/ Find all solutions x, where $0 \leq x<15$, of the equation $3 x \equiv 6(\bmod 15)$.
Q3/ Prove that $6^{n} \equiv 6(\bmod 10)$ for any $n \in Z^{+}$.
Q4/ For any integer n, prove that either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
Q5/ Suppose $a^{2} \equiv b^{2}(\bmod n)$, w here n is aprime number. Prove that either $a \equiv b(\bmod n)$, or $a \equiv-b(\bmod n)$.

Q6/ Find the multiplicative inverse of each nonzero element of Z_{9}.
Q7/ In Z_{18} find all units (list the multiplicative inverse) .
Q8/ Write out multiplication tables for the set Z_{15}^{\times}.

5. Permutation groups.

Definition 5.1. A permutation of a set A is a function from A into A that is both one-toone and onto itself.

Example. The function $f(x)=x+1$ is a permutation of the set \mathbb{Z}.
Let $A=\{1,2\}$, the there are four functions from A to A, which are

Thus $\operatorname{Map}(A)=\left\{\boldsymbol{f}_{\mathbf{1}}, \boldsymbol{f}_{\mathbf{2}}, \boldsymbol{f}_{\mathbf{3}}, \boldsymbol{f}_{\mathbf{4}}\right\}$. Is $\operatorname{Map}(A)$ a group with respect to composition of functions?
f_{1} and f_{4} are onto and one to one function(bijections) but the f_{2} and f_{3} are neither Injective (onto) nor surjective (one to one).

Remark. The set of all permutations of the set A will be denoted by the symbol S_{A} For any positive integer n, the symmetric group on the set $\{1,2,3, \ldots, n\}$ is
called the symmetric group on n elements, and is denoted by S_{n}

Suppose that $A=\{1,2, \ldots, n\}$
For any $f \in S_{n}, f=\{(1, f(1)),(2, f(2)), \ldots,(n, f(n))\}$. Also we can represent f in

$$
f=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
f(1) & f(2) & \ldots & f(n)
\end{array}\right)
$$

For example if $A=\{1,2,3,4,5\}$ and

$$
\begin{array}{r}
f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 5 & 3 & 1
\end{array}\right) \text { and } g=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 2 & 1
\end{array}\right) \text {, then } \\
g_{\circ} f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 1 & 4 & 3
\end{array}\right)
\end{array}
$$

Theorem 5.2. Let A be a nonempty set. Then $(\operatorname{Sym}(A), o)$ is a group (called symmetric group of the set A).
Proof. Clearly if $f, g \in \operatorname{Sym}(A)$, then $f \circ g \in \operatorname{Sym}(A)$. hence $\operatorname{Sym}(A)$ is closed under o.

For $f, g, h \in \operatorname{Sym}(A)$, we show that $(f o g) \mathrm{oh}=f \mathrm{o}(g o h)$.

$$
(f \circ g) \circ h(x)=(f \circ g)(h(x))=f(g(h(x)))=f(g \circ h(x))=f \circ(\operatorname{goh})(x) .
$$

I. Hence (I) is satisfied.

The identity map I_{A} is a permutation of the set A and is identity element such that $f \circ I_{A}=I_{A} \circ f=f$. Therefore (II) is satisfied.

For proving S_{A} has an inverse, suppose that $f \in \operatorname{Sym}(A)$, that is f is one to one and onto function. Therefore f^{-1} is also one to one and onto function, hence $f^{-1} \in$ $\operatorname{Sym}(A)$ such that $f^{-1}{ }_{\mathrm{o}} f=f_{\mathrm{o}} f^{-1}=I_{A}$. Thus (III) is satisfied. Hence $(\operatorname{Sym}(A), \mathrm{o})$.

Remark. The set of all permutations of the set $N=\{1,2,3, \ldots, \mathrm{n}\}$ will be denoted by the symbol S_{n} and S_{n} contains n ! distinct elements.

Example. Let $A=\{1,2,3\}$. Then there are $3!=6$ permutations in S_{3}, namely
$i=f_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right), \quad f_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right), \quad f_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$

$$
f_{4}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \quad f_{5}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \quad f_{6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

0	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
f_{1}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}
f_{2}	f_{2}	f_{3}	f_{1}	f_{6}	f_{4}	f_{5}
f_{3}	f_{3}	f_{1}	f_{2}	f_{5}	f_{6}	f_{4}
f_{4}	f_{4}	f_{5}	f_{6}	f_{1}	f_{2}	f_{3}
f_{5}	f_{5}	f_{6}	f_{4}	f_{3}	f_{1}	f_{2}
f_{6}	f_{6}	f_{4}	f_{5}	f_{2}	f_{3}	f_{1}

Note that $f_{2} \mathrm{o} f_{4}=f_{6}, \quad$ and $f_{4} \circ f_{2}=f_{3}$ as the table above, we get (S_{3}, o) forms a group as the symmetric group on n symbols, which is non commutative for $n \geq 3$...

Definition 5.3. A permutation f of a set A is a cycle of length \boldsymbol{k} if there exist $n_{1}, n_{2}, \ldots, n_{k} \in A$ such that

$$
\begin{aligned}
& \quad f\left(n_{i}\right)=n_{n+1}, \text { for all } 1 \leq i \leq k-1, \\
& f\left(n_{k}\right)=n_{1} \text { and } \\
& f(m)=m, \text { for all } m \in A \text { but } m \notin\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} .
\end{aligned}
$$

We write $f=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

Example . In ($S_{6}, 0$), if we have
$f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 2 & 6 & 1\end{array}\right)=\left(\begin{array}{llllll}1 & 3 & 4 & 2 & 5 & 6\end{array}\right)$ and the inverse of f is

$$
f^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 4 & 1 & 3 & 2 & 5
\end{array}\right)
$$

Theorem 5.4. Every permutation can be written as a product of disjoint cycles.

Two cycles $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$ are said to be disjoint if $a_{i} \neq b_{j}$ for all i, j.

Example. Let

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 7 & 1 & 4 & 8 & 2 & 6 & 3
\end{array}\right)
$$

$1 \rightarrow 5 \rightarrow 8 \rightarrow 3 \rightarrow 1$. Therefore σ contains the cycle (1583).
$2 \rightarrow 7 \rightarrow 6 \rightarrow 2$. Therefore σ contains the cycle (276),
Note that the cycles (1583) and (276) are disjoint, and σ contains the product (or composition) (1 583)(276).

Definition 5.5. A cycle of length two is called transposition.
In the example above $\left(S_{3}, o\right), f_{4}, f_{5}$ and f_{6} are transpositions.
Lemma 5.6. Every permutation can be written a product of transpositions.

That is mean $f=\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\left(f=\left(n_{1}, n_{k}\right)\left(n_{1}, n_{k-1}\right) \ldots\left(n_{1}, n_{2}\right)\right.$

Example. In $\left(S_{3}, o\right), f_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$
Note that these transpositions are not disjoint and so they don't have to commute. Since $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) \neq\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$

Definition 5.7. A permutation of a finite set is even if it can be written as a product of even number of transpositions, and is odd if it can be written as a product of odd number of transpositions.
For example $\left.S_{3}=\left\{\begin{array}{lll}i,(1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$, then
$i,\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$ are even transpositions however $\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\left(\begin{array}{ll}1 & 3\end{array}\right)$ are odd transpositions.

Theorem 5.8. Every permutation in S_{n} can be written as a product of either an even number of transpositions, or an odd number of transpositions but not both.

Definition 5.9. All even permutations is called alternating group and denoted by A_{n}. i.e $A_{n}=\left\{\sigma \in S_{n}: \sigma\right.$ is even $\}$.

Theorem 5.10. If $n \geq 2$, the collection of all even permutations of $\{1,2, \ldots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_{n}.

For example $\left|S_{3}\right|=3!=6$, then $\left|A_{3}\right|=\frac{3!}{2}=\frac{6}{2}=3$.

Solve the following problems:

Q1/ Determine whether the given function is a permutation of R.
1- $f: R \rightarrow R$ defined by $f(x)=x+l$.
2- $f: R \rightarrow R$ defined by $f(x)=x^{2}$.
3- $f: R \rightarrow R$ defined by $f(x)=-x^{3}$.

Q2/ Find the number of elements in the set $\left\{\delta \in S_{4} \mid \delta(3)=3\right\}$.
Q3/ Express the permutation of $\{1,2,3,4,5,6,7,8\}$ as a product of disjoint cycles, and then as a product of transpositions. If

$$
\gamma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 5 & 6 & 4 & 7 & 8 & 3 & 1
\end{array}\right), \quad \delta=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 1 & 7 & 3 & 8 & 6 & 5 & 4
\end{array}\right) .
$$

Q4/ What is the order of the cycle ($\left.\begin{array}{lllll}1 & 2 & 8 & 5 & 7\end{array}\right)$?
Q5/ Consider the three permutation in S_{6}
$\gamma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 5 & 6 & 1\end{array}\right), \quad \delta=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 5 & 2 & 6\end{array}\right), \lambda=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 6 & 1 & 5\end{array}\right)$
Compute
(a) $\gamma \delta$
(b) $\gamma \delta^{2}$
(c) $\gamma^{2} \lambda$
(d) λ^{100}
(e) $(\gamma \lambda)^{-1}$

Q6/ Compute the order of $\tau=\left(\begin{array}{ccccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 2 & 10 & 4 & 6 & 8 & 9 & 11 & 1 & 3 & 7\end{array}\right)$. For $\sigma=\left(\begin{array}{ll}2 & 10\end{array}\right)$, compute the order of $\sigma \tau \sigma^{-1}$. Is τ an even permutation or an odd permutation?

6. Cyclic group.

Definition 6.1. Let $(G, *)$ be a group. Then G is said to be cyclic group if there exists an element $a \in G$ such that every element of G is of the form a^{n} for some integer n. Such an element a is called a generator of the group and written as

$$
G=<a>=\left\{a^{n} \mid n \in Z\right\} .
$$

Examples.

1- $(Z,+)$ is cyclic group generated by 1 and -1 . Then $Z=\langle 1\rangle=\langle-1\rangle$
$2-(Q,+)$ is not cyclic group.
3- If $G=\{1,-1, i,-i\}$, where $i^{2}=-1$, then $(G,$.$) is a cyclic group generated by i$ and $-i$ and $G=\langle i\rangle=\langle-i\rangle$.

4- $\left(Z_{5},+_{5}\right)$ is a cyclic group and $Z_{5}=\langle 1\rangle=\langle 2\rangle=\langle 3\rangle=\langle 4\rangle$.

Remark. In $\left(Z_{n},+_{n}\right)$, if n is prime, then every elements is generator except 0 .

Definition 6.2. If $(G, *)$ is a finite group, then the $\boldsymbol{o r d e r} \boldsymbol{\operatorname { f o f }}(\boldsymbol{G}, *)$ is the number of elements in G and denoted by $|G|$ or $o(G)$ and if G is infinite, then we say G has an infinite order.

Definition 6.3. Let $(G, *)$ be a group. Then the order of an element \boldsymbol{a} in G is the least positive integer n such that $a^{n}=e$, where e is the identity element of G, and denoted by $o(a)=n$.
Example. $\left(\mathrm{Z}_{8},+_{8}\right)$, Then $o\left(\mathrm{Z}_{8}\right)=8$ and $o(2)=4$ where $2 \in \mathrm{Z}_{8}$.

Lemma 6.4. Let $(G, *)$ be a group and $a, b \in G$ has a finite order. Then
1- $o(a)=o\left(a^{-1}\right)$
2- $o(a)=o\left(b * a * b^{-1}\right)$.
Proof. 1- if $o(a)=n$, then by Theorem 3.5 we have
$\left(a^{-1}\right)^{n}=a^{-n}=\left(a^{n}\right)^{-1}=e^{-1}=e$
Suppose that m be a least positive integer satisfyies $\left(a^{-1}\right)^{m}=e$, then

$$
a^{m}=\left(a^{-1}\right)^{-m}=\left(\left(a^{-1}\right)^{m}\right)^{-1}=e^{-1}=e .
$$

Which is contradiction for $o(a)=n$, for a lest positive integer n such that $\left(a^{-1}\right)^{n}=e$, hence $o\left(a^{-1}\right)=n$.

2-H.W.

Example.

2- In a group $\left(Q_{8},.\right)$, we find $(-1)^{2}=1$ and $o(-1)=2$ but $(-1) \neq 1$.
3 - In $(Z,+), O(1)$ is infinite since $1 \neq 0,1+1 \neq 0,1+1+1 \neq 0, \ldots$ i.e $1+1+1=1^{3}$.

Theorem 6.5. Every cyclic group is abelian.
Proof. Let $(G, *)$ be a cyclic group generated by an element a. That is $G=\langle a\rangle=\left\{a^{n}: n \in Z\right\}$.

Let x, y be any two elements of G, then there exist integers n and m such that $x=a^{n}$ and $y=a^{m}$. Then

$$
x * y=a^{n} * a^{m}=a^{n+m}=a^{m+n}=a^{m} * a^{n}=y * x .
$$

Therefore ($G, *$) is abelian group.

Definition 6.6. Let $(G, *)$ and (H, \bullet) be two groups,

$$
G \times H=\{(g, h): g \in G \text { and } h \in H\}
$$

For all $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right) \in G \times H$, then

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} \cdot h_{2}\right) \in G \times H
$$

H.w. Prove that $(G \times H,$.$) is a group.$

Example. describe the direct product of $\left(Z_{2,}+_{2}\right)$ and $\left(Z_{3,}+_{3}\right)$.

Solve the following problems

Q1/ If (G, *) be a group and let x be an element of G of order 20. Find $o\left(x^{4}\right), o\left(x^{7}\right), o\left(x^{11}\right)$.
Q2/ Find the order of the elements
a- $(2,2)$ in $Z_{12} \times Z_{4}$
b- ([1], (12))in $Z_{2} \times S_{4}$.
Q3/ Give an example of a group with the property described, or explain why no example exists.
a. A finite group that is not cyclic
b. An infinite group that is not cyclic
c. A cyclic group having only one generator
d. An infinite cyclic group having two generators
e. A finite cyclic group having four generators .
f. A nonabelian cyclic group.

Q4/ List the generators of Z_{12}.
Q5/ Show that Q^{+}is not a cyclic group.
Q6/ Let $G=\{a, b, c, d\}$ be a group. Complete the following Cayley table for this group.

$*$	a	b	c	d
a				
b				
c			b	
d		b		

7. Subgroups.

Definition 7.1. Let $(G, *)$ e a group and H be a nonempty subset of G. The pair $(H, *)$ is said to be a subgroup of $(G, *)$ if $(H, *)$ is itself a group.

Example.

(1) $\left(Z_{e},+\right)$ and $(n Z,+)$ are a subgroup of $(Z,+)$.
(2) $(Q-\{0\},$.$) is a subgroup of (R-\{0\},$.$) .$
(3) Let $G=\{e, a, b, c\}$ with $a^{2}=b^{2}=c^{2}=e$ and $a \cdot b=b . a=c, a . c=c \cdot a=b$ and $b . c=c . b=a$. The pair $(\mathrm{G},$.$) is a group, known as Klein's four-group.$

Remarks.

1- The binary operation on the subgroup H must be the same binary operation on the group G.

2- Any group has at least two subgroups, ($\{e\}, *$) the identity element e of the group, and the group itself are called trivial subgroups. The other subgroups called proper subgroups.

Example. R^{*} is a subset of R and both are groups. But R^{*} is not a subgroup of R, since the operation that makes R^{*} a group is multiplication and the operation that makes R a group is addition.

Theorem 7.2. Let $(G, *)$ be a group and $\emptyset \neq H \subseteq G$. Then $(H, *)$ is a subgroup of $(G, *)$ if and only if $a, b \in H$ implies $a * b^{-1} \in H$.

Proof. If $(H, *)$ is a subgroup of $(G, *)$ and $a, b \in H$, then $b^{-1} \in H$ and so by the closure condition $a * b^{-1} \in H$

Conversely, suppose $a * b^{-1} \in H$ for all $a, b \in H$ and H is a nonempty subset of G, then H contains at least one element let b,

1- We take $a=b$ to see $a * a^{-1} \in H$ that is $e \in H$.
2- Since $b \in H$ and by (1) $e \in H$ implies that $b^{-1}=e * b^{-1} \in H$.
3- If $a, b \in H$, then by (2) we have $b^{-1} \in H$, so that $a * b=a *\left(b^{-1}\right)^{-1} \in H$, hence H is closed with respect to the operation *.

4- Since * is an associative operation in G and $a, b, c \in H \subseteq G$, therefore H satisfied the associative law as a subset of G.
Then $(H, *)$ is a subgroup of $(G, *)$.

Example.

1- Let $(G,)=.(Z \times Z,$.$) be a group and H=\{(a, a): a \in Z\}$. Show that $(H,$.$) be a subgroup of (G,$.$) .$
2- $\operatorname{Let}\left(G l_{2}(R),.\right)$ be a group and $H=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G l_{2}(R): a d-b c=1\right\} \subseteq G l_{2}(R)$.
Show that $(H,$.$) be a subgroup of \left(G l_{2}(R),.\right)$.

Definition 6.3. The center of a group $(G, *)$, denoted by $\operatorname{cent}(G)$ or $Z(G)$ is the set $\operatorname{cent}(G)=\{c \in G: \quad(c * x=x * c$ for all $x \in G\}$.
Remark. The group $(G, *)$ is commutative if and only if $\operatorname{cent}(G)=G$.

Examples.(1) In the group $\left(Q_{8},.\right), \operatorname{cent}\left(Q_{8}\right)=\{1,-1\}$.
(1) Klien's four-group
(2) $\left(S_{3} \cdot \bullet\right)$
(3) $\left(G l_{2}(R),.\right)$

Theorem 7.4. Let $(G, *)$ be a group. Then $(\operatorname{cent}(G), *)$ is a subgroup of the group $(G, *)$.
Proof. Since $e \in \operatorname{cent}(G)$, then $\operatorname{cent}(G) \neq \emptyset$.
Consider any two elements $a, b \in \operatorname{cent}(G)$, we must prove that $a * b^{-1} \in \operatorname{cent}(G)$.
We know for all $x \in G$, we have

$$
\begin{aligned}
\left(a * b^{-1}\right) * x & =a *\left(b^{-1} * x\right)=a *\left(x * b^{-1}\right)=(a * x) * b^{-1}=(x * a) * b^{-1} \\
& =x *\left(a * b^{-1}\right)
\end{aligned}
$$

which implies $a * b^{-1} \in \operatorname{cent}(G)$. Then by Theorem 7.2 we get $(\operatorname{cent}(G), *)$ is a subgroup of $(G, *)$.

Theorem 7.5. If $\left(H_{1}, *\right)$ and $\left(H_{2}, *\right)$ are two subgroups of the group $(G, *)$, then $\left(H_{1} \cap H_{2}, *\right)$ is also a subgroup of ($G, *$).
Proof. Since the sets H_{1} and H_{2} contains the identity element of $(G, *)$, the intersection $H_{1} \cap H_{2} \neq \emptyset$.
Now suppose that a and b are any two elements of $H_{1} \cap H_{2}$, then $a, b \in H_{1}$ and $a, b \in$ H_{2}. Since $\left(H_{1}, *\right)$ and $\left(H_{2}, *\right)$ are subgroups, it follows that $a * b^{-1} \in H_{1}$ and $a * b^{-1} \in H_{2}$, then $a * b^{-1} \in H_{1} \cap H_{2}$, which implies $\left(H_{1} \cap H_{2}, *\right)$ is a subgroup of $(G, *)$.

Remark.(1) If $\left(H_{i}, *\right)$ is an arbitrary indexed collection of subgroups of the group ($G, *$), then $\left(\cap H_{i}, *\right)$ is also a subgroup of $(G, *)$.
(2) The union of two subgroups $\left(H_{1}, *\right)$ and $\left(H_{2}, *\right)$ of the group $(G, *)$ need not be subgroup of $(G, *)$.

For example. $\left(\{0,6\},+_{12}\right)$ and $\left(\{0,4,8\},{ }_{12}\right)$ are two subgroups of the group $\left(Z_{12},+_{12}\right)$, then the union is $\left(\{0,4,6,8\},+_{12}\right)$ is not subgroup of $\left(Z_{12},+_{12}\right)$.

Theorem 7.6. Let $\left(H_{1}, *\right)$ and $\left(H_{2}, *\right)$ be two subgroups of the group ($G, *$). Then $\left(H_{1} \cup H_{2}, *\right)$ is a subgroup of $(G, *)$ iff $H_{1} \subseteq H_{2}$ or $H_{2} \subseteq H_{1}$.

Proof. Suppose that $H_{1} \subseteq H_{2}$ or $H_{2} \subseteq H_{1}$, then $H_{1} \cup H_{2}=H_{2}$ or $H_{1} \cup H_{2}=H_{1}$.
Since H_{1} and H_{2} are subgroups, then $H_{1} \cup H_{2}$ is a subgroup of G.
Conversely, suppose that $\left(H_{1} \cup H_{2}, *\right)$ is a subgroup of $(G, *)$ such that $H_{1} \not \subset H_{2}$ and $H_{2} \not \subset H_{1}$, then there exists an elements a and b such that $a \in H_{1}-H_{2}$ and $b \in H_{2}-H_{1}$.

Since $H_{1} \cup H_{2}$ is a subgroup of G, then $a * b^{-1} \in H_{1} \cup H_{2}$
$\Rightarrow a * b^{-1} \in H_{1}$ or $a * b^{-1} \in H_{2}$
Suppose $* b^{-1} \in H_{2} \Rightarrow a=a * b^{-1} * b \in H_{2}$, which is contradiction, and if $a * b^{-1} \in H_{1}$
$\Rightarrow b^{-1}=a^{-1} * a * b^{-1} \in H_{1} \Rightarrow \mathrm{~b} \in \mathrm{H}$, which is contradiction. Then either $H_{1} \subseteq H_{2}$ or $H_{2} \subseteq H_{1}$.

Remark. Let ($H_{i}, *$) be an indexed collection of subgroups of the group ($G, *$. Suppose the family of subsets $\left\{\mathrm{H}_{\mathrm{i}}\right\}$ has the property that for any two of its members H_{i} and H_{j} there exists a set H_{k} (depending on i and j) in $\left\{H_{i}\right\}$ such that $H_{i} \subseteq H_{k}$ and $H_{j} \subseteq H_{k}$. Then $\left(\cup H_{i}, *\right)$ is also a subgroup of $(G, *)$.

Definition 7.7. If $(G, *)$ is an arbitrary group and $\emptyset \neq S \subseteq G$, then the symbol (S) will represent the set

$$
(S)=\cap\{H \mid S \subseteq H ;(H, *) \text { is a subgroup of }(G, *)\}
$$

Theorem 7.8 . The pair $((S), *)$ is a subgroup of $(G, *)$, known the subgroup generated by the set S.

Definition 7.9 Let $(G, *)$ be a group and a be an element in G. Then a cyclic subgroup $((a), *)$ is called a subgroup generated by an element a.

Example. In $\left(Z_{4},+_{4}\right)$ a subgroup generated by 2 is $([2])=\{[0],[2]\}$

Theorem 7.10. Every subgroup of cyclic group is cyclic.
Proof. Let $(G, *)$ be a cyclic group generated by the element a and let $(H, *)$ be a subgroup of $(G, *)$.

If $H=\{e\}$, then $H=<e>$ is cyclic.
If $H \neq\{e\}$, then there exist $x \in H$ such that $x=a^{m}$ for some $m \in Z$.

If $a^{m} \in H$, where $m \neq 0$, then $a^{-m} \in H$, hence H must contains positive powers of a. Let n be the smallest positive integer such that $a^{n} \in H$.
we must to show that $H=\left(a^{n}\right)$.
Let $a^{k} \in H \Rightarrow\left(a^{k}\right)^{n} \in H$, for all $k \in Z$, therefore $\left(a^{n}\right) \subseteq H$.
By the Division Algorithm there exist integers q and r for which
$k=n q+r, 0 \leq r<n$.
Since both $a^{n}, a^{k} \in H$, and $r=k-n q$, therefore $x^{r}=x^{k-n q} \in H$
If $\mathrm{r}>0$, we have contradiction to the assumption that a^{n} is a minimal positive power of a in H. Accordingly $r=0$ and $k=n q \Rightarrow a^{k}=\left(a^{n}\right)^{q} \in\left(a^{n}\right)$.
$H \subseteq\left(a^{n}\right)$. Consequently $H=\left(a^{n}\right)$.

Examples Let $\left(Z_{n},+_{n}\right)$ is cyclic group generated by $\left.<1\right\rangle$. Then every subgroups are cyclic.

Definition 7.11. Let $(G, *)$ be a group and H, K be nonempty subsets of G. The product of H and K is the set $H * K=\{h * k: h \in H, k \in K\}$.

Example.

1- Let $\left(Z_{8},+_{8}\right), H=\{1,5\}$ and $K=\{2,4,6\}$. Then

$$
H+_{8} K=\left\{1+{ }_{8} 2,1+{ }_{8} 4,1+{ }_{8} 6,5+_{8} 2,5+_{8} 4,5+{ }_{8} 6\right\}=\{3,5,7,1\} .
$$

Hence $\left(H+_{8} K,+_{8}\right)$ is not a subgroup of $\left(Z_{8},+_{8}\right)$.
2- Let $\left(S_{3}, \bullet\right), H=\left\{i,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$ and $K=\{i,(13)\}$. Then

$$
H \bullet K=\left\{i \bullet i, i \bullet(1 \quad 3),\left(\begin{array}{ll}
1 & 2
\end{array}\right) \bullet i,(12) \cdot\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\}=\left\{i,\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\}
$$

Hence $(H \bullet K, \bullet)$ is not a subgroup of $\left(S_{3}, \bullet\right)$.

Theorem 7.12. If $(H, *)$ and $(K, *)$ are subgroups of the group $(G, *)$ such that $H * K=$ $K * H$, then $(H * K, *)$ is a subgroup of $(G, *)$.

Proof. Note that $H * K=K * H$ is not mean $h * k=k * h$, for all $h \in H$ and $k \in K$, but it means for all $h \in H$ and $k \in K$, there exist $h_{1} \in H$ and $k_{1} \in K$ such that $h * k=$ $k_{1} * h_{1}$.
Since $e \in H$ and $e \in K$, then $e=e * e \in H * K$, hence $H * K \neq \emptyset$. Let $x, y \in H * K$.
We must to show that $x * y^{-1} \in H * K$.
Now let $x=h_{1} * k_{1}$ and $y=h_{2} * k_{2}$, where $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Hence

$$
\left.x * y^{-1}=\left(h_{1} * k_{1}\right) *\left(h_{2} * k_{2}\right)^{-1}=\left(h_{1} * k_{1}\right) *\left(k_{2}^{-1} * h_{2}^{-1}\right)=h_{1} *\left(k_{1} * k_{2}^{-1}\right) * h_{2}^{-1}\right)
$$

Since $(K, *)$ is a subgroup of $(G, *)$, then $k_{1}^{-1} * k_{2}^{-1} \in K$ and therefore

$$
k_{1} * k_{2}^{-1} * h_{2}^{-1} \in K * H \text { and } K * H=H * K,
$$

then there exist elements $h \in H$ and $k \in K$ such that $k_{1} * k_{2}^{-1} * h_{2}^{-1}=h * k$, we conclude that $x * y^{-1}=h_{1} *(h * k)=\left(h_{1} * h\right) * k \in H * K$.

Hence $(H * K, *)$ is a subgroup of $(G, *)$.

Corollary 7.13. If $(H, *)$ and $(K, *)$ are subgroups of the commutative group $(G, *)$, then $(H * K, *)$ is a subgroup of $(G, *)$.

Solve the following

Q1/ Find all cyclic subgroups of Z_{15}.

Q2/ Find all cyclic subgroups of Z_{20}^{\times}.
Q3/ Let G be an abelian group, and let n be a fixed positive integer. Show that

$$
N=\left\{g \in G \mid g=a^{n} \text { for some } a \in G\right\} \text { is a subgroup of } G .
$$

Q4/ If G is an abelian group and if $H=\left\{a \in G \mid a^{2}=e\right\}$, show that H is a subgroup of G . Give an example of a nonabelian group for which the H is not a subgroup.

Q5/ In the group of symmetries of the equilateral triangle, find:
a) all subgroups.
b) The center of the group .

Q6/ list the elements of the subgroup generated by the given subset.

1. The subset $\{2,4\}$ of Z_{12}
2. The subset $\{2,6\}$ of Z_{12}
3. The subset $\{6,12\}$ of Z_{18}
4. The subset $\{15,30\}$ of Z_{36}.

Q7/ Let $(\mathrm{H}, *)$ be a subgroup of f the group ($\mathrm{G},{ }^{*}$) and the set $\mathrm{N}(\mathrm{H})$ be defined by $N(H)=\left\{a \in G: a * H * a^{-1}=H\right\}$. Prove that the pair $\left(\mathrm{N}(\mathrm{H}),{ }^{*}\right)$ is a subgroup of $(\mathrm{G}, *)$, called the normalize of H in G .

Q8/ Let G be a group, with subgroup H. Show that $K=\{(x, x) \in G \times G \mid x \in H\}$ is a subgroup of $G \times G$.

Q9/ In Z_{20}, find the order of the subgroup <16>; find the order of $\langle 14\rangle$.
Q10/ Let $(M(\mathbb{R}), \oplus)$ be a group of all real continuous functions over R and let $F=\{f \in M(\mathbb{R}): f$ is differentiable $\}$ and $h=\{f \in M(\mathbb{R}): f(1)=0\}$. Show that (H, \oplus) is subgroup of the group $(M(\mathbb{R}), \oplus)$.

8. Cosets and Lagrange's Theorem

Definition 8.1. Let $(H, *)$ be a subgroup of the group ($G, *$) and let $a \in G$. The set $a * H=\{a * h: h \in H\}$ is called left coset of H in G. The element a is representative of $a * H$ and $H * a=\{h * a: h \in H\}$ is called a right coset of H in G.

Remark. If e is the identity element of $(G, *)$, then $e * H=\{e * h: h \in H\}=\{h: h \in H\}=H$. That is H itself is a left coset of H.

Example. Let $\left(Z_{10},+_{10}\right)$ be a group and $H=\{0,5\}$ be a subgroup of $\left(Z_{10},+_{10}\right)$.

$$
\begin{gathered}
1+_{10} H=\{1,6\}, \quad 2+_{10} H=\{2,7\}, \quad 3+_{10} H=\{3,8\}, \quad 4+_{10} H=\{4,9\}, 5+_{10} H=\{5,0\} \\
6+{ }_{10} H=\{1,6\}, \quad 7+{ }_{10} H=\{2,7\}, \quad 8+_{10} H=\{3,8\}, \quad 9+{ }_{10} H=\{4,9\} .
\end{gathered}
$$

There are only five distinct cosets.

Theorem 8.2. If $(H, *)$ is a subgroup of the group $(G, *)$, then $a * H=H$ if and only if $a \in H$.

Proof. Suppose that $a * H=H$. Since $e \in H$, then $a=a * e \in a * H=H \Rightarrow a \in H$. Conversely, suppose that $a \in H$. Since H is closed under * operation, hence for all $h \in H$, then $a * h \in H$, therefore $a * H \subseteq H$. The opposite inclusion by $h \in H$, hence $h=e * h=\left(a * a^{-1}\right) * h=a *\left(a^{-1} * h\right) \in a * H$ and consequently $H \subseteq a * H$.

Therefore $H=a * H$.

Theorem 8.3. If $(H, *)$ is a subgroup of the group $(G, *)$, then $a * H=b * H$ if and only if $a^{-1} * b \in H$.

Proof. Suppose that $a * H=b * H$. Then for all $h \in H$, there exist $h_{1} \in H$ such that $b * h_{1}=a * h$. From this we get

$$
a^{-1} * b=h * h_{1}^{-1} .
$$

Since ($H, *$) is a subgroup, then $a^{-1} * b=h * h_{1}^{-1} \in H$
Conversely, let $a^{-1} * b \in H$. Then by Theorem $8.2\left(a^{-1} * b\right) * H=H$. This implies that for any $h \in H$, there exist an element $h^{\prime} \in H$ such that

$$
h=\left(a^{-1} * b\right) * h^{\prime} \Leftrightarrow a * h=b * h^{\prime} \Leftrightarrow a * H \subseteq b * H .
$$

At the same way we get $b * H \subseteq a * H$, consequently $a * H=b * H$.

Example. Let $(G, *)=\left(Z_{12},+_{12}\right)$ and $H=\{0,4,8\}$. Then all left cosets are

$$
\begin{gathered}
0+_{12} H=\{0,4,8\}=4+_{12} H=8+_{12} H \\
1+{ }_{12} H=\{1,5,9\}=5+_{12} H=9+_{12} H \\
2+{ }_{12} H=\{2,6,10\}=6+{ }_{12} H=10+_{12} H \\
3+{ }_{12} H=\{3,7,11\}=7+_{12} H=11+_{12} H
\end{gathered}
$$

and the distinct left cosets are $\{0,4,8\},\{1,5,9\},\{2,6,10\},\{3,7,11\}$.

Note that the number of distinct left cosets equal $\frac{O(G)}{O(H)}$ is called the index of H in G and the number of elements in each cosets are equal.

Theorem 8.4. If $(H, *)$ is a subgroup of the group $(G, *)$, then either the coset $a *$ H and $b * H$ are disjoint or else $a * H=b * H$

Proof. Suppose that $(a * H) \cap(b * H) \neq \emptyset$, then there exist $c \in a * H \cap b * H$
$\Rightarrow c \in a * H$ and $c \in b * H$. Since $c \in a * H$, there exist an element $h_{1}, h_{2} \in H$ such that $c=a * h_{1}$ and $c=b * h_{2}$. It follows that $a * h_{1}=b * h_{2} \Rightarrow a^{-1} * b=h_{1} * h_{2}^{-1}$.
Since $(H, *)$ is a subgroup, then $h_{1} * h_{2}^{-1} \in H$, that is $a^{-1} * b \in H$. By Theorem 7.3 we get $a * H=b * H$.

Theorem 8.5. If $(H, *)$ is a subgroup of the group $(G, *)$, then the left(right) cosets of H in G forms a partition of the set G.
Proof. If each $a \in G$, then $a \in a * H$. Sine each element can belong to one and only one left coset of H in G. Thus

$$
G=\bigcup_{a \in G} a * H
$$

Hence the set G is a partitioned by H into disjoint sets, each of which has exactly as many elements as H.

Theorem 8.6.(Lagrange theorem) Let $(H, *)$ be a subgroups of a finite group $(G, *)$. Then the order of H and the index of H in G are divides the order of G.

Proof. Since G is a finite group, then $G=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\},(H, *)$ is a subgroup of $(G, *)$ of order k and the index of H in G is r.

Hence there exist r distinct left cosets of H in G say $a_{1} * H, a_{2} * H, \ldots, a_{n} * H$. Thus by Theorem 8.5, we get

$$
\begin{gathered}
G=\left(a_{1} * H\right) \cup\left(a_{2} * H\right) \cup \ldots \cup\left(a_{r} * H\right) \text { and }\left|a_{i} * H\right|=|H|=k, \text { for } i=1,2, \ldots, r \\
|G|=\left|a_{1} * H\right|+\left|a_{2} * H\right|+\ldots+\left|a_{r} * H\right|=\underbrace{k+k+\cdots+k}_{r-t i m e s}=r . k \\
=(\text { index of } H \text { in } G)(\text { order of } H)
\end{gathered}
$$

Consequently order of H is divide the order of G.

Corollary 8.7. If $(G, *)$ is a group of order n, then the order of any element $e \neq a \in G$ is a factor of n, and $a^{n}=e$.

Proof. Let the element a in the group $(G, *)$ have order k. Then the cyclic subgroup generated by a is of order k.

Let $=<a>\Rightarrow|H|=k$. By Theorem $8.6 k$ is divisor of n, that is $n=r k$ for some $r \in$ Z^{+}. Hence

$$
a^{n}=a^{r k}=\left(a^{k}\right)^{r}=e^{r}=e
$$

Theorem 8.8. Every group $(G, *)$ of prime order is cyclic.
Proof. Let $(G, *)$ be a group such that $|G|=p, p$ is prime, and let H be a cyclic subgroup of G generated by $e \neq a \in G$; i.e $H=(a)$. By Theorem 8.6 $|H|$ divides $|G|$, then either $|H|=1$ or $|H|=p$. Since $|H| \neq 1$, then must be $|H|=p=|G|$. Therefore $G=(a)$.

Remark. The converse of Lagrange theorem is not true in general, for example the group $\left(A_{4}, o\right)$ is of order 12 , then the factors of 12 are $1,2,3,4,6,12$. Then A_{4} has no subgroup of order 6 .

Solve the following Problems

Q1/ List the left cosets of the subgroup
(a) $\mathrm{H}=\{\mathrm{i} ;(13)\}$ of S_{3}.
(b) $\left(Z_{e},+\right)$ of $(Z,+)$,
(c) $(Z,+)$ of $(Q,+)$,
(d) $\left.(<4\rangle,+_{12}\right)$ of $\left(Z_{12},+_{12}\right)$.
(f) $\left(\left(\begin{array}{ll}1 & 3), 0) \text { of } S_{3} \times Z_{2}\end{array}\right.\right.$
(f) Find all left cosets of the subgroup $\left\{R_{360}, D_{1}\right\}$ of the group D_{4} given by Table.

Q2/ Give an example of a group $(G, *)$ and a subgroup $(H, *)$ of $(G, *)$ such that $a H=b H$, but $H a \neq H b$ for some $a, b \in G$.

Q3/ Let G be a group generated by a, b such that $O(b)=2, O(a)=6$, and $(a b)^{2}=e$. Show that
(a) $a b a=b$,
(b) $\left(a^{2} b\right)^{2}=e$,
(c) $b a^{2} b=a^{4}$,

Q3/ Let $G=\{a, b, c, d\}$ be a group. Complete the following Cayley table for this group.

$*$	a	b	c	d
a	a			
b		d	a	
c				
d				

Q4/ find the index [G: H], if $G=Z_{6} \times Z_{4}$ and $H=\{0\} \times Z_{4}$
Q5/ Let G be a finite group and A and B be subgroups of G such that $A \subseteq B \subseteq G$. Prove that $[G: A]=[G: B][B: A]$.

Q6/ Can an element of an infinite group have finite order? Explain.
Q7/ Suppose H is a subgroup of a group G, and $[G: H]=2$. Suppose also that a and b are in G, but not in H. Show that $a b \in H$.

Q8/ Prove that every proper subgroup of a group of order p^{2} (p aprime) is cyclic.

9. Normal subgroups and quotient groups.

Definition 9.1. A subgroup ($H, *$) of the group ($G, *$) is said to be normal(or invariant) in $(G, *)$ if and only if every left coset of H in G is also a right coset of H in G (i.e. $a * H=$ $H * a$ for every $a \in G)$.

Example. Let $V=\{e, a, b, c\}$ with $a b=b a=c, b c=c b=a, a c=c a=b$ and $a^{2}=b^{2}=c^{2}=e$. If $H=\{e, a\}$, then $e H=H=H e$

$$
\begin{aligned}
b H & =\{b, c\}=H b \\
c H & =\{c, b\}=H c \\
a H & =\{a, e\}=H a
\end{aligned}
$$

Therefore H is normal subgroup of V.

Theorem 9.2. Let $(H, *)$ be a subgroup of the group $(G, *)$. Then $(H, *)$ is a normal subgroup of $(G, *)$ if and only if $a * H * a^{-1} \subseteq H$ for each $a \in G$.

Proof. Suppose that $a * H * a^{-1} \subseteq H$ for each $a \in G$. We must prove that $a * H=H * a$ Let $a * h \in a * H$.

Now $a * h=(a * h) * e=\left((a * h) *\left(a^{-1} * a\right)\right)=\left(\left(a * h * a^{-1}\right) * a\right)$.
Since $a * h * a^{-1} \in a * H * a^{-1} \subseteq H$, then there exist $h_{1} \in H$ such that $a * h=\left(a * h * a^{-1}\right) * a=h_{1} * a$ and $h_{1} * a \in H * a$, so we conclude $a * H \subseteq H * a$.

We obtain the opposite inclusion, $H * a \subseteq a * H$, by similar way upon observing that our hypothesis also implies
$a^{-1} * H * a=a^{-1} * H *\left(a^{-1}\right)^{-1} \subseteq H$.
Then $H * a=a * H$ for all $a \in G$. Therefore H is normal subgroup of G.
Conversely, Suppose $a * H=H * a$ for each $a \in G$.
Let $a * h_{1} * a^{-1} \in a * H * a^{-1}, h_{1} \in H$.
Since $a * H=H * a$, then there exist $h_{2} \in H$ such that $a * h_{1}=h_{2} * a$.
Consequently
$a * h_{1} * a^{-1}=\left(h_{2} * a\right) * a^{-1}=h_{2} *\left(a * a^{-1}\right)=h_{2}$, which implies $a * H * a^{-1} \subseteq H$.

Example. Let $\left(S_{3}, o\right)$. Then $H= \begin{cases}e & \left.\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\} \text { is normal subgroup but }{ }^{2} \text {. }\end{cases}$ $\{e,(12)\},\{e,(13)\}$ and $\left\{e,\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$ are not normal subgroups of $\left(S_{3}, o\right)$.

Theorem 9.3. Let $(G, *)$ be a group. Then (cent $G, *)$ is normal subgroup of $(G, *)$.
Proof. By Theorem 6.4 (cent $G, *$) is a subgroup of $(G, *)$. Then we have only to show that $a * \operatorname{cent} G * a^{-1} \subseteq \operatorname{cent} G$ for all $a \in G$.
Let $a * c * a^{-1} \in a *$ cent $G * a^{-1}$, for $c \in \operatorname{cent} G$.
Since $c \in \operatorname{cent} G$, then $c * a=a * c$, for all $a \in G$.
Now $a * c * a^{-1}=c * a * a^{-1}=c * e=c \in \operatorname{cent} G$.
Therefore $a * \operatorname{cent} G * a^{-1} \subseteq \operatorname{cent} G$, hence by Theorem 8.2 (cent $G, *$) is normal subgroup of $(G, *)$.

Theorem 9.4. If $(H, *)$ is a subgroup of the group with $[G: H]=2$, then $(H, *)$ is a normal subgroup of the group ($G, *$).
Proof. Since $[G: H]=2$, then there exist exactly two cosets H and $G-H$.
Let $a \in G$. Then either $a \in H$ or $a \in G-H$.
If $a \in H$, then $a * H=H=H * a$, hence H is a normal subgroup.
If $a \in G-H$, then $H \cap a * H=\emptyset \Rightarrow G=H \cup(a * H)$ and $H \cap H * a=\emptyset \Rightarrow G=H \cup$ $(H * a)$. Therefore $a * H=H * a$ for all $a \in G$. hence H is a normal subgroup of G.

Definition 9.5. If $(H, *)$ is normal subgroup of the group $(G, *)$, then the collection of distinct cosets of H in G is denoted by G / H and defined as follows:

$$
G / H=\{a * H: a \in G\} .
$$

A binary operation \otimes is defined on G / H by

$$
(a * H) \otimes(b * H)=(a * b) * H \text { for all } a * H, b * H \in G / H
$$

We must prove that \otimes is well defined.
Let $a * H=b * H$ and $c * H=d * H$. We must prove that $(a * c) * H=(b * d) * H$
Now since $a * H=b * H \Rightarrow a^{-1} * b \in H$ and $c * H=d * H \Rightarrow c^{-1} * d \in H$.
Now

$$
(a * c)^{-1} *(b * d)=c^{-1} *\left(a^{-1} * b\right) * d=c^{-1} * d *\left(d^{-1} *\left(a^{-1} * b\right) * d\right)
$$

Since $a^{-1} * b \in H \Rightarrow d^{-1} *\left(a^{-1} * b\right) * d \in d^{-1} * H *\left(d^{-1}\right)^{-1} \subseteq H$
and Since H is closed, we get $c^{-1} * d \in H$, hence
$(a * c)^{-1} *(b * d) \in H \Rightarrow(a * c) * H=(b * d) * H$
$\Rightarrow(a * H) \otimes(c * H)=(b * H) \otimes(d * H)$. Therefore \otimes is well defined.

Theorem 9.6. If $(H, *)$ is a normal subgroup of the group $(G, *)$, then $(G / H, \otimes)$ forms a group, known as the quotient group of G by H.

Proof. By definition we observe that G / H is closed under operation \otimes.
1- associativity of \otimes on G / H,

$$
\begin{aligned}
{[(a * H) \otimes(b * H)] \otimes(c * H) } & =((a * b) * H) \otimes(c * H) \\
& =(a *(b * c)) * H \\
& =(a * H) \otimes((b * c) * H) \\
& =(a * H) \otimes[(b * H) \otimes(c * H)] .
\end{aligned}
$$

Hence \otimes is associative.
2- $H=e * H$ is the identity element of G / H, where e is the identity element of G.

$$
(a * H) \otimes(e * H)=(a * e) * H=a * H=(e * a) * H=(e * H) \otimes(a * H) .
$$

3- The inverse of $a * H$ is $a^{-1} * H$, where a^{-1} is the inverse of a in G.
Now

$$
(a * H) \otimes\left(a^{-1} * H\right)=\left(a * a^{-1}\right) * H=e * H=\left(a^{-1} * a\right) * H=\left(a^{-1} * H\right) \otimes(a * H) .
$$

Hence $(G / H, \otimes)$ is a group.

Remark. We have $\left|\frac{G}{N}\right|=[G: N]$. In particular, if G is a finite group, then $|G / N|=|G| /|N|$.

Solve the following Problems

Q1/ Let H be a normal subgroup of a group G. Prove that if G is commutative, then so is the quotient group G / H.

Q2/ Suppose ($H, *$) and ($K,,^{*}$) are normal subgroups of the group ($G, *$) with $H \cap K=[e\}$.
Show that $h * k=k * h$ for all $h \in H$ and $k \in K$.
Q3/ Prove that if the quotient group $(G / \operatorname{cen}(G), \otimes)$ is cyclic , then $(G, *)$ is a commutative group.

Q4/ Let $(H, *)$ be a proper subgroup of $(G, *)$ such that for all $x, y \in G / H, x y \in H$. Prove that ($H, *$) is a normal subgroup of ($G, *$).

Q5/ Show that every subgroup of an abelian group is normal.
Q6/ Show that every group of prime order is simple.
Q7/ Prove that the quotient group of an abelian group is abelian.
Q8/ (a) Give an example of an abelian group G / H such that G is not abelian.Explain.
(b) Give an example of a cyclic group G / H such that G is not cyclic. Explain.

Q9/ Let H, K be normal subgroups of a group G. If $G / H=G / K$ then show that

$$
H=K .
$$

Q10/ Let H be a normal subgroup of a group G. If $x y x^{-1} y^{-1} \in H$, for all $x, y \in G$, then show that G / H is abelian.

Q11/ If H is a subgroup of a group G and N a normal subgroup of G then show that $H \cap N$ is a normal subgroup of H.

10. Homomorphisms.

Definition 9.1. If $(G, *)$ and (H, o) are groups, then a function $f: G \rightarrow H$ is a homomorphism if $f(x * y)=f(x)$ of(y) for all $x, y \in G$.

Examples.

1- Let $(G, *)$ and (G^{\prime}, o) be two groups. Then the function $f: G \rightarrow G^{\prime}$ such that $f(x)=e^{\prime}$ for any $x \in G$ is a homomorphism and called a trivial homomorphism. In fact,

$$
f(x * y)=e^{\prime}=e^{\prime} \text { o } e^{\prime}=f(x) \text { o } f(y)
$$

2- Let $(G, *)$ be any group and $f: G \rightarrow G$ defined by $f(x)=x$ for all $x \in G$ is a is a homomorphism and is called an identity homomorphism. In fact,

$$
f(x * y)=x * y=f(x) * f(y), \text { for all } x, y \in G .
$$

Definition 9.2. A homomorphism f from the group ($G, *$) into group (G^{\prime}, o) is called an isomorphism if f is one-to-one and onto function. Two groups G and G^{\prime} are called isomorphic, denoted by $G \cong G^{\prime}$, if there exists an isomorphism between them.

Example. Let $(R,+)$ and $\left(R^{+},.\right)$be two groups, where R is the set of real numbers, and $f: R \rightarrow R^{+}$defined by $f(x)=e^{x}$ for all $x \in R$. Show that f is an isomorphism. for all $x, y \in R$, we have
$f(x+y)=e^{x+y}=e^{x} \cdot e^{y}=f(x) . f(y)$.
Hence f is a homomorphism.
Suppose that $f(x)=f(y) \Rightarrow e^{x}=e^{y} \Rightarrow x=y$. Hence f is one-to-one.

Since $f(x)=e^{x}$ is defined for all $x \in R$ and its inverse $g(x)=\ln x$ is also defined all $x \in R^{+}$, that is $f(\ln x)=e^{\ln x}=x$. Hence f is onto.

Therefore f is an isomorphism and $(R,+) \cong\left(R^{+},.\right)$.

Definition 9.3. An isomorphism f from ($G, *$) into itself is called an automorphisms. The set of all automorphisms of G is denoted by $\operatorname{Aut}(G)$

Example. A function $f:(Z,+) \longrightarrow(Z,+)$ defined by $f(n)=-n$, for all $n \in Z$. Hence f is an automorphisms.

Theorem 9.4. Let $f:(G, *) \longrightarrow\left(G^{\prime}, o\right)$ is a group homomorphism. Then
1- $f(e)=e^{\prime}$, where e and e^{\prime} are identity elements of G and G^{\prime} respectively.
2- $f\left(x^{-1}\right)=(f(x))^{-1}$, for all $x \in G$.
3- $f\left(x^{n}\right)=(f(x))^{n}$, for all $x \in G$ and $n \in Z$.
4- If $O(x)=n$, then $O(f(x))$ is divides n.

Proof.

1- For all $x \in G$, we have

$$
e * x=x=x * e \Rightarrow f(x) o e^{\prime}=f(x)=f(e * x)=f(x) o f(e) .
$$

Hence by cancellation law we get $e^{\prime}=f(e)$.
2- H.w
3- By using induction, if $n=0$, then $f\left(x^{0}\right)=f(e)=e^{\prime}$, that is the statement is true. If $n=1$, then $f\left(x^{1}\right)=f(x)$, that is the statement is true too.

Suppose the statement is true for n such that n is a positive integer, that is

$$
f\left(x^{n}\right)=(f(x))^{n} .
$$

Now $f\left(x^{n+1}\right)=f\left(x^{n} * x\right)=f\left(x^{n}\right) o f(x)=(f(x))^{n}$ of $(x)=(f(x))^{n+1}$.
Finally, if $n<0$, put $n=-m$, such that m is positive integer. Hence $f\left(x^{n}\right)=\left(f\left(x^{-m}\right)=\left(f\left(x^{m}\right)\right)^{-1}=\left(f(x)^{m}\right)^{-1}=(f(x))^{-m}=(f(x))^{n}\right.$.

4- H.w.
Theorem 9.5. Every finite cyclic group of order n is isomorphic to the group $\left(Z_{n},+_{n}\right)$.

Proof. Let $(G, *)$ be a cyclic group of order n generated by a. Hence by Theorem 6.11

$$
G=(a)=\left\{e, a, a^{2}, \quad \ldots, a^{n-1}\right\} .
$$

Let $f: G \rightarrow Z_{n}$ be a function defined by $f\left(a^{k}\right)=[k]$, for all $0 \leq k<n$.
To prove that f is one-to-one, suppose that

$$
f\left(a^{i}\right)=f\left(a^{j}\right) \Rightarrow[i]=[j] \Rightarrow i \equiv j(\bmod n)
$$

Hence there exist an integer l such that $i-j=\ln \Rightarrow i=j+\ln$, therefore, $a^{i}=a^{j+l n}=a^{j}$, that is f is one-to-one.

It is clear that is f is onto.
Now for all $a^{i}, a^{j} \in G, f\left(a^{i} * a^{j}\right)=f\left(a^{i+j}\right)=[i+j]=[i]+{ }_{n}[j]=f\left(a^{i}\right)+{ }_{n} f\left(a^{j}\right)$.
Hence f is an isomorphism and $(G, *) \cong\left(Z_{n},+_{n}\right)$.

Theorem 9.6. Every infinite cyclic group is isomorphic with the group $(Z,+)$.
Proof. Let $(G, *)$ be an infinite cyclic group generated by a. Hence

$$
G=(a)=\left\{a^{n}: n \in Z\right\} .
$$

Such that $a^{i} \neq a^{j}$, for all $i \neq j$
Let $f: G \rightarrow Z$ be a function defined by $f\left(a^{k}\right)=k, k \in Z$.
To prove that f is one-to-one, suppose that

$$
f\left(a^{i}\right)=f\left(a^{j}\right) \Rightarrow i=j \Rightarrow a^{i}=a^{j}
$$

Hence f is one-to-one.
It is clear that is f is onto.
Now for all $a^{i}, a^{j} \in G, f\left(a^{i} * a^{j}\right)=f\left(a^{i+j}\right)=i+j==f\left(a^{i}\right)+f\left(a^{j}\right)$.
Hence f is an isomorphism, therefore, $(G, *) \cong(Z,+)$

Corollary. Any two cyclic groups of the same order are isomorphic.

Example. Show that the two groups $(Q,+)$ and $\left(Q^{+},.\right)$are not isomorphic.

Suppose that there exists an isomorphism $f:(Q,+) \rightarrow\left(Q^{+},.\right)$.
Let $3 \in Q^{+}$. Since f is onto, then there an element $x \in Q$ such that $f(x)=3$.
$f(x)=f\left(\frac{x}{2}+\frac{x}{2}\right)=f\left(\frac{x}{2}\right) \cdot f\left(\frac{x}{2}\right)=\left(f\left(\frac{x}{2}\right)\right)^{2}=3$.
But it is contradicting, the fact $f\left(\frac{x}{2}\right)$ is a rational number and there is no exists a rational number equal to 3 .

Theorem 9.7. Let f be a homomorphism from the group $(G, *)$ into the group $\left(G^{\prime}, o\right)$. Then

1- If $(H, *)$ is a subgroup of $(G, *)$, then $(f(H), o)$ is a subgroup of $\left(G^{\prime}, o\right)$.
2- If (K, o) is a subgroup of $\left(G^{\prime}, o\right)$, then $\left(f^{-1}(K), *\right)$ is a subgroup of $(G, *)$.
Proof. (1) $f(H)=\{f(x): x \in H\}$
Since $e \in H$, then $f(e) \in f(H) \Rightarrow f(H) \neq \emptyset$.
Let $f(x), f(y) \in f(H)$, for $x, y \in H$.
Now $f(x) \circ f(y)^{-1}=f(x) \circ f\left(y^{-1}\right)=f\left(x * y^{-1}\right) \in f(H)$, Since $\quad x * y^{-1} \in H$.
Therefore by Theorem 6.2, we get $f(H)$ is a subgroup of G^{\prime}.
(2) H.W.

Theorem 9.8. Let f be a homomorphism from the group $(G, *)$ into the group $\left(G^{\prime}, o\right)$. Then

1- If (K, o) is a normal subgroup of $\left(G^{\prime}, o\right)$, then $\left(f^{-1}(K), *\right)$ is a normal subgroup of $(G, *)$.
2- If $f(G)=G^{\prime}$ and $(H, *)$ is a normal subgroup of $(G, *)$, then $(f(H), o)$ is a normal subgroup of $\left(G^{\prime}, o\right)$.
Proof. (1) By theorem $8.7\left(f^{-1}(K), *\right)$ is a subgroup of $(G, *)$.

Now to show that $\left(f^{-1}(K), *\right)$ is a normal subgroup of $(G, *)$, suppose $x \in f^{-1}(K)$ and $g \in G$. Since f is a homomorphism, then we have
$f\left(g * x * g^{-1}\right)=f(g) o f(x) o f(g)^{-1}=f(g) o f(x) o f\left(g^{-1}\right)$, Since $f(x) \in K, f(g) \in$ G^{\prime} and $(K, *)$ is a normal subgroup of $\left(G^{\prime}, o\right)$.
Therefore $f(g) o f(x) o f\left(g^{-1}\right) \in K \Rightarrow g * x * g^{-1} \in f^{-1}(K)$. Hence $\left(f^{-1}(K), *\right)$ is a normal subgroup of $(G, *)$.
Definition 9.9. Let f be a homomorphism from the group $(G, *)$ into the group $\left(G^{\prime}, o\right)$ and Let e^{\prime} be the idenitiy element of ($\left.G^{\prime}, o\right)$. Then kerenel of \boldsymbol{f}, denoted by $\operatorname{ker} f$, is the set $\operatorname{ker} f=\left\{a \in G: \quad f(a)=e^{\prime}\right\}$.
Theorem 9.10. If f is a homomorphism from the group ($G, *$) into the group (G^{\prime}, o),
Then $($ ker $f, *)$ is a normal subgroup of $(G, *)$.
Proof. Since $\left(\left\{e^{\prime}\right\}, o\right)$ is a normal subgroup of $\left(G^{\prime}, o\right)$ and $\operatorname{ker} f=f^{-1}\left(\left\{e^{\prime}\right\}\right)$, then by Theorem $9.8(\operatorname{ker} f, *)$ is a normal subgroup of the group $(G, *)$.

Theorem 9.11. Let f be a homomorphism from the group $(G, *)$ into the group $\left(G^{\prime}, o\right)$. Then f is one-to-one if and only if $\operatorname{ker} f=\{e\}$.
Proof. Suppose the function f is one-to-one. Let $x \in \operatorname{ker} f \Rightarrow f(x)=e^{\prime}=f(e)$.
Since f is one-to-one, we get $x=e \Rightarrow \operatorname{ker} f=\{e\}$.
Conversely, suppose that $\operatorname{ker} f=\{e\}$. Let $x, y \in G$ and $f(x)=f(y)$.
To prove f is one-to-one, we must show that $x=y$. But if

$$
\begin{array}{rl}
f(x)=f & f(y) \\
& \Rightarrow f(x) o f^{-1}(y)=e^{\prime} \\
& \Rightarrow f(x) o f\left(y^{-1}\right)=e^{\prime}(f \text { is homorphism }) \\
& \Rightarrow f\left(x * y^{-1}\right)=e^{\prime}
\end{array}
$$

Which implies $x * y^{-1} \in \operatorname{ker} f$. But ker $f=\{e\}$. Therefore $x * y^{-1}=e \Rightarrow x=y$.

Theorem 9.12. (Cayley's Theorem) If ($G, *$) is an arbitrary group, then

$$
(G, *) \cong\left(F_{G}, o\right)
$$

Proof. $F_{G}=\left\{f_{a}: a \in G\right\}$, we define the function $f_{a}: G \longrightarrow G$ by $f_{a}(x)=a * x, x \in G$. (f_{a} is called the left multiplication function).
Now define the function $f: G \rightarrow F_{G}$ by $g(a)=f_{a}$, for each $a \in G$.
It is clear that the function is onto. If
$f(a)=f(b) \Rightarrow f_{a}=f_{b} \Rightarrow f_{a}(x)=f_{b}(x)$, for all $x \in G \Rightarrow a * x=b * x \Rightarrow a=b$.
Which show that f is one-to-one.
We proof that f is a homomorphism:

$$
f(a * b)=f_{a * b}=f_{a} o f_{b}=f(a) o f(b)
$$

Hence f is an isomorphism and $(G, *) \cong\left(F_{G}, o\right)$.

Example. Consider $(G, *)=\left(R^{\#},+\right)$, for $a \in R^{\#}$ is the left-multiplication function f_{a}, defined by $f_{a}(x)=a+x, \quad x \in R^{\#}$.

11.The Fundamental of Isomorphisms Theorems.

Theorem 10.1. (First Isomorphism Theorem)

If f is a homomorphism from the group $(G, *)$ onto the group $\left(G^{\prime}, o\right)$. Then

$$
(G / \operatorname{ker} f, \quad \otimes) \cong\left(G^{\prime}, o\right)
$$

Proof. Put $\operatorname{ker} f=K$. We define a function $\varphi: G / K \rightarrow G^{\prime}$ by

$$
\varphi(x+K)=f(x), \text { for } x \in G
$$

We must show that φ is well defined, suppose $x+K=y+K \Rightarrow x * y^{-1} \in K=\operatorname{ker} f$.
Therefore $f\left(x * y^{-1}\right)=e^{\prime}$. But f is homomorphism, then

$$
\begin{aligned}
& f(x) o f\left(y^{-1}\right)=e^{\prime} \Rightarrow f(x) o(f(y))^{-1}=e^{\prime} \\
& \Rightarrow f(x)=f(y) \Rightarrow \varphi(x+K)=\varphi(y+K) .
\end{aligned}
$$

Hence φ is well defined.
Now to show that φ is a homomorphism, suppose that

$$
\begin{aligned}
\varphi((x * K) \otimes(y * K)) & =\varphi((x * y) * K) \\
& =f(x * y) \\
& =f(x) o f(y) \\
& =\varphi(x * K) o \varphi(y * K) .
\end{aligned}
$$

Hence φ is a homomorphism.
Let $\varphi(x * K)=\varphi(y * K) \Longrightarrow f(x)=f(y) \Longrightarrow f(x) o(f(y))^{-1}=e^{\prime}$.
Since f is a homomorphism, therefore
$f(x) o f\left(y^{-1}\right)=e^{\prime} \Rightarrow f\left(x * y^{-1}\right)=e^{\prime} \Rightarrow x * y^{-1} \in K \Longrightarrow x * K=y * K$.
Hence φ is one-to-one.
Finally, for all $z \in G^{\prime}$ there exists $y \in G$ such that $z=f(y)=\varphi(y+K)$.
Hence φ is onto. Therefore φ is an isomorphism and $\left(G / K^{\prime}, \otimes\right) \cong\left(G^{\prime}, o\right)$.
Lemma 10.2. If $(H, *)$ is a subgroup of the group $(G, *)$ and $(K, *)$ is a normal subgroup of $(G, *)$, then $(H \cap K, *)$ is a normal subgroup og the group $(H, *)$.

Proof. Let $h \in H$ and $l \in H \cap K \Rightarrow l \in H$ and $l \in K$.
Since $(H, *)$ is a subgroup of the group $(G, *)$, then $h * l * h^{-1} \in H$ and
Since ($K, *$) is a normal subgroup of the group $(G, *)$, then $h * l * h^{-1} \in K$.
Hence $h * l * h^{-1} \in H \cap K$, for al $h \in H$ and $l \in H \cap K$, therefore $(H \cap K, *)$ is a normal subgroup og the group ($H, *$).

Theorem 10.3. (Second Isomorphism Theorem)

If $(H, *)$ is a subgroup of the group $(G, *)$ and $(K, *)$ is a normal subgroup of $(G, *)$, then

$$
H * K / K \cong H / H \cap K
$$

Proof. First we must to show that $(K, *)$ is a normal subgroup of $(H * K, *)$ and by lemma 9.2 we have ($H \cap K, *$) is a normal subgroup of ($H, *$).

We prove the theorem by using Theorem 9.1, then so we define a function $\varphi: H * K \rightarrow H / H \cap K$ by $\varphi(h * k)=h *(H \cap K)$, for all $h \in H$ and $k \in K$.

We show that φ is well defind
Let $h * k=h_{1} * k_{1}$, for $h_{1}, h \in H$ and $k_{1}, k \in K$.
$\Rightarrow h_{1}^{-1} * h=k_{1} * k^{-1} \Rightarrow h_{1}^{-1} * h \in H \cap K$.
By Theorem 6.18 we get $h_{1} *(H \cap K)=h *(H \cap K) \Longrightarrow \varphi\left(h_{1} * k\right)=\varphi(h * k)$.
To show that φ is onto. Suppose $h * k, h_{1} * k_{1} \in H * K$, for $h, h_{1} \in H$ and $k, k_{1} \in K$.
Since $(K, *)$ is a normal subgroup of $(G, *)$, then

$$
h_{1}^{-1} * k * h_{1} \in K \text {. put } k_{2}=h_{1}^{-1} * k * h_{1} \Rightarrow h_{1} * k_{2}=k * h_{1} .
$$

$$
\varphi\left((h * k) *\left(h_{1} * k_{1}\right)\right)=\varphi\left(h * h_{1} * k * k_{1}\right)
$$

$$
\begin{gathered}
=\left(h * h_{1}\right) *(H \cap K) \\
=(h *(H \cap K)) \otimes\left(h_{1} *(H \cap K)\right) \\
=\varphi\left(h * h_{1}\right) \otimes \varphi\left(k * k_{1}\right)
\end{gathered}
$$

Hence φ is a homorphism.
For all $h *(H \cap K) \in H / H \cap K$, for $h \in H$, then $\varphi(h * e)=h *(H \cap K)$.
Hence φ is onto.
By Theorem 10.1, we get $H * K / \operatorname{ker} \varphi \cong H / H \cap K$.
Now

$$
\begin{aligned}
\operatorname{ker} \varphi & =\{h * k: h \in H, \quad k \in K ; \varphi(h * k)=H \cap K\} \\
& =\{h * k: h \in H, \quad k \in K ; h *(H \cap K)=H \cap K\} \\
& =\{h * k: h \in H, \quad k \in K ; h \in H \cap K\}=K
\end{aligned}
$$

Therefore $H * K / K \cong H / H \cap K$.

Theorem 10.4. (Third Isomorphism Theorem)

If $(H, *)$ and $(K, *)$ are normal subgroups of the group $(G, *)$ and $(H, *)$ is a subgroup of ($K, *$), then

1- $(K / H, \otimes)$ is a normal subgroup of the group $(G / H, \otimes)$ and

2- $\frac{G / H}{K / H} \cong G / K$.
Proof. 1- H.W.
2- We prove the theorem by using Theorem 9.1, then so we define a function $\varphi: G / H \rightarrow G / K$ by $\varphi(x * H)=x * K$, for all $x * H \in G / H$.

We show that φ is well defined. Suppose that $x * h, y * H \in G / H$, for $x, y \in G$ and $x * h=y * H \Rightarrow x^{-1} * y \in H \subseteq K \Rightarrow x^{-1} * y \in K \Longrightarrow x * K=y * K$.
Hence $\varphi(x * H)=\varphi(y * H)$, that is φ is well defined.
Let $x * h, y * H \in G / H$, for $x, y \in G$. Then

$$
\begin{aligned}
\varphi((x * H) \otimes(y * H)) & =\varphi((x * y) * H) \\
& =(x * y * K) \\
= & (x * K) \otimes(y * K) \\
= & \varphi(x * H) \otimes \varphi(y * H)
\end{aligned}
$$

Hence φ is a homomorphism.
It is clear by definition φ is onto.
By Theorem 10.1, we get $G / H / \operatorname{ker} \varphi \cong G / K$.
Now

$$
\begin{aligned}
& \operatorname{ker} \varphi=\left\{x * H \in \frac{G}{H}: \varphi(x * H)=K\right\} \\
& =\left\{x * H \in \frac{G}{H}:(x * K)=K\right\}=\left\{x * H \in \frac{G}{H}: x \in K\right\}=\frac{K}{H}
\end{aligned}
$$

Therefore $\frac{G / H}{K / H} \cong G / K$.

Solve the following Problems

Q1/ Determine whether the indicated function f is a homomorphism from the first group into the second group. If f is a homomorphism, determine its kernel.
a) $f:\left(\mathbb{R}^{*},.\right) \rightarrow\left(\mathbb{R}^{*}\right.$, . $)$ defined by $f(a)=a^{3}$, for all $a \in \mathbb{R}^{*}$.
b) $f:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$ defined by $f(a)=3 a$, for all $a \in \mathbb{R}$.
c) $f:\left(Z_{8},+_{8}\right) \rightarrow\left(Z_{8},+_{8}\right)$ defined by $f([a])=[5 a]$,
d) Let $G=\left\{a, a^{2}, a^{3}, a^{4}, a^{5}=e\right\}$ be the cyclic group generated by a. $f:\left(Z_{5},+_{5}\right) \rightarrow G$ defined by $f(n)=a^{n}$, for all $n \in Z_{5}$.

Let $G=\left\{a, a^{2}, a^{3}, \ldots, a^{12}=e\right\}$ be a cyclic group generated by a. Show that $f: G \rightarrow G$ defined by $f(x)=x^{4}$, for all $x \in G$, is a group homomorphism. Find $\operatorname{Ker}(f)$.

Q2/ Let G be an abelian group. Show that $f: G \rightarrow G$ defined by $f(x)=x^{-1}$, for all $x \in G$, is an automorphism.

Q3/ Let $G=\{1,-1\}$ be a group under multiplication. Show that $f:(Z,+) \rightarrow G$ defined by

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n \text { is even } \\
-1 & \text { if } n \text { is odd }
\end{array}\right.
$$

is onto group homomorphism. Find $\operatorname{Ker}(f)$.

Q4/ Let $(G, *)$ be a finite commutative group. Let $n \in Z$ be such that n and $|\mathrm{G}|$ are relatively prime. Show that the function $f: G \longrightarrow G$ defined by $f(a)=a^{n}$ for all $a \in G$ is an isomorphism of $(G, *)$ onto ($G, *$).

Q5/ Let G be a group and A and B be normal subgroups of G such that $A \cong B$. Show by an example that $G / A \nsubseteq G / B$.

Q6/ Consider two groups $(Z,+)$ and $(G,$.$) with G=\{-1,1,-i, i\}$ where $i^{2}=-1$. Show that the mapping defined by $f(n)=(-i)^{n}$, for $n \in Z$ is a homomrphism from $(Z,+)$ onto $(G, *)$ and determine ker f.

Q7/ Prove that every proper subgroup of a group of order p^{2} (p aprime) is cyclic.
Q8/ Show that (a) $\left(Z_{20} /<5>, \otimes\right) \cong\left(Z_{5},+_{5}\right)$.
(b) $(3 Z / 9 Z, \otimes) \cong\left(Z_{3},+_{3}\right)$.

Q9/ Let $(G, *) \cong\left(G^{\prime},{ }^{\circ}\right)$.
(a) If G is abelain group then so is G^{\prime}.
(b) If G is cyclic group then so is G^{\prime}.

