
Generics

Wildcards

The question mark (?) is known as the wildcard in generic programming . It

represents an unknown type. The wildcard can be used in a variety of

situations such as the type of a parameter, field, or local variable;

sometimes as a return type.

Unlike arrays, different instantiations of a generic type are not compatible

with each other, not even explicitly. This incompatibility may be softened by

the wildcard if ? is used as an actual type parameter.

Object Oriented Programming in Java 1

Generics

Types of wildcards in Java:

1- Upper Bounded Wildcards: These wildcards can be used when you

want to relax the restrictions on a variable. For example, say you want to

write a method that works on List < integer >, List < double >, and List <

number > , you can do this using an upper bounded wildcard.

To declare an upper-bounded wildcard, use the wildcard character (‘?’),

followed by the extends keyword, followed by its upper bound.

 public static void add(List<? extends Number> list)

The following Java program to demonstrate Upper Bounded Wildcards;

Object Oriented Programming in Java 2

Generics

import java.util.Arrays;

import java.util.List;

class WildcardDemo{

 public static void main(String[] args){

 List<Integer> list1= Arrays.asList(4,5,6,7);

 System.out.println("Total sum is:"+sum(list1));

 List<Double> list2=Arrays.asList(4.1,5.1,6.1);

 System.out.println("Total sum is:"+sum(list2));

 }

 private static double sum(List<? extends Number>

list) {

 double sum=0.0;

 for (Number i: list){sum+=i.doubleValue();}

 return sum;

 } }

Object Oriented Programming in Java 3

Generics

In the above program, list1 and list2 are objects of the List class. list1 is a

collection of Integer and list2 is a collection of Double.

Both of them are being passed to method sum which has a wildcard that

extends Number. This means that list being passed can be of any field or

subclass of that field. Here, Integer and Double are subclasses of class

Number.

2- Lower Bounded Wildcards: It is expressed using the wildcard

character (‘?’), followed by the super keyword, followed by its lower bound.

 Collectiontype <? super A>

The following java program to demonstrate Lower Bounded Wildcards;

Object Oriented Programming in Java 4

Generics

import java.util.Arrays;

import java.util.List;

class WildcardDemo{

 public static void main(String[] args){

 //Lower Bounded Integer List

 List<Integer> list1= Arrays.asList(4,5,6,7);

 printIntegerClassorSuperClass(list1);

 List<Number> list2= Arrays.asList(4,5,6,7);

 printIntegerClassorSuperClass(list2);

 }

 static void printIntegerClassorSuperClass(List<?

super Integer> list){

 System.out.println(list);

 }

}

Object Oriented Programming in Java 5

Generics

Here arguments can be Integer or superclass of Integer(which is Number).

The method printIntegerClassorSuperClass will only take Integer or its

superclass objects.

However if we pass list of type Double then we will get compilation error. It

is because only the Integer field or its superclass can be passed . Double

is not the superclass of Integer.

3- Unbounded Wildcard: This wildcard type is specified using the

wildcard character (?), for example, List. This is called a list of unknown

type. These are useful in the following cases. When writing a method

which can be employed using functionality provided in Object class. When

the code is using methods in the generic class that don’t depend on the

type parameter.

Object Oriented Programming in Java 6

Generics

import java.util.Arrays;

import java.util.List;

class unboundedwildcardemo{

 public static void main(String[] args) {

 List<Integer> list1= Arrays.asList(1,2,3);

 List<Double> list2=Arrays.asList(1.1,2.2,3.3);

 printlist(list1);

 printlist(list2);

 }

 private static void printlist(List<?> list)

 {

 System.out.println(list);

 }

}

Object Oriented Programming in Java 7

Generics

Consider the following method, printList:

private static void printlist(List<Object> list)

{

 System.out.println(list);

}

The goal of printList is to print a list of any type, but it fails to achieve that

goal — it prints only a list of Object instances; it cannot print List<Integer>,

List<String>, List<Double>, and so on, because they are not subtypes of

List<Object>.

Object Oriented Programming in Java 8

Generics

Type Erasure

Generics were introduced to the Java language to provide tighter type

checks at compile time and to support generic programming.

To implement generics, the Java compiler applies type erasure to:

1.Replace all type parameters in generic types with their bounds or Object

if the type parameters are unbounded. The produced bytecode, therefore,

contains only ordinary classes, interfaces, and methods.

2.Insert type casts if necessary to preserve type safety.

3.Generate bridge methods to preserve polymorphism in extended generic

types.

Type erasure, ensures that no new classes are created for parameterized

types; consequently, generics incur no runtime overhead.

Object Oriented Programming in Java 9

Generics

During the type erasure process, the Java compiler erases all type

parameters and replaces each with its first bound if the type parameter is

bounded, or Object if the type parameter is unbounded.

Consider the following generic class that represents a node in a singly

linked list:

public class Node<T> {

 private T data;

 private Node<T> next;

 public Node(T data, Node<T> next) {

 this.data = data;

 this.next = next;

 }

 public T getData() { return data; }

}

Object Oriented Programming in Java 10

Generics

Because the type parameter T is unbounded, the Java compiler replaces it

with Object:

public class Node {

 private Object data;

 private Node next;

 public Node(Object data, Node next) {

 this.data = data;

 this.next = next;

 }

 public Object getData() { return data; }

}

Object Oriented Programming in Java 11

Generics

In the following example, the generic Node class uses a bounded type

parameter:

public class Node<T extends Comparable<T>> {

 private T data;

 private Node<T> next;

 public Node(T data, Node<T> next) {

 this.data = data;

 this.next = next;

 }

 public T getData() { return data; }

}

Object Oriented Programming in Java 12

Generics

The Java compiler replaces the bounded type parameter T with the first

bound class, Comparable:

public class Node {

 private Comparable data;

 private Node next;

 public Node(Comparable data, Node next) {

 this.data = data;

 this.next = next;

 }

 public Comparable getData() { return data; }

}

Object Oriented Programming in Java 13

Generics and Inheritance

- A generic class can extend a non-generic class.

class NonGenericClass

{

 //Non Generic Class

}

class GenericClass<T> extends NonGenericClass

{

 //Generic class extending non-generic class

}

Object Oriented Programming in Java 14

Generics and Inheritance

- Generic class can also extend another generic class. When generic class

extends another generic class, sub class should have at least same type

and same number of type parameters and at most can have any number

and any type of parameters.

class GenericSuperClass<T>

{

 //Generic super class with one type parameter

}

class GenericSubClass1<T> extends GenericSuperClass<T>

{

 //sub class with same type parameter

}

Object Oriented Programming in Java 15

Generics and Inheritance

class GenericSubClass2<T, V> extends

GenericSuperClass<T>

{

 //sub class with two type parameters

}

class GenericSubClass3<T1, T2> extends

GenericSuperClass<T>

{

 /*Compile time error, sub class having different

type of parameters*/

}

Object Oriented Programming in Java 16

Generics and Inheritance

- Non-generic class can’t extend generic class except of those generic

classes which have already pre defined types as their type parameters.

class GenericSuperClass<T>

{

 //Generic class with one type parameter

}

class NonGenericClass extends GenericSuperClass<T>

{

 /*Compile time error, non-generic class can't

extend generic class*/

}

Object Oriented Programming in Java 17

Generics and Inheritance

class GenericSuperClass1<A>

{

 /*Generic class with pre defined type 'A' as type

parameter*/

}

class NonGenericClass1 extends GenericSuperClass1<A>

{

 //No compile time error, It is legal

}

Object Oriented Programming in Java 18

Generics and Inheritance

- Non-generic class can extend generic class by removing the type

parameters. i.e as a raw type. But, it gives a warning.

class GenericClass<T>

{

 T t;

 public GenericClass(T t) { this.t = t;

}

}

 class NonGenericClass extends GenericClass //Warning

{

 public NonGenericClass(String s) {

 super(s); //Warning }

}

Object Oriented Programming in Java 19

Generics and Inheritance

- While extending a generic class having bounded type parameter, type

parameter must be replaced by either upper bound or it’s sub classes.

class GenericSuperClass<T extends Number>

{

 //Generic super class with bounded type

parameter

}

class GenericSubClass1 extends

GenericSuperClass<Number>

{

 //type parameter replaced by upper bound

}

Object Oriented Programming in Java 20

Generics and Inheritance

- While extending a generic class having bounded type parameter, type

parameter must be replaced by either upper bound or it’s sub classes.

class GenericSuperClass<T extends Number>

{

 //Generic super class with bounded type parameter

}

class GenericSubClass2 extends GenericSuperClass<Integer>

{

 //type parameter replaced by sub class of upper bound

}

class GenericSubClass3 extends GenericSuperClass<T extends

Number>

{

 //Compile time error }

Object Oriented Programming in Java 21

Guidelines for Wildcard Use

One of the more confusing aspects when learning to program with

generics is determining when to use an upper bounded wildcard and when

to use a lower bounded wildcard.

It is helpful to think of variables as providing one of two functions:

An "In" Variable

An "in" variable serves up data to the code. Imagine a copy method with

two arguments: copy(src, dest). The src argument provides the data

to be copied, so it is the "in" parameter.

An "Out" Variable

An "out" variable holds data for use elsewhere. In the copy example,

copy(src, dest), the dest argument accepts data, so it is the "out"

parameter.

Object Oriented Programming in Java 22

Guidelines for Wildcard Use

Wildcard Guidelines:

▪ An "in" variable is defined with an upper bounded wildcard, using the

extends keyword.

▪ An "out" variable is defined with a lower bounded wildcard, using the

super keyword.

▪ In the case where the "in" variable can be accessed using methods

defined in the Object class, use an unbounded wildcard.

▪ In the case where the code needs to access the variable as both an "in"

and an "out" variable, do not use a wildcard.

▪ These guidelines do not apply to a method's return type. Using a

wildcard as a return type should be avoided because it forces

programmers using the code to deal with wildcards.

Object Oriented Programming in Java 23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

