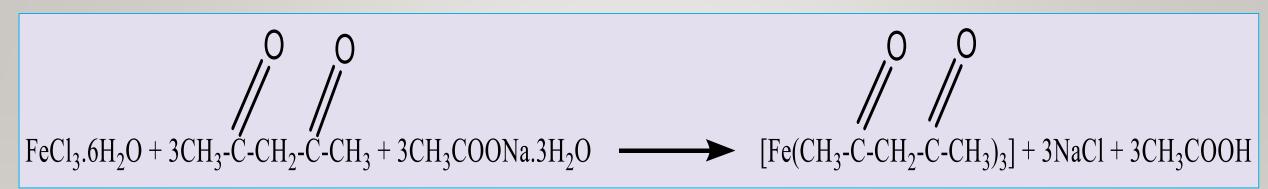
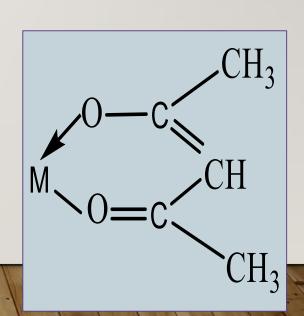


University of Salahaddin- Hawler College of Education-Chemistry Department


P. Inorganic Chem., Third Stage

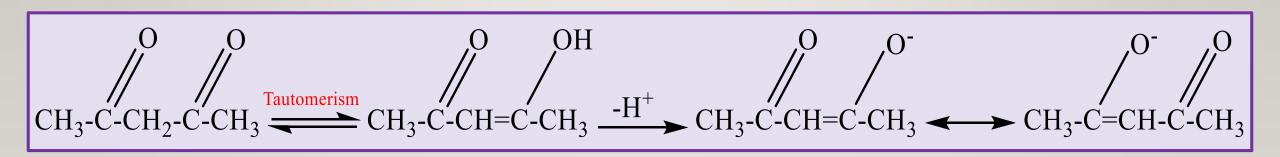
Prepared by: Nhiyat Hamadamen Hassan (nhiyat.hassan@su.edu.krd) 2021-2022

EXPERIMENT.


NO. 1

Preparation of tirs(acetylacetonato)iron(III) [Fe(acac)₃]

Theory:

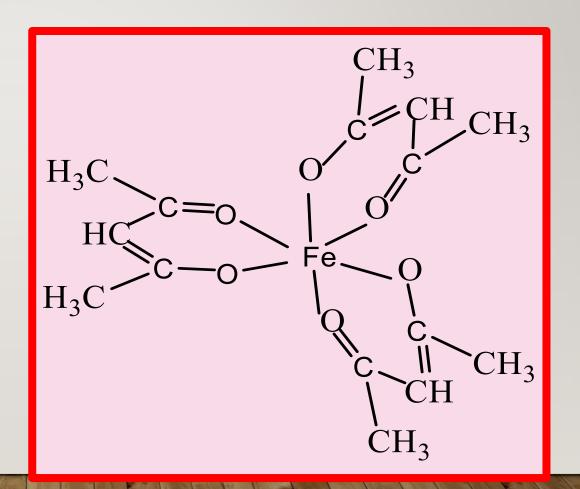

The acetylacetonate anion forms complexes with many metal ions where in both oxygen atoms bind to the metal to form a six-membered chelating ring.

There is Resonance stabilization in the acetyl acetone structure

Resonance: occurred in unsaturated system defined as a delocalization of electrons to the π orbitals.

Tautomerism: occurred in *equilibrium* system at *liquid* state, defined are isomers of a compound which differ only in the position of the protons and electron.

B-diketone form

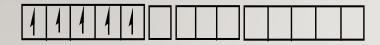

enol form

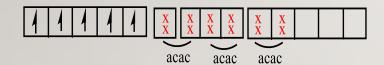
Tautomeric equilibrium

Resonance forms of the enolate an ion

This complex considers stable:

- a.Resonance
- b. Bidentate or chelated effect
- c. 6-member ring

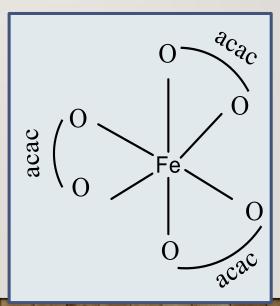

The electron configuration for this complex according to Valence bond theory


$$_{26}$$
Fe = [Ar₁₈] $3d^64s^24p^04d^0$

ground state atom

$$Fe^{3+} = [Ar_{18}] 3d^54s^04p^04d^0$$

ground state ion


Excited state ion

electron donated by 3 molecular of acac ligand

$$C.N. = 6$$

hybrid = sp^3d^2 outer d orbital

geometry = Oh

$$H_3C$$
 $C=0$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

Procedure:

- 1. Dissolve (1.7g) from (FeCl₃.6H₂O) in (10ml) D.W. add (1.9ml) acac., let the solution in the room temperature about 15 minutes, with stirring.
- 2. Add (6.25g) CH₃COONa.3H₂O to the mixture shaking well after each addition.
- 3. Cool the mixture in ice bath, until the red precipitation appears filter the precipitate wash with cool water.

4. Weight the dry product and record the percentage yield.

Calculation:-

```
      FeCl_3.6H_2O
      [Fe(acac)_3]

      404
      352.8

      1.7g
      x

      x = 1.4gWt.Theory
```

$$\%$$
 yield = $\%$ [Fe(acac)₃]

Questions:

1. What is the role of CH₃COONa.3H₂O?

2. Why oxygen acts as a donor atom?

