
Engineering Analysis

Lec.4

Fall course 2021-2022

3rd Year

Nyan Dawood

Randomness and probability
Objectives :

- Review a programming concept central by OOP.

- The random walker will serve as a template for how to moving objects
around a Processing window.

Random Walks
• An object in Processing is an entity that has both data and functionality.

• A class is the template for building actual instances of objects.

Let’s begin by defining the Walker class, what it means to be a Walker object. Have x , y
location.

class Walker { int x;

int y;

Also must contains constructor .

• a constructor special function that is called when the object is first created.

Walker() {

x = width/2; // initialize first location in the

y = height/2; // center of window

}

• Walker class has two functions:

first function that allows the object to display itself (as a white or black
dot).

void render() { //function to display dot

stroke(0);

point(x,y);

}

Second function directs the Walker object to take a step.

There are four possible steps. X++, X--, Y++, Y–

,By randomly pick from four choices using random().

void step() {

int choice = int(random(4));

if (choice == 0) { //The random “choice” determines our step.

x++;}

else if (choice == 1) {

x--;}

else if (choice == 2) {

y++;}

else {

y--;}

}

}

in the main part of our sketch declare one global variable of type Walker.

Walker w;

Then create the new object and setup window size and color

void setup() {

size(640,360);

w = new Walker(); Create the Walker.

background(255);

}

void draw() { // Run the walker object

w.step();

w.render();

}

This Walker’s step choices are limited to four options—up, down, left, and
right. But any given pixel in the window has eight possible neighbors, and
a ninth possibility is to stay in the same place.

Randomly step to eight possible neighbors

void step() {

int stepx = int(random(3))-1; //Yields -1, 0, or 1

int stepy = int(random(3))-1;

x += stepx;

y += stepy;

}

Probability of four neighbor step =
𝟏

𝟒
= 25% chance

Probability of eight neighbor or remaining in its location =
𝟏

𝟗
= 11% chance

Probability and Non-Uniform Distributions

With a few tricks, we can change the way to use random() to produce
“non-uniform” distributions of random numbers.by many ways:

First: fill an array with a selection of numbers—some of which are

repeated then choose random numbers from that array and generate
events based on those choices.

int[] stuff = new int[5];
stuff[0] = 1; //1 is stored in the array twice
stuff[1] = 1; // probability to pick 1 will be 40%
stuff[2] = 2; // probability to pick 2 will be 20%
stuff[3] = 3; // probability to pick 3 will be 40%
stuff[4] =3;
int index = int(random(stuff.length)); //Picking a random element from an array

Second : allow an event to occur only if our random number is within a certain range.

Example: Let’s say that Outcome A has a 60% chance of happening, Outcome B has 10%
chance, and Outcome C, a 30% chance.

 between 0.00 and 0.60 (60%) –> Outcome A

 between 0.60 and 0.70 (10%) –> Outcome B

 between 0.70 and 1.00 (30%) –> Outcome C

Sol.

float num = random(1);
if (num < 0.6) {

println("Outcome A");
} else if (num < 0.7) {

println("Outcome B");
} else {

println("Outcome C");
}

We could use the above methodology to create a random walker that tends
to move to the right. Here is an example of a Walker with the following
probabilities:

 chance of moving up: 20%

chance of moving down: 20%

 chance of moving left: 20%

chance of moving right: 40%

void step() {
float r = random(1);
if (r < 0.4) { //40% chance of moving to the right!
x++;
} else if (r < 0.6) {
x--;
} else if (r < 0.8) {
y++;
} else {
y--;}
}

Exercise
Create a random walker with dynamic probabilities. As instance you
can give it a 50% chance of moving in the direction of the mouse?

