Question bank of ring

$\mathrm{Q} 1 /$ Let R be a ring with unity 1 . Show that $(-1) a=-a$ for all $a \in R$.
Q2/ Find all units, zero-divisors, and nilpotent elements in the rings $Z \times Z, Z_{3} \times Z_{3}, Z \times Q$ and $Z_{4} \times Z_{6}$.

Q3/ (a) Show that the multiplicative identity in a ring with unity R is unique.
(b) Suppose that R is a ring with unity and that $a \in R$ is a unit of R. Show that the multiplicative inverse of a is unique.

Q4/ Determine the center of the ring $M_{2}(R)$.
Q5/ Is Z_{2} a subring of Z_{6} ? Is $3 Z_{6}$ a subring of Z_{6} ?
Q6/ In Z_{24}, (a) find all nilpotent elements;
(b) An element $a \in R$ is called idempotent if $a^{2}=a$. Find all idempotent elements.

Q7/ Find a commutative ring with zero divisors a, b such that $a+b$ is not a zero divisor and $a+b \neq 0$.

Q8/ Consider the equation $x^{2}-5 x+6=0$. Find all solutions of this equation in Z_{7}, Z_{8}, Z_{12} and Z_{14}.

Q9/ Let R be a commutative ring. Show that $(a-b)^{2}=a^{2}-2 a b+b^{2}$, for all $a, b \in R$.
Q10/ Let R be an ideal of a ring R. Prove that the quotient ring R / I is a commutative ring if and only if $a b-b a \in I$ for all $a, b \in R$.

Q11/ Let I be an ideal of a commutative ring R. Define the annihilator of I to be the set $\operatorname{ann}(I)=\{r \in R \mid r a=0$ for all $a \in I\}$. Prove that $\operatorname{ann}(I)$ is an ideal of R. In the ring Z_{12}, find ann (I).

Q12/Let $(R,+,$.$) be a ring which has the property that a^{2}=a$ for every $a \in R$. Prove that $(R,+,$.$) is a commutative ring. [Hint: First show a+a=0$, for any $a \in R$.].

Q13/ Let $(R,+,$.$) be an arbitrary ring. In R define a new binary operation * by a * b=a . b+b . a$ for all $a, b \in R$. Show that $(R,+, *)$ is a commutative ring.

Q14/ Let $(I,+,$.$) be an ideal of the (R,+,$.$) . Define C(I)$ to be the set $C(I)=\{r \in R \mid r a-a . r \in I$, for all $a \in R\}$. Prove that $C(I)$ is a subring of R.

Q15/ If A and B are ideals of a ring, show that the sum of A and $B, A+B=\{a+b: a \in A, b \in B\}$ is an ideal.

Q16/ Describe the quotient rings in $Z / 4 Z, Z_{12} /(3), 2 Z / 8 Z$ and $Z \times Z / 2 Z \times\{0\}$.

