
OO programming (Abstract Classes)

Abstract classes are classes that cannot be instantiated. Abstract classes

are used to factor out common behavior into a general class. You cannot

create objects whose type is abstract but you can have abstract class

variables that refer to some extended class object.

Abstract classes may contain abstract methods: methods that have no

definition in the original class and must be defined in non-abstract

subclasses (pure virtual classes in C++).

abstract class Message{

 public abstract void play();//must be overridden

}

class TextMessage extends Message{

 public void play() { System.out.println(“Text

 Message”);

}

Object Oriented Programming in Java 1

OO programming (Abstract Classes) 2

Rules about abstract classes/methods:

- Any class with an abstract method is automatically abstract and must be

 declared as such. Also, an abstract class cannot be instantiated.

-A subclass of an abstract class can be instantiated only if it overrides

 each of the abstract methods of its superclass and provides an

 implementation for all of them. (Concrete class, as opposed to abstract)

- If a subclass of an abstract class does not implement all the abstract

 methods it inherits, that subclass is itself abstract.

- static, private and final methods cannot be abstract, since they cannot be

 overridden by a subclass.

- A class can be declared abstract even though it does not have any

 abstract methods.

Object Oriented Programming in Java 2

OO programming (Abstract Classes) 3

As mentioned before, the Object class is the ultimate ancestor; every

class in Java extends this class. You can use a variable or object of type
Object to refer to any type:

 Object obj=new Employee(“H. Hacker”, 10000);

But you need to cast this object to the original type to use Employee

objects capabilities:
 Employee e=(Employee) obj;

The Object class has the method equals which returns true if two object

references refer to the same object. For your new classes, you should

always override this method so that it tests for object equality not reference

equality. For example, for the Employee class:

 public boolean equals(Object obj){

 if(!(obj instanceof Employee)) return

false;

 Empoyee e= (Employee) obj;

 return name.equals(e.name) &&

 salary.equals(e.salary) ...}
Object Oriented Programming in Java 3

OO programming (Abstract Classes) 4

Note that the equals method for the String class is overridden by Java.

Another method of Object is toString, which we saw earlier. Since

objects of any type or class can be held in variables of type Object, we can

use this for generic programming. For example, suppose we need a

method that takes an array and a value as parameters and we want the

method to return the index of that value in the array:

static int find(Object[] ob, Object value)

{

 for (int i=0; i<ob.length; i++)

 if(ob[i].equals(value)) return i;

 return -1; //not found

}

Employee[] staff=new Employee[10];

Employee e=new Employee(“Hacker”, 10000);

//...

int n=find(staff, e); //works on any object array

Object Oriented Programming in Java 4

OO programming (Interfaces)

Java does not support multiple inheritance. A Java class can extend only

one class. But in some situations we need classes that inherit behavior

from more than one parent class. The solution to this is using Java

interfaces.

Many believe that multiple inheritance, in C++, introduces more complexity

and work on the part of the programmer than solve problems. For

example, it causes complications in dealing with multiple copies of

inherited members.

An interface is a class but a class which can only contain abstract methods

and constants. It cannot contain any implementation for its methods nor

can have any instance fields because an interface is a specification and

has no implementation detail. Its methods are implicitly abstract.

Any class that implements an interface must define the interface methods

or must itself be an abstract class.

Object Oriented Programming in Java 5

OO programming (Interfaces) 2

A class can implement as many interfaces as it needs. The following

example is taken from the textbook:

interface Shape {

 public abstract double area();

 public abstract double volume();

 public abstract String getName();

}

class Point implements Shape {

 protected int x, y; // coordinates of the Point

 public Point() { setPoint(0, 0); }

 public Point(int a, int b) { setPoint(a, b); }

 public void setPoint(int a, int b){

 x = a;

 y = b;

 }//see next page

Object Oriented Programming in Java 6

OO programming (Interfaces) 3

public int getX() { return x; }

 public int getY() { return y; }

 public String toString() {

 return "[" + x + ", " + y + "]";

 }

 public double area() { return 0.0; }

 public double volume() { return 0.0; }

 public String getName() { return "Point"; }

}

public class Circle extends Point {

 protected double radius;

 public Circle() {

 setRadius(0);

 }//see next page

Object Oriented Programming in Java 7

OO programming (Interfaces) 4

public Circle(double r, int a, int b){

 super(a, b);

 setRadius(r);

 }

 public void setRadius(double r){

 radius = (r >= 0 ? r : 0);

 }

 public double getRadius() {

 return radius;

 }

 public double area() {

 return Math.PI * radius * radius;

 }

 //see next page

Object Oriented Programming in Java 8

OO programming (Interfaces) 5

public String toString(){

 return "Center = " + super.toString() +

 "; Radius = " + radius;

 }

 public String getName() { return "Circle"; }

}

public class Cylinder extends Circle {

 protected double height; // height of Cylinder

 public Cylinder() {

 setHeight(0);

 }

 public Cylinder(double h, double r, int a, int b) {

 super(r, a, b);

 setHeight(h);

 }

 public void setHeight(double h){

 height = (h >= 0 ? h : 0); } //see next page

Object Oriented Programming in Java 9

OO programming (Interfaces) 6

public double getHeight() { return height; }

 public double area(){

 return 2 * super.area() +

 2 * Math.PI * radius * height;

 }

 public double volume() {

 return super.area() * height;

 }

 public String toString(){

 return super.toString() + "; Height = " +

 height;

 }

 public String getName() { return "Cylinder"; }

}//see next page

Object Oriented Programming in Java 10

OO programming (Interfaces) 7

import javax.swing.JOptionPane;

import java.text.DecimalFormat;

public class Test {

 public static void main(String args[]){

 Point point = new Point(7, 11);

 Circle circle = new Circle(3.5, 22, 8);

 Cylinder cylinder = new Cylinder(10, 3.3, 10, 10);

 Shape arrayOfShapes[];

 arrayOfShapes = new Shape[3];

 arrayOfShapes[0] = point;

 arrayOfShapes[1] = circle;

 arrayOfShapes[2] = cylinder;

 String output =

 point.getName() + ": " + point.toString() + "\n" +

 circle.getName() + ": " + circle.toString() + "\n" +

 cylinder.getName() + ": " + cylinder.toString();

 Object Oriented Programming in Java 11

OO programming (Interfaces) 8

DecimalFormat precision2 = new DecimalFormat("0.00");

 for (int i = 0; i < arrayOfShapes.length; i++) {

 output += "\n\n" + arrayOfShapes[i].getName() + ":

" + arrayOfShapes[i].toString() + "\nArea = " +

 precision2.format(arrayOfShapes[i].area()) +

 "\nVolume = " +

 precision2.format(arrayOfShapes[i].volume());

 }

 JOptionPane.showMessageDialog(null, output,

 "Demonstrating Polymorphism",

 JOptionPane.INFORMATION_MESSAGE); System.exit(0);

 }

}

This example demonstrates how interfaces are used in a class hierarchy.

 In C++ this would be achieved by a combination of multiple inheritance

and pure virtual functions.

Object Oriented Programming in Java 12

OO programming (Interfaces) 9

Object Oriented Programming in Java 13

OO programming (Interfaces) 10

Abstract classes or interfaces: Interfaces are used in place of abstract

classes when there is no default implementation and no instance fields. In

addition to providing support for multiple inheritance, interfaces are

commonly used in GUI programming as will soon see. Usually interfaces

are defined in classes of their own with the same name as the interface
name and in a .java file.

Since they both may contain abstract methods it is not possible to

instantiate objects from them and they may not define constructor

methods. Interfaces can only contain abstract instance methods and

constants whereas abstract classes can contain instance fields and a

mixture of abstract and instance methods. If you add a new method to an

interface which has already been implemented by some class, you break

that subclass. This is not a problem with abstract classes.

An interface defines a public API. All methods of an interface are implicitly
public, even if the public modifier is omitted. Also, it is an error to define

protected or private methods in an interface.

Object Oriented Programming in Java 14

OO programming (Interfaces) 11

Here is another example using interfaces:

import java.util.*;

public class Interface1{

 public static void main(String[] l){

 Employee[] staff=new Employee[3];

 staff[0]=new Employee("Harry", 35000, new

 Date(1990,1,2));

 staff[1]=new Employee("Barry", 32000, new

 Date(1992,5,6));

 staff[2]=new Employee("Jerry", 29000, new

 Date(1998,11,2));

 ArrayAlg.Sort(staff);

 for(int i=0; i<staff.length;i++)

 System.out.println(staff[i]);

 }

}

//--->

Object Oriented Programming in Java 15

OO programming (Interfaces) 12

interface Sortable{

 public int compareTo(Sortable b);

}

class Employee implements Sortable {

 public Employee(String n, double s, Date d)

 { name=n;

 salary=s;

 hireDate=d; }

 public void raiseSalary(double byPercent){

 salary*=1+byPercent/100;

 }

 public String getName(){return name;}

 public double getSalary(){return salary;}

 public String toString(){

 return name + " " + salary + " " + hireYear();

 }

Object Oriented Programming in Java 16

OO programming (Interfaces) 13

public int hireYear()

 {

 return hireDate.getYear();

 }

 public int compareTo(Sortable b)

 {

 Employee eb=(Employee) b;

 if(salary<eb.salary) return -1;

 if (salary>eb.salary) return 1;

 return 0;

 }

 private String name;

 private double salary;

 private Date hireDate;

}

//--->

Object Oriented Programming in Java 17

OO programming (Interfaces) 14

class ArrayAlg{

 public static void Sort(Sortable[] a){

 for(int i=0; i<a.length; i++)

 {

 for(int j=0; j<a.length-1; j++)

 {

 if(a[j].compareTo(a[j+1])<0)

 {

 Sortable temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

 }

 }

}

Object Oriented Programming in Java 18

OO programming (Interfaces) 15

In this example, the employee class implements the Sortable interface

which has only one method, the compareTo method. Any class which

implements this interface must override its methods.

The class ArrayAlg contains a static method Sort which takes an array

of objects of any class which implements the Sortable interface and

sorts the elements of the array in descending order. This example uses

the bubble sort algorithm, but you can replace it with any other sorting

routine.

This example used an interface; you could have used an abstract class to

achieve the same effect. But, if the employee class had already inherited
(extended) another class, say a class Person, then you wouldn’t have

been able to use abstract classes. Why is this?

Instead of the user-defined Sortable interface, you could use the Java

library Comparable interface, which has a similar definition to our

Sortable interface.

Object Oriented Programming in Java 19

OO programming (Interfaces) 16

Since interfaces has no default implementation for its methods, adding

new methods to the existing interfaces would break its implementing

concrete classes.

Java 8 introduced a facility to create default methods inside the interface,

that provides a default implementation for a method. So, implementing

classes can choose to override or use the default implementation.

interface Shape {

 public default double area()

 {

 return 0.0;

 }

 public abstract double volume();

 public abstract String getName();

}

Object Oriented Programming in Java 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

