Engineering Analysis

Lec. 1
Fall course 2021-2022
$3^{\text {rd }}$ Year
$\mathcal{T H}_{\text {yan }} \operatorname{Daniood~}$

Differential Equations

Ordinary differential equations (ODEs) are differential equations that depend on a single variable.
The more difficult study of partial differential equations (PDEs), that is, differential equations that depend on several variables,

ODE

- An ordinary differential equation (ODE) is an equation that contains one or several derivatives of an unknown function, which we usually call $\mathrm{y}(\mathrm{x})$
or sometimes $\mathrm{y}(\mathrm{t})$, if the independent variable is time t .
The equation may also contain y itself, known functions of x (or t), and constants. For example,

$$
\begin{gather*}
y^{\prime}=\cos x \tag{1}\\
y^{\prime \prime}+9 y=e^{-2 x} \tag{2}\\
y^{\prime} y^{\prime \prime \prime}-\frac{3}{2} y^{\prime 2}=0
\end{gather*}
$$

are ordinary differential equations (ODEs). Here, as in calculus, y^{\prime} denotes $d y / d x$, $y^{\prime \prime}=d^{2} y / d x^{2}$, etc. The term ordinary distinguishes them from partial differential equations (PDEs), which involve partial derivatives of an unknown function of two or more variables. For instance, a PDE with unknown function u of two variables x and y is

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Fig. 4A. Solutions of $y^{\prime}=0.2 y$
in Example 3 (exponential growth)

Fig. 4B. Solutions of $y^{\prime}=-0.2 y$ in Example 3 (exponential decay)

Geometrically, the general solution of an ODE is a family of infinitely many solution curves, one for each value of the constant c.

Initial value problem

by an initial condition (X_{0}, Y_{0})with given values X_{0} and Y_{0} that is used to determine a value of the arbitrary constant C .
, if the ODE is explicit, $\mathrm{Y}^{\prime}=\mathrm{f}(\mathrm{X}, \mathrm{Y})$ and the initial value problem $\mathrm{f}\left(X_{0}\right)=Y_{0}$

Example:
Solve the initial value problem

$$
y^{\prime}=\frac{d y}{d x}=3 y, \quad y(0)=5.7 .
$$

Solution. The general solution is $y(x)=c e^{3 x}$;
From this solution and the initial condition we obtain $y(0)=c e^{0}=c=5.7$. Hence the initial value problem has the solution $y(x)=5.7 e^{3 x}$. This is a particular solution.

First-order ODE

Equations contain only the first derivative y^{\prime} and may contain y and any given functions of x. Hence written as

$$
\begin{array}{ll}
F\left(x, y, y^{\prime}\right)=0 & \text {; implicit form } \\
& \text { or } \\
Y^{\prime}=f(x, y) & \text {; explicit form }
\end{array}
$$

Example1: $y=c / x, y^{\prime}=-c / x^{2}$ explicit form or $x y^{\prime}+y=0$ implicit form
a) Verify that y is a solution of the ODE.
(b) Determine from y the particular solution of the initial value problem.

$$
\begin{aligned}
& y^{\prime}+4 y=1.4, \quad y=c e^{-4 x}+0.35, \quad y(0)=2 \\
& y^{\prime}+5 x y=0, \quad y=c e^{-2.5 x^{2}}, \quad y(0)=\pi
\end{aligned}
$$

Type of equations

- Separated equations

$$
(\mathrm{y} \text {-term }) \mathrm{dy}=(\mathrm{x} \text {-term) } \mathrm{dx}+\mathrm{C}
$$

- Homogeneous methods check firstly if $f(k x, k y)=f(x, y)$ Solving by Reduction to Separable Form
- Solution by Integration Factor
- Exact Differential Equation

Homogeneous Method Reduction to Separable Form

We discuss this technique for a class of ODEs of practical importance, namely, for equations $\quad Y^{\prime}=f\left(\frac{y}{x}\right) \quad$,Here, f is any (differentiable) function of y / x, such as: $\sin (y / x),(y / x)^{4}, \ldots$.

The form of such an ODE suggests that we set $\underline{\mathbf{u}=\mathbf{y} / \mathbf{x} \text {; thus, }}$
$y=u x$; and by product differentiation $y^{\prime}=u^{\prime} x+u$ Substituting $y^{\prime}=f(y / x)=f(u)$, so $f(u)=u^{\prime} x+u$ and $u^{\prime} x=f(u)-u$, know variables separated $\quad \frac{d u}{f(u)-u}=\frac{d x}{x}$

Note: or suggests that we set $\underline{\mathbf{u}=\mathbf{x} / \mathbf{y}}$

Example : Solve $\left(x^{2}+y^{2}\right) \mathrm{dx}+2 \mathrm{xydy}=0$
Let $\mathrm{u}=\mathrm{y} / \mathrm{x}$...
And then let $u=x / y$

Tutorial C.W.

$\mathrm{Q}: / /$ solve these deferential equations by reproduction using separable form:

- $x d y-y d x-\sqrt{x^{2}-y^{2}} d x=0$

Ans. $\mathrm{CX}=e^{\sin ^{-1} y / x}$

- $(2 x \sinh (y / x)+3 y \cosh (y / x)) d x-3 x \cosh (y / x) d y=0$

Ans. $x^{2}=\operatorname{Csinh}^{3} y / x$

- $(2 x+3 y) d x+(y-x) d y=0$

Ans. $\mathrm{C}=\ln \left(y^{2}+2 x y+2 x^{2}-4 \tan ^{-1} \frac{x+y}{x}\right.$

ODEs. Integrating Factors

The general form of DE that must be solved by Integration factor :

$$
Y^{\prime}+P(x) y=Q(x)
$$

IF: $\quad q(x)=e^{\int P(x) d x}$
The solution will be $\quad q(x) y=\int q(x) Q(x) d x+C$
Or,
The DE that will written in the form $\frac{d x}{d y}+\mathrm{P}(\mathrm{y}) \mathrm{x}=\mathrm{Q}(\mathrm{y})$
IF: $\quad q(y)=e^{\int P(y) d y}$
The solution will be

$$
q(y) \mathrm{x}=\int q(\mathrm{y}) Q(y) d y+C
$$

Solve the following DE using integration factor.

A) $x y^{\prime}+3 y=\frac{\sin x}{x^{2}}$
B) $\left(y^{2}+1\right) \mathrm{d} x+(2 x y+1) \mathrm{d} y=0$
C) $(x-1)^{3} \frac{d y}{d x}+4(x-1)^{2} y=x+1$

Exact DE

Standard Form :
 $M(x, y) d x+N(x, y) d y=0$

Step1:
Observe if the equation in S.F.
Step2:
Identify $\mathrm{M}(\mathrm{x}, \mathrm{y}), \mathrm{N}(\mathrm{x}, \mathrm{y})$, or My , Nx
Step3:
Check if its Exact DE cont. , else stop

Step 4:

Integrate either $\mathrm{M}(\mathrm{x}, \mathrm{y})$ part or $\mathrm{N}(\mathrm{x}, \mathrm{y})$ part

Step 5:

Step 6:

Step 7:

Step 8:

Differentiate (partially) with respect to y

$$
\frac{d}{d y}[\ldots . .+\mathrm{g}(\mathrm{y})]
$$

To solve for $\mathrm{g}(\mathrm{y})$, set final equation with N

$$
\frac{d}{d y}[\ldots . .+\mathrm{g}(\mathrm{y})]=\mathrm{N}
$$

integrate both side

$$
\int \ldots . . d y
$$

Substitute $g(y)$ part with $g(y)$ result from step 4

Differentiate (partially) with respect to x

$$
\frac{d}{d x}[\ldots . . \mathrm{h}(\mathrm{x})]
$$

To solve for $h(x)$, set final equation with M

$$
\frac{d}{d x}[\ldots . .+\mathrm{h}(\mathrm{x})]=\mathrm{M}
$$

Substitute $h(x)$ part with $h(x)$ result from step 4

Solve the following ODE

- $\operatorname{Cos}(\mathrm{x}+\mathrm{y}) \mathrm{dx}+\left(3 y^{2}+2 y+\cos (x+y)\right) d y=0$
- $\left(3 x^{2}+1\right)+\left(3 y^{2}+2 y\right) y^{\prime}=0$

