Solve the following problems in Group Theory

Q1/ Suppose $(H, *)$ and $(K, *)$ are normal subgroups of the group $(G, *)$ with $H \cap K=[e\}$. Show that $h * k=k * h$ for all $h \in H$ and $k \in K$.

Q2/ In the commutative group $(G, *)$, let the set H consist of all elements of finite order. Prove that
a) $(H, *)$ is normal subgroup of $(G, *)$, called the torsion subgroup .
b) The quotient group $(G / H, \otimes)$ is torsion -free; that is, none of its elements other than the identity are of finite order.

Q3/ Show that a group $(G, *)$ is commutative if and only if $[G, G]=\{e\}$.
Q4/ Let $(H, *)$ be a subgroup of $(G, *)$. If $x^{2} \in H$ for all $x \in G$, prove that
(a) $(H, *)$ is a normal subgroup of $(G, *)$.
(b) The quotient $(G / H, \otimes)$ is commutative.

Q5/ In the following, determine whether the function f is a homomorphism.
a) $f(a)=-a, f:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$.
b) $f(a)=|a|, f:(\mathbb{R}-\{0\},.) \rightarrow\left(\mathbb{R}^{+},.\right)$.
c) $f(a)=a / q,(q$ fiext integer $) f:(Z,+) \rightarrow(Q,+)$

Q6/ Consider two groups $(Z,+)$ and $(G,$.$) with G=\{-1,1,-i, i\}$ where $i^{2}=-1$. Show that the mapping defined by $f(n)=i^{n}$, for $n \in Z$ is a homomrphism from $(Z,+)$ onto ($G, *$) and determine $\operatorname{ker} f$.

Q7/ Prove that if the quotient group $(G / \operatorname{cen}(G), \otimes)$ is cyclic , then $(G, *)$ is a commutative group.

Q8/ Show that two groups $\left(R^{\#},+\right)$ and $\left(R^{\#}-\{0\}\right.$,.) are not isomorphic.
Q9/ Let the set $G=Z \times Z$ and binary operation * on G given by the rule $(a, b) *(c, d)=(a+c, b+d)$. Then
a) Show that $(G, *)$ is a commutative group.
b) Show that the mapping $f: G \rightarrow Z$ defined by $f[(a, b)]=a$ is a homomorphism .
c) Determine the kernel of f.
d) If $H=\{(a, a) \mid a \in Z\}$, prove that $(H, *)$ is a subgroup of $(G, *)$.

Q10/ Let $(H, *)$ be a proper subgroup of $(G, *)$ such that for all $x, y \in G-H, x y \in H$. Prove that $(H, *)$ is a normal subgroup of $(G, *)$.

Q11/ Let $(G, *)$ be a group and H and N are proper normal subgroups of ($G, *$). Suppose $G=H \cup N$ and $H \cap N=\{e\}$. Prove that $(G, *)$ is commutative.

Q13/ Let $H=\left\{e,\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right),(12)(34),(13)(24)\right\}$, where e is the identity permutation. Determine whether or not H is a normal subgroup of S_{4}.

Q14/ Let $(H, *)$ and $(K, *)$ be subgroups of a group $(G, *)$ such that $(H$,$) is a normal subgroup$ of $(G, *)$. Prove that $H \cap K$ is a normal subgroup of K.

Q15/ Let ($G, *$) be a finite commutative group. Let $n \in Z$ be such that n and $|\mathrm{G}|$ are relatively prime. Show that the function $f: G \rightarrow G$ defined by $f(a)=a^{n}$ for all $a \in G$ is an isomorphism of ($G, *$) onto ($G, *$).

Q16/ Determine whether the indicated function f is a homomorphism from the first group into the second group. If f is a homomorphism, determine its kernel.
a) $f(a)=a^{2},\left(\mathbb{R}^{+},.\right),\left(\mathbb{R}^{+},.\right)$for all $a \in \mathbb{R}^{+}$.
b) $f(a)=|a|,(\mathbb{R}-\{0\},),.\left(\mathbb{R}^{+},.\right)$for all $a \in \mathbb{R}-\{0\}$.
c) $f([a])=[5 a],\left(Z_{8},+_{8}\right),\left(Z_{8},+_{8}\right)$

Q17/ Show that $(Q,+)$ is not cyclic.
Q18/ Give an example of a group $(G, *)$ and a subgroup $(H, *)$ of $(G, *)$ such that $a H=b H$, but
$H a \neq H b$ for some $a, b \in G$.
Q19/ Let G be a noncyclic group of order p^{2}, p a prime integer. Show that the order of each non-identity element is p.

Q20/ Let $G=\{a, b, c, d\}$ be a group. Complete the following Cayley table for this group.

$*$	a	b	c	d
a				
b				
c			b	
d		b		

Q22/ Prove or disprove
1- Let $G=(a)$ be a cyclic group of order 30 . Then $\left[G:\left(a^{5}\right)\right]=5$.
2- Every proper subgroup of a group of order p^{2} (p aprime) is cyclic.
3- A subgroup $(H, *)$ of a group $(G, *)$ is a normal subgroup if and only if every right coset of H is also a left coset.
4- If A, B and C are normal subgroups of a group G, then $A(B \cap C)$ is a normal subgroup of G.
5- Every commutative subgroup of a group G is a normal subgroup of G.

6- If G is a group of order $2 p, p$ an odd prime, then either G is commutative or G contains a normal subgroup of order p.
7- If every element of a group G is of finite order, then G is a finite group.
8- The group $(Z,+)$ is isomorphic to $(Q,+)$.
9- If f and g are two epimorphisms of a group G onto a group H such that $\operatorname{Ker} f=$ $\operatorname{Ker} g$, then $f=g$.
10- $(Z \times Z,+)$ is a cyclic group.

Solve the following problems in Ring Theory

Q1/ In a ring (Z, \oplus, \odot), where $a \oplus b=a+b-1$ and $a \odot b=a+b-a b$, for all $a, b \in Z$. Find zero element and identity element.

Q2/ Let R denote the set of all functions $f: R^{\#} \longrightarrow R^{\#}$. The sum $f+g$ and the product $f . g$ of two function $f, g \in R$ are defined by $(f+g)(x)=f(x)+g(x), \quad(f \cdot g)(x)=f(x) . g(x), x \in R^{\#}$.
Show that $(R,+,$.$) is the commutative ring.$
Q3/ Let $(R,+,$.$) be an arbitrary ring. In \mathrm{R}$ define a new binary operation * by $a * b=a . b+b . a$ for all $a, b \in R$. Show that $(R,+, *)$ is a commutative ring.

Q4/ Show that the multiplicative identity in a ring with unity R is unique.

Q5/ Suppose that R is a ring with unity and that $a \in R$ is a unit of R. Show that the Multiplicative inverse of a is unique.

Q6/ Let $(3 Z,+)$ be an abelian group under usual addition where $3 Z=\{3 n \mid n \in Z\}$. Show that $(3 Z,+, \odot)$ is a commutative ring with identity 3 , where $a \odot b=\frac{a b}{3}$, for all $a, b \in 3 Z$.

Q7/ Let $(R,+,$.$) be a ring which has the property that a^{2}=a$ for every $a \in R$. Prove that $(R,+,$.$) is a commutative ring. [Hint: First show a+a=0$, for any $a \in R$].

Q8/ Prove that a ring R is commutative if and only if

$$
\left.a^{2}-b^{2}=(a+b) a-b\right), \text { for all } a, b \in R
$$

Q9/ Prove that a ring R is commutative if and only if

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}, \text { for all } a, b \in R .
$$

Q10/ Let R be the set of all ordered pairs of nonzero real numbers. Determine whether $(R,+,$.$) is$
a commutative ring with identity.
(a) $(a, b)+(c, d)=(a c, b c+d), \quad(a, b) \cdot(c, d)=(a c, b d)$
(b) $(a, b)+(c, d)=(a+c, b+d), \quad(a, b) .(c, d)=(a c, a d+b c)$.

Q11/ Find all units in the rings
1- $\left(Z_{9},+_{9}, X_{9}\right)$.
$2-Z \times Z$
3- $Z_{3} \times Z_{3}$
4- $Z_{4} \times Z_{6}$.

Q12/ Is Z_{2} a subring of Z_{6} ? Is $3 Z_{9}$ a subring of Z_{9} ?

Q13/ Give an example of a division ring which is not a field.

Q14/ Prove that $T=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$ is a subring of $M_{2}(\mathbb{R})$.
Q15/ In $\left(Z_{12},+_{12}, \times_{12}\right)$, find (i) $(2)^{2}+_{12}(9)^{-2}$

Q16/ Suppose that a and b belong to a commutative ring and $a b$ is a zero-divisor. Show that either a or b is a zero-divisor.

Q17/ Complete the operation tables for the ring $R=\{a, b, c, d\}$:

+	a	b	c	d
	a	b	c	d
B	b	a	d	c
C	c	d	a	b
D	d	c	b	a

	a	b	c	d	
a	a	a	a	a	
b	a	b			
c	a			a	
d	a	b	c		

Is R a commutative ring? Does it have a unity? What is its characteristic?
Hint. $c . b=(b+d) . b ; c . c=c .(b+d)$; etc.
Q18 Let R and S be commutative rings. Prove or disprove the following statements.
(a) An element $(a, b) \in R \times S$ is nilpotent if and only if a nilpotent in R and b is nilpotent in S.
(b) An element $(a, b) \in R \times S$ is a zero divisor if and only if a is a zero divisor in R and b is a zero divisor in S.

Q19/ Show that $Q[\sqrt{2}]=\{a+b \sqrt{2} \in R \mid a, b \in Q\}$ is a subfield of the field R.

Q20/ Find a subring of $\mathbb{Z} \times \mathbb{Z} Z$ that is not an ideal.

Q21/ If A and B are ideals of a ring, show that the sum of A and B, $A+B=\{a+b: a \in A, b \in B\}$ is an ideal.

Q22/ Let I be an ideal of a commutative ring R. Define the annihilator of I to be the set $\operatorname{ann}(I)=\{r \in R \mid r a=0$ for all $a \in I\}$. Prove that $\operatorname{ann}(I)$ is an ideal of R. In the ring $Z_{20}, I=<4>$ is an ideal. Find ann(I).

Q23/ Let $(I,+,$.$) be an ideal of the (R,+,$.$) . Define C(I)$ to be the set
$C(I)=\{r \in R \mid r a-a . r \in I$, for all $a \in R\}$. Prove that $C(I)$ is a subring of R.

Q24/ Which of the following rings are fields? Are integral domain? Why?
i) $(Z,+,$.
ii) $\left(Z_{5},+_{5}, .{ }_{5}\right)$
iii) $\left(Z_{25},+_{25}, \cdot 25\right)$.

Given that $(I,+,$.$) is an ideal of the ring (R,+,$.$) , answer the following equations:$
Q25/ Whenever $(R,+,$.$) is commutative with identity, then so is the quotient ring (R / I,+,$.$) .$
Q26/If $(R,+,$.$) is a principal ideal ring , then so is the quotient ring (R / I,+,$.$) .$
Q27/The ring $(R / I,+,$.$) may have divisor of zero, even though (R,+,$.$) does not have any.$
Q28/ In the ring Z_{24}, show that $I=\{[0],[8],[16]\}$ is an ideal. Find all elements of the quotient ring Z_{24} / I.

Q29/ Let R be an ideal of a ring R. Prove that the quotient ring R / I is a commutative ring if and if only if $a b-b a \in I$ for all $a, b \in R$.

Q30/ Find all prime ideals and all maximal ideals of $Z_{2} \times Z_{4}$.
Q31/ Find a prime ideal of $\mathrm{Z} \times \mathrm{Z}$ that is not maximal.
Q32/ Find a nontrivial proper ideal of Z x Z that is not prime.
Q33/ Find a subring of the ring Z x Z that is not an ideal of $\mathrm{Z} \mathrm{x} \mathrm{Z}$.
Q34/ Describe the quotient rings in $Z / 4 Z, Z_{12} /(3), 2 Z / 8 Z$ and $Z \times Z / 2 Z \times\{0\}$.
Q35/Consider the equation $x^{2}-5 x+6=0$. Find all solutions of this equation in Z_{7}, Z_{8} and Z_{12}.

Q36/ Find all units, zero-divisors, and nilpotent elements in the rings $Z_{24} Z \times Z, Z_{3} \times Z_{3}$, $Z \times Q$ and $Z_{4} \times Z_{6}$.

Q37/ Prove or disprove
1- If $f:(R,+,.) \rightarrow\left(R^{\prime},+^{\prime}, .^{\prime}\right)$ is a homomorphism and $(I,+,$.$) is an ideal of (R,+,$.$) , then$ $\left(f(I),+^{\prime}, .^{\prime}\right)$ is an ideal of $\left(R^{\prime},+^{\prime}, .^{\prime}\right)$.
2- If a ring $(R,+,$.$) have divisor of zero, then so is (R / I,+,$.$) .$
3- Every subring is an ideal of the ring $(R,+,$.$) .$
4- Every maximal ideal of commutative ring with identity is prime.
5- Every primary ideal is a prime.
6- If a ring $(R / I,+,$.$) have divisor of zero, then so is (R,+,$.$) .$
7- The cancellation law holds in any ring.
8- Every field is an integral domain.
9- Let $(R,+,$.$) be a ring. Then (cent (R),+,$.$) is a subring of (R,+,$.
10- If $(R,+,$.$) is an integral domain, then so is (R / I,+,$.$) .$
11- If $(I,+,$.$) is an ideal of the ring (R,+,$.$) containing the identity element, then I=R$.
12-Every integral domain is a field.
13- Every ring has a multiplicative identity.
14- Every maximal ideal of a ring R is a prime ideal.
15- Every prime ideal of a ring R is a prime ideal.
16- If $(R,+,$.$) is an integral domain, then so is (R \times R,+,$.$) .$
17- The characteristic of an integral domain $(R,+,$.$) is either zero or a prime.$
18- Any ring without identity, then so is subring.
19- Any ring with identity, then so is subring.
20- If $(R,+,$.$) is a ring such that R \neq\left\{0_{R}\right\}$, then the element 0_{R} and 1_{R} are distinct.
21- The union of two ideals is ideal
22- The intersection of two ideals is ideal.
23-Every finite integral domain is field.
24- Every division ring is field.
25- Every field is division ring.
26- Every maximal ideal of commutative ring with identity is a prime ideal.
27- If $(R,+,$.$) is commutative with identity, then so is the quotient ring (R / I,+,$.$) .$
28 - the multiplicative identity in a ring with unity R is unique.

