
Garbage Collection

In Java, memory occupied by an object is automatically reclaimed when

the object is no longer needed. This is achieved by a process called

Garbage Collection. The programmer does not have to worry about

releasing or reclaiming memory used by object. This greatly reduces bugs

and helps programmers be more productive.

The Java interpreter knows which objects it has allocated. It also knows

which variables or objects refer to which other objects. So the interpreter

can determine which objects are no longer referenced by any variable and

it then destroys those objects.

The Java garbage collector runs as a low-priority thread, so it does most of

its work when nothing else is going on. The only time that it must run even

when some high-priority thread is going on is when available memory is

dangerously low. But this doesn’t happen often because the low-priority

thread is running in the background and cleans unused objects.

Object Oriented Programming in Java 1

Finalizers

Constructors are used to create objects: obtain memory, obtain resources,

initialize object data…

Finalizers are used to return allocated resources back to the system such

as file, print and network connections. Remember that the garbage

collector automatically reclaims memory. So you don’t need to worry

about reclaiming memory, except in some situations where you may have

to help the garbage collector in identifying unused objects.

A class’s finalizer is called just before the garbage collector destroys the

object. It always has the name finalize, returns no values, has return

type void and takes no parameters. If you don’t define a finalize method

for your class, a default one is created that does nothing.

Object Oriented Programming in Java 2

Finalizers 2

Finalizers are a bit similar to C++’s destructor functions which are used to

return resources to the system. Finalizers are not as useful and necessary

as C++’s destrcutors and are not often used in normal Java programming.
The following is an example demonstrating how finalizers are used:

import javax.swing.*;

public class EmployeeTest{

public static void main(String[] args){

String output="Hello Finalize";

Employee e= new Employee(“X", “YZ");

JOptionPane.showMessageDialog(null,

output,"Finalizer Demo",

JOptionPane.INFORMATION_MESSAGE);

e=null; //mark for garbage collection

System.gc(); //suggest that GC be called

System.exit(0);

}

}

Object Oriented Programming in Java 3

Finalizers 3

class Employee{

public Employee(String fName, String lName){

this.fName=fName;

this.lName=lName;

System.out.println("Constuctor:" + fName+

" “ +lName);

}

protected void finalize(){

System.out.println("Finalizer Called");

}

private String fName, lName; }

Finalizer methods are usually declared as protected so that subclasses

can directly access and run them. You could also declare them as

Public but information hiding and encapsulation may be compromised.

The output of this program is a frame showing the message: “Hello

Finalize”

Object Oriented Programming in Java 4

Inheritance

Inheritance allows new classes to be created by reusing existing classes,

thus saving time in software development. New classes acquire proven

and debugged properties of existing classes.

In Java, the keyword extends is used to inherit a new class from an

existing class:

class Child extends Parent {….}

The new class Child is the subclass and the Parent is the superclass.

Unlike C++, Java does not support multiple inheritance, but it supports

interfaces which allow Java achieve many of the advantages of multiple

inheritance without the associated problems.

Every object of the subclass is also an object of the super-class but not the

other way round. A superclass’s protected members can be accessed

by members of that superclass, by members of its subclasses and by

members of other classes in the same package.

Object Oriented Programming in Java 5

Inheritance

The direct superclass is the superclass from which the subclass explicitly

inherits. An indirect superclass is any class above the direct superclass

in the class hierarchy. In Java, the class hierarchy begins with class

Object (in package java.lang), which every class in Java directly or

indirectly extends.

Java supports only single inheritance, in which each class is derived from

exactly one direct superclass. Unlike C++, Java does not support multiple

inheritance (a class is derived from more than one direct superclass).

All public and protected superclass members retain their original access

modifier when they become members of the subclass—public members of

the superclass become public members of the subclass, and protected

members of the superclass become protected members of the subclass.

A superclass’s private members are not accessible outside the class itself.

Rather, they’re hidden in its subclasses and can be accessed only through
the public or protected methods inherited from the superclass.

Object Oriented Programming in Java 6

Inheritance 2

Every class in Java must inherit from a superclass; if a new class does not
explicitly extend another class, Java implicitly uses the Object class as

the superclass for the new class. Class Object provides a set of methods

that can be used with any object of any class.

Consider the following example which is taken from the textbook:

class Point {

protected int x, y;

public Point() {

setPoint(0, 0);

}

public Point(int a, int b) {

setPoint(a, b);

}

//see next page…

Object Oriented Programming in Java 7

Inheritance 3

public void setPoint(int a, int b) {

x=a; y=b;

}

public int getX() { return x;}

public int getY() { return y;}

public String toString() {

return “[“ + x + “, “ + y + “]”;}

}

Public class Circle extends Point{

protected double radius;

public Circle() {

setRadius(0);

}

//see next page…

Object Oriented Programming in Java 8

Inheritance 4

public Circle(double r, int a, int b){

super(a, b);

setRadius(r);

}

public void setRadius(double r) {

radius= (r >=0.0 ? r : 0.0);

}

public double getRadius() { return radius;}

public double area() {

return Math.PI * radius * radius;

}

public String toString(){

return “Center= “ + “[“ + x + “, “ + y +

“; Radius= “ + radius; }

}

Object Oriented Programming in Java 9

Inheritance 5

import java.text.DecimalFormat;

import javax.swing.JOptionPane;

Public class InheritanceTest {

public static void main(String[] args) {

Point pointRef, p;

Circle circleRef, c;

String output;

p=new Point(30, 50);

c=new Circle(2.7, 120, 89);

output=“Point p: “ + p.toString() +

“\nCircle c: “ +c.toString();

pointRef=c; //since a circle is-a point

output+=“\nCircle c (via pointRef): “ +

pointRef.toString();

circleRef=(Circle) pointRef; //downcast

Object Oriented Programming in Java 10

Inheritance 6

output+=“\nCircle c (via circleref): “ +

circleRef.toString();

DecimalFormat precision2=new DecimalFormat(“0.00”);

output+=“\nArea of c (via circleRef): “ +

precision2.format(circleRef.area());

if(p instanceof Circle) {

circleRef=(Circle) p;

output+=“\nCast Successful”;

}

else

output+=“\np does not refer to a Circle”;

JOptionPane.showMessageDialog(null, output,

“Demonstarting the \”is-a \” relationship”,

JOptionPane.INFORMATION_MESSAGE);

System.exit(0);

}

Object Oriented Programming in Java 11

Inheritance 7

Object Oriented Programming in Java 12

Inheritance 7

In this example, class Circle inherits from class Point and adds members

specific to itself:

- Circle overrides Point’s toString method (polymorphism)

- Point and Circle both have a default constructor as well as a

parameterized constructor

- Subclass Circle needs to call superclass Point’s parameterized
constructor using super along with any required arguments,

and this statement must come before any other statements.

- Default constructors are invoked automatically.

- Superclass objects or references can be used to refer to

subclass objects because of the is-a relationship, hence
the statement pointRef=c;

Object Oriented Programming in Java 13

Inheritance 8

- Explicit casting is needed to make a Circle object to refer to a

Point object, hence the statement:

circleRef= (Circle) pointRef;

- Attempting to cast a Point object to a Circle object is an error, so
the statement: circleRef=(Circle) p; is illegal because p

refers to a Point object.

- The operator instanceof is used to check whether the object

to which it refers is a Circle.

- Superclass constructors are not inherited; subclass constructors
can call superclass constructors using the super reference.

Object Oriented Programming in Java 14

