Question bank of ring

- Q1/Let R be a ring with unity 1. Show that (-1)a = -a for all $a \in R$.
- Q2/ Find all units, zero-divisors, and nilpotent elements in the rings $Z \times Z$, $Z_3 \times Z_3$, $Z \times Q$ and $Z_4 \times Z_6$.
- $Q_3/(a)$ Show that the multiplicative identity in a ring with unity R is unique.
- (b) Suppose that R is a ring with unity and that $a \in R$ is a unit of R. Show that the multiplicative inverse of a is unique.
- Q4/ Determine the center of the ring $M_2(R)$.
- Q5/ Is Z_2 a subring of Z_6 ? Is $3Z_6$ a subring of Z_6 ?
- Q6/ In Z_{24} , (a) find all nilpotent elements;
 - (b) An element $a \in R$ is called idempotent if $a^2 = a$. Find all idempotent elements.
- Q7/ Find a commutative ring with zero divisors a, b such that a + b is not a zero divisor and

 $a + b \neq 0$.

- Q8/ Consider the equation $x^2 5x + 6 = 0$. Find all solutions of this equation in Z_7 , Z_8 , Z_{12} and Z_{14} .
- Q9/Let *R* be a commutative ring. Show that $(a b)^2 = a^2 2ab + b^2$, for all $a, b \in R$.
- Q10/ Let *R* be an ideal of a ring *R*. Prove that the quotient ring R/I is a commutative ring if and only if $ab ba \in I$ for all $a, b \in R$.
- Q11/ Let I be an ideal of a commutative ring R. Define the annihilator of I to be the set

 $ann(I) = \{r \in R \mid ra = 0 \text{ for all } a \in I\}$. Prove that ann(I) is an ideal of R. In the ring Z_{12} , find ann(I).

- Q12/ Let (R, +, .) be a ring which has the property that $a^2 = a$ for every $a \in R$. Prove that (R, +, .) is a commutative ring. [Hint: First show a + a = 0, for any $a \in R$.].
- Q13/ Let (R, +, .) be an arbitrary ring. In R define a new binary operation * by a * b = a.b + b.a for all $a, b \in R$. Show that (R, +, *) is a commutative ring.
- Q14/Let (I, +, .) be an ideal of the (R, +, .). Define C(I) to be the set

 $C(I) = \{r \in R | ra - a. r \in I, for all a \in R \}$. Prove that C(I) is a subring of R.

Q15/ If A and B are ideals of a ring, show that the sum of A and B, $A + B = \{a + b : a \in A, b \in B\}$ is an ideal.

Q16/ Describe the quotient rings in Z/4Z, $Z_{12}/(3)$, 2Z/8Z and $Z \times Z/2Z \times \{0\}$.