
Collections

You can create complex data structures (linked lists, queues, stack,

trees…) in Java using objects and object references and by using heap

memory with the new operator.

Java supports something called the Java Collections Framework, which

provides the programmer with pre-packaged data structures as well as

algorithms to work on those data structures.

Here, we will look at interfaces, implementation classes, algorithms,

and iterators.

The Java Collections Framework provides you with ready components to

use. You don’t have to reinvent the wheel. The collections are

standardized so they can easily be shared; they also encourage reusability.

The collections can hold any type of data; what’s more, a collection can

hold objects/elements of different types.

Object Oriented Programming in Java 1

Collections 2

A collection is a data structure (an object) that can hold other objects.

The collection interfaces define the operations that can be performed on

each type of collection . The collections implementations implement these

operations in particular ways to provide customized solutions.

The most common interfaces in the framework are: Set, List. They both

extend the root Collection interface. The Collection interface provides

basic methods to manipulate collection objects. The framework also

includes the Map interface for data structures containing both value and

keys. Programmers can implement these interfaces specific to their

application needs.

As well as the above interfaces, the framework also contains other

interfaces useful when working with collection objects. The classes and

interfaces of the collections framework are all members of the java.util

package.

Object Oriented Programming in Java 2

Collections 3

One of the classes in the framework is the class Arrays which provides

static methods to manipulate arrays. You have seen this class before. The

methods of this class are overloaded to work on both arrays of primitive

types and objects. Here is a program which demonstrates some of the

more common methods of this class: (Only the main method is shown)

public static void main(String[] arg){

int[] a={3,1,2}; int[] b={1,2,3};

if(Arrays.equals(a,b))

System.out.println("Equal");

Arrays.fill(a, 5);

Arrays.sort(a);

//return index of 4 in array

System.out.println(Arrays.binarySearch(a,4));

for(int i=0; i<3; i++)

System.out.println(a[i]);

}

Object Oriented Programming in Java 3

Collections 4

The Collection interface provides methods (operations) common to all

collection objects such as: adding, clearing, comparing, determining a

collection’s size… There is also a class called Collections which contains

static methods to manipulate collections polymorphically.

A List is an ordered collection that may contain duplicate values. Like

arrays, Lists are zero based. Interface List is implemented by three
classes in the framework: ArrayList, LinkedList and Vector.

The following program demonstrates the ArrayList class:

import java.util.*;

public class myArrayList{

public static void main(String[] arg){

ArrayList aList=new ArrayList();

aList.add("Xyz");

Object Oriented Programming in Java 4

Collections 5

aList.add(new Integer(1));

aList.add(new Double(2.5));

aList.add(new Integer(3));

aList.add(2,new Integer(6));

System.out.println(aList.get(1));

System.out.println(aList.size());

System.out.println(aList.indexOf("Xyz"));

Iterator j=aList.iterator();

while(j.hasNext())

if(j.next() instanceof String)

j.remove();

System.out.println(aList.size());

for(int i=0; i<aList.size(); i++)

System.out.println(aList.get(i));

}

}

Object Oriented Programming in Java 5

Collections 6

The programs: first creates an ArrayList object and then using the

method add, appends or adds some elements to the list. More specifically,

it adds a string, an integer, a double, another double, and one last integer.

The last method takes two parameters, the first one specifies the position

in the list where the element will be stored. The previous element at the

position and all subsequent elements will be shifted to the right.

The get method takes the index of an element as a parameter and returns

that element. An IndexOutOfBoundsException exception will be

thrown if you provide an out of range index. The size method returns the
size of the ArrayList object.

The method indexOf the index of the first occurrence of the argument in

this list; returns -1 if the object is not found.

The next line, creates an iterator object which can be used to iterate

through collection objects. The iterator object has only three methods:

Object Oriented Programming in Java 6

Collections 7

hasNext checks to see if there are more elements in the list. Next

returns the next element in the list and remove removes the current

element reference by the iterator object.

Each ArrayList instance has a capacity. The capacity is the size of the

array used to store the elements in the list. It is always at least as large as

the list size. As elements are added to an ArrayList, its capacity grows

automatically. The ArrayList class has another constructor which takes a

parameter to specify the initial capacity of the list:

ArrayList(int initialCapacity)

This constructs an empty list with the specified initial capacity.

Notice that the ArrayList can hold objects of any type, as you saw in this

example. You cannot, however, directly store primitive type data like

integers and doubles in the list.

Object Oriented Programming in Java 7

../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html

Collections 8

Some useful ArralyList methods are:

- boolean addAll(Collection c) //group operation

Appends all of the elements in the specified Collection to the end of this

list, in the order that they are returned by the specified Collection's Iterator.

-boolean contains(Object elem)

Returns true if this list contains the specified element.

- boolean isEmpty()

Tests if this list has no elements.

-Object remove(int index)

Removes the element at the specified position in this list.

-Object set(int index, Object element)

Replaces the element at the specified position in this list with the specified

element.

Object Oriented Programming in Java 8

../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html
../../j2sdk1.4.1_03/docs/api/java/util/Collection.html
../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html
../../j2sdk1.4.1_03/docs/api/java/lang/Object.html
../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html
../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html
../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html
../../j2sdk1.4.1_03/docs/api/java/lang/Object.html

Collections 9

-Object[] toArray()

Returns an array containing all of the elements in this list in the correct

order.

-void trimToSize()

Trims the capacity of this ArrayList instance to be the list's current size.

For a complete coverage of the methods of this class, consult the JDK

documentation or a textbook.

The next collection implementation we are going to look at is the LinkedList

class.

A LinkedList, like an ArrayList also implements the List interface

but is more efficient for situations where you would insert/remove elements

in the middle of a sequence. Removing and inserting elements in the

Object Oriented Programming in Java 9

../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html
../../j2sdk1.4.1_03/docs/api/java/util/ArrayList.html

Collections 10

middle of an array, Vector or ArrayList are very expensive operations. The

LinkedList implementation does not suffer form this drawback. Because its

elements/object references are not stored sequentially. This class can also

be used to represent different types of queues and stacks.

LinkedList staff=new LinkedList();

staff.add(“ Xyz ”);

staff.add(“ Wyz ”);

staff.add(“ Zyz ”);

Staff.add(2,” Third ”);

Staff.remove(“ Wyz ”);

iterator it=staff.iterator();

for(int i=0; i<3; i++)

System.out.println(it.next());

This would output: Xyz Third Zyz

Object Oriented Programming in Java 10

Collections 11

But a linked list object in Java has references to both the next element and
the previous element. The Iterator interface we saw earlier only has a

forward reference to the next element. To facilitate bi-directional traversing
of linked list, Java provides the ListIterator interface.

LinkedList staff=new LinkedList();

staff.add(“ Xyz ");

staff.add(“ Wyz "); staff.add(“ Zyz ");

staff.add(2,“ Third ");

staff.remove(“ Wyz ");

ListIterator lt=staff.listIterator();

for(int i=0; i<staff.size(); i++)

System.out.println(lt.next());

for(int i=0; i<staff.size(); i++)

System.out.println(lt.previous());

The output: Xyz Third Zyz Zyz Third Xyz

Object Oriented Programming in Java 11

Collections 12

You can use the set method to change the value of an element of a list:

staff.set(0,"One");

Or you can use the listIterator:

Object oldValue=it.next();

it.set(newvalue);

The following program creates two linked lists, merges them and then

removes every second element from the second list. Finally the program
removes all elemants that exist in the second list from the first list:

public class LinkedListTest

{ public static void main(String[] args)

{

List a = new LinkedList();

a.add("ABC"); a.add("DEF"); a.add("GHI");

List b = new LinkedList();

b.add("JKL"); b.add("MNO"); b.add("PQR"); b.add("STU");

Object Oriented Programming in Java 12

Collections 13

// merge the words from b into a

ListIterator aIter = a.listIterator();

Iterator bIter = b.iterator();

while (bIter.hasNext())

{ if (aIter.hasNext()) aIter.next();

aIter.add(bIter.next());

}

System.out.println(a);

// remove every second word from b

bIter = b.iterator();

while (bIter.hasNext())

{ bIter.next(); // skip one element

if (bIter.hasNext())

{ bIter.next(); // skip next element

bIter.remove(); // remove that element

}

}

Object Oriented Programming in Java 13

Collections 14

System.out.println(b);

// bulk operation: remove all words in b from a

a.removeAll(b);

System.out.println(a);

}

}

The program outputs:

You should use a linked list only when you have to perform many

insertions/deletions of elements in the middle of a list. In other cases, you
should use an ArrayList, as it is more efficient.

Object Oriented Programming in Java 14

Collections 15

There are several methods which can be used to view a LinkedList as a

queue or stack:

void addFirst(Object ob);

void addLast(Object ob);

Object getFirst();

Object getLast();

Object removeFirst();

Object removeLast();

LinkedList queue = ...; //First-In-First-Out

queue.addFirst(element);

Object object = queue.removeLast();

LinkedList stack = ...; //First-In-Last-Out

stack.addFirst(element);

Object object = stack.removeFirst();

Object Oriented Programming in Java 15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

