Solve the following problems in Group Theory

- Q1/ Suppose (H,*) and (K,*) are normal subgroups of the group (G,*) with $H \cap K = [e]$. Show that h * k = k * h for all $h \in H$ and $k \in K$.
- Q2/ In the commutative group (G,*), let the set H consist of all elements of finite order. Prove that
 - a) (H,*) is normal subgroup of (G,*), called the torsion subgroup.
 - b) The quotient group $(G/H, \otimes)$ is torsion –free; that is, none of its elements other than the identity are of finite order.

Q3/ Show that a group (G,*) is commutative if and only if [G, G] = {e}.

Q4/Let (H,*) be a subgroup of (G,*). If $x^2 \in H$ for all $x \in G$, prove that

- (a) (H,*) is a normal subgroup of (G,*).
- (b) The quotient $(G/H, \otimes)$ is commutative.

Q5/ In the following, determine whether the function f is a homomorphism.

- a) $f(a) = -a, f: (\mathbb{R}, +) \rightarrow (\mathbb{R}, +).$
- b) $f(a) = |a|, f: (\mathbb{R} \{0\}, .) \to (\mathbb{R}^+, .).$
- c) f(a) = a/q, $(q \ a \ fiext \ integer)$ $f: (Z, +) \rightarrow (Q, +)$

Q6/ Consider two groups (Z, +) and (G, .) with $G = \{-1, 1, -i, i\}$ where $i^2 = -1$. Show that

the mapping defined by $f(n) = i^n$, for $n \in Z$ is a homomrphism from (Z, +) onto (G, *)

)

and determine ker f.

Q7/ Prove that if the quotient group $(G/cen(G), \otimes)$ is cyclic, then (G,*) is a commutative group.

Q8/ Show that two groups $(R^{\#}, +)$ and $(R^{\#} - \{0\}, .)$ are not isomorphic.

- Q9/ Let the set $G = Z \times Z$ and binary operation * on *G* given by the rule (a, b) * (c, d) = (a + c, b + d). Then
 - a) Show that (*G*,*) is a commutative group.
 - b) Show that the mapping $f: G \to Z$ defined by f[(a, b)] = a is a homomorphism.
 - c) Determine the kernel of f.
 - d) If $H = \{(a, a) \mid a \in Z\}$, prove that (H, *) is a subgroup of (G, *).

Q10/ Let (H,*) be a proper subgroup of (G,*) such that for all $x, y \in G - H$, $xy \in H$. Prove

that (H,*) is a normal subgroup of (G,*).

Q11/Let (G,*) be a group and H and N are proper normal subgroups of (G,*). Suppose $G = H \cup N$ and $H \cap N = \{e\}$. Prove that (G,*) is commutative.

- Q13/ Let $H = \{e, (1 \ 4)(2 \ 3), (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4)\}$, where *e* is the identity permutation. Determine whether or not *H* is a normal subgroup of S_4 .
- Q14/ Let (H,*) and (K,*) be subgroups of a group (G,*) such that (H,) is a normal subgroup of
 - (*G*,*). Prove that $H \cap K$ is a normal subgroup of *K*.
- Q15/Let (G,*) be a finite commutative group. Let $n \in Z$ be such that n and |G| are relatively prime. Show that the function $f : G \to G$ defined by $f(a) = a^n$ for all $a \in G$ is an isomorphism of (G,*) onto (G,*).
- Q16/ Determine whether the indicated function f is a homomorphism from the first group into the second group. If f is a homomorphism, determine its kernel.
 - a) f(a) = a², (ℝ⁺,.), (ℝ⁺,.) for all a ∈ ℝ⁺.
 b) f(a) = |a|, (ℝ {0},.), (ℝ⁺,.) for all a ∈ ℝ {0}.
 c) f([a]) = [5a], (Z₈, +₈), (Z₈, +₈)

Q17/ Show that (Q, +) is not cyclic.

Q18/ Give an example of a group (G,*) and a subgroup (H,*) of (G,*) such that aH = bH, but

 $Ha \neq Hb$ for some $a, b \in G$.

- Q19/ Let G be a noncyclic group of order p^2 , p a prime integer. Show that the order of each non-identity element is p.
- Q20/ Let $G = \{a, b, c, d\}$ be a group. Complete the following Cayley table for this group.

*	а	b	с	d
а				
b				
с			b	
d		b		

Q22/ Prove or disprove

- 1- Let G = (a) be a cyclic group of order 30. Then $[G : (a^5)] = 5$.
- 2- Every proper subgroup of a group of order p^2 (*p* aprime) is cyclic.
- 3- A subgroup (H,*) of a group (G,*) is a normal subgroup if and only if every right coset

of *H* is also a left coset.

- 4- If A, B and C are normal subgroups of a group G, then $A(B \cap C)$ is a normal subgroup of G.
- 5- Every commutative subgroup of a group G is a normal subgroup of G.

- 6- If G is a group of order 2p, p an odd prime, then either G is commutative or G contains a normal subgroup of order p.
- 7- If every element of a group G is of finite order, then G is a finite group.
- 8- The group (Z, +) is isomorphic to (Q, +).
- 9- If f and g are two epimorphisms of a group G onto a group H such that Ker f = Ker g, then f = g.
- 10- $(Z \times Z, +)$ is a cyclic group.

Solve the following problems in Ring Theory

- Q1/In a ring (Z, \oplus, \odot) , where $a \oplus b = a + b 1$ and $a \odot b = a + b ab$, for all $a, b \in Z$. Find zero element and identity element.
- Q2/Let R denote the set of all functions $f: \mathbb{R}^{\#} \to \mathbb{R}^{\#}$. The sum f + g and the product f.g of

two function $f, g \in R$ are defined by $(f + g)(x) = f(x) + g(x), \quad (f.g)(x) = f(x).g(x), x \in R^{\#}.$ Show that (R, +, .) is the commutative ring.

- Q3/ Let (R, +, .) be an arbitrary ring. In R define a new binary operation * by a * b = a. b + b. a for all $a, b \in R$. Show that (R, +, *) is a commutative ring.
- Q4/ Show that the multiplicative identity in a ring with unity R is unique.
- Q5/ Suppose that *R* is a ring with unity and that $a \in R$ is a unit of *R*. Show that the Multiplicative inverse of *a* is unique.
- Q6/ Let (3Z, +) be an abelian group under usual addition where $3Z = \{3n \mid n \in Z\}$. Show that $(3Z, +, \odot)$ is a commutative ring with identity 3, where $a \odot b = \frac{ab}{3}$, for all $a, b \in 3Z$.
- Q7/ Let (R, +, .) be a ring which has the property that $a^2 = a$ for every $a \in R$. Prove that (R, +, .) is a commutative ring. [Hint: First show a + a = 0, for any $a \in R$].
- Q8/ Prove that a ring *R* is commutative if and only if $a^2 - b^2 = (a + b)a - b$, for all $a, b \in R$.
- Q9/ Prove that a ring R is commutative if and only if $(a + b)^2 = a^2 + 2ab + b^2$, for all $a, b \in R$.

Q10/ Let *R* be the set of all ordered pairs of nonzero real numbers. Determine whether (R, +, .) is

a commutative ring with identity.

(a) (a,b) + (c,d) = (ac,bc+d), (a,b).(c,d) = (ac,bd)(b) (a,b) + (c,d) = (a+c,b+d), (a,b).(c,d) = (ac,ad+bc).

Q11/ Find all units in the rings

1- $(Z_9, +_9, \times_9)$. 2- $Z \times Z$ 3- $Z_3 \times Z_3$ 4- $Z_4 \times Z_6$.

Q12/ Is Z_2 a subring of Z_6 ? Is $3Z_9$ a subring of Z_9 ?

Q13/ Give an example of a division ring which is not a field.

- Q14/ Prove that $T = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$ is a subring of $M_2(\mathbb{R})$.
- Q15/ In $(Z_{12}, +_{12}, \times_{12})$, find (i) $(2)^2 +_{12} (9)^{-2}$.
- Q16/ Suppose that *a* and *b* belong to a commutative ring and *ab* is a zero-divisor. Show that either *a* or *b* is a zero-divisor.

$\sqrt{177}$ Complete the operation tables for the fing $\Lambda = \{u, v, v, v\}$
--

+	а	b	С	d
	а	b	С	d
В	b	а	d	С
С	С	d	а	b
D	d	С	b	а

•	а	D	С	a	
а	а	а	а	а	
b	а	b			
С	a			a	
d	а	b	С		

Is *R* a commutative ring? Does it have a unity? What is its characteristic? Hint. c.b = (b + d).b; c.c = c.(b + d); etc.

Q18 Let R and S be commutative rings. Prove or disprove the following statements.

- (a) An element $(a, b) \in R \times S$ is nilpotent if and only if a nilpotent in R and b is nilpotent in S.
- (b) An element $(a, b) \in R \times S$ is a zero divisor if and only if a is a zero divisor in R and b is a zero divisor in S.

Q19/ Show that $Q[\sqrt{2}] = \{a + b\sqrt{2} \in R \mid a, b \in Q\}$ is a subfield of the field R.

Q20/ Find a subring of $\mathbb{Z} \times \mathbb{Z}Z$ that is not an ideal.

Q21/ If A and B are ideals of a ring, show that the sum of A and B, $A + B = \{a + b : a \in A, b \in B\}$ is an ideal.

Q22/Let I be an ideal of a commutative ring R. Define the annihilator of I to be the set

 $ann(I) = \{r \in R \mid ra = 0 \text{ for all } a \in I\}$. Prove that ann(I) is an ideal of R. In the ring Z_{20} , $I = \langle 4 \rangle$ is an ideal. Find ann(I).

Q23/Let (I, +, .) be an ideal of the (R, +, .). Define C(I) to be the set

 $C(I) = \{r \in R | ra - a.r \in I, for all a \in R\}$. Prove that C(I) is a subring of R.

Q24/ Which of the following rings are fields? Are integral domain? Why? i) (Z, +, .) ii) $(Z_5, +_5, ._5)$ iii) $(Z_{25}, +_{25}, ._{25})$.

Given that (I, +, .) is an ideal of the ring (R, +, .), answer the following equations:

Q25/ Whenever (R, +, .) is commutative with identity, then so is the quotient ring (R/I, +, .).

Q26/If (R, +, .) is a principal ideal ring, then so is the quotient ring (R/I, +, .).

- Q27/The ring (R/I, +, .) may have divisor of zero, even though (R, +, .) does not have any.
- **Q28**/ In the ring Z_{24} , show that $I = \{[0], [8], [16]\}$ is an ideal. Find all elements of the quotient ring Z_{24}/I .
- Q29/Let *R* be an ideal of a ring *R*. Prove that the quotient ring R/I is a commutative ring if and if only if $ab ba \in I$ for all $a, b \in R$.
- Q30/ Find all prime ideals and all maximal ideals of $Z_2 \times Z_4$.
- Q31/ Find a prime ideal of $Z \times Z$ that is not maximal.
- Q32/ Find a nontrivial proper ideal of $Z \times Z$ that is not prime.
- Q33/ Find a subring of the ring Z x Z that is not an ideal of Z x Z.
- Q34/ Describe the quotient rings in Z/4Z, $Z_{12}/(3)$, 2Z/8Z and $Z \times Z/2Z \times \{0\}$.
- Q35/ Consider the equation $x^2 5x + 6 = 0$. Find all solutions of this equation in Z_7 , Z_8 and Z_{12} .
- Q36/ Find all units, zero-divisors, and nilpotent elements in the rings $Z_{24} Z \times Z, Z_3 \times Z_3$, $Z \times Q$ and $Z_4 \times Z_6$.

Q37/ Prove or disprove

- 1- If $f:(R,+,.) \to (R',+',.')$ is a homomorphism and (I,+,.) is an ideal of (R,+,.), then (f(I),+',.') is an ideal of (R',+',.').
- 2- If a ring (R, +, .) have divisor of zero, then so is(R/I, +, .).
- 3- Every subring is an ideal of the ring (R, +, .).
- 4- Every maximal ideal of commutative ring with identity is prime.
- 5- Every primary ideal is a prime.
- 6- If a ring (R/I, +, .) have divisor of zero, then so is(R, +, .).
- 7- The cancellation law holds in any ring.
- 8- Every field is an integral domain.
- 9- Let (R, +, .) be a ring. Then (cent(R), +, .) is a subring of (R, +, .)
- 10- If (R, +, .) is an integral domain, then so is (R/I, +, .).
- 11- If (I, +, .) is an ideal of the ring (R, +, .) containing the identity element, then I = R.
- 12-Every integral domain is a field.
- 13-Every ring has a multiplicative identity.
- 14-Every maximal ideal of a ring *R* is a prime ideal.
- 15-Every prime ideal of a ring *R* is a prime ideal.
- 16- If (R, +, .) is an integral domain, then so is $(R \times R, +, .)$.
- 17- The characteristic of an integral domain (R, +, .) is either zero or a prime.
- 18- Any ring without identity, then so is subring.
- 19- Any ring with identity, then so is subring.
- 20- If (R, +, .) is a ring such that $R \neq \{0_R\}$, then the element 0_R and 1_R are distinct.
- 21- The union of two ideals is ideal
- 22- The intersection of two ideals is ideal.
- 23- Every finite integral domain is field.
- 24- Every division ring is field.
- 25-Every field is division ring.
- 26-Every maximal ideal of commutative ring with identity is a prime ideal.
- 27- If (R, +, .) is commutative with identity, then so is the quotient ring (R/I, +, .).
- 28- the multiplicative identity in a ring with unity R is unique.