Salahaddin University-Erbil
College of Administration and Economics Department: Statistics and Information $2^{\text {nd }}$ Examination

Subject: Experimental Design
Date: 12-4-2022
Stage: four
Time: 90 minutes

Q1// A) Create the design for:
(10 Marks)
1- GLS with 4 replications.

1. CRD $(2 \times 3 \times 2)$ with 2 replications.
B) Create the Linear Model for:
(10 Marks)
2. $\operatorname{RCBD}(9 \times 3 \times 5) \mathrm{r}=6$.
3. CRD (9×4) with 5 replications.

Q2// from the following data Factorial (RCBD) test if there are any deferent or not? $a=5 \%$
(40 Marks)

	b_{1}		$\mathrm{~b}_{2}$		$\mathrm{~b}_{3}$	
	a_{1}	a_{2}	a_{1}	a_{2}	a_{1}	a_{2}
r 1	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{2}$
r 2	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{4}$

$\mathrm{Q} 3 / /$ from Q 2 find LSD_{a} (least significant deference)
(40 Marks)
$\mathbf{F}_{(0.05 ; 5,1)}=230.1619, \mathbf{F}_{(\mathbf{0 . 0 5 ; 1 , 5})}=6.6079, \mathbf{F}_{(0.01 ; 1,5)}=16.2582, \mathbf{F}_{(0.05 ; 2,5)}=5.7861, \mathbf{t}_{(0.025 ; 5)}=2.571, \mathbf{t}_{(0.05 ; 5)}=2.015$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Salahaddin University-Erbil
College of Administration and Economics
Department: Statistics and Information
$2^{\text {nd }}$ Examination

Subject: Experimental Design
Date: 12-4-2022
Stage: four
Time: $\underline{\mathbf{0}}$ minutes

Q1// A) Create the design for:
(10 Marks)
2- GLS with 4 replications.

1. CRD $(2 \times 3 \times 2)$ with 2 replications.
B) Create the Linear Model for:
2. $\operatorname{RCBD}(9 \times 3 \times 5) \mathrm{r}=6$.
3. $\mathrm{CRD}(9 \times 4)$ with 5 replications.

Q2// from the following data Factorial (RCBD) test if there are any deferent or not? $a=5 \%$
(40 Marks)

	b_{1}		$\mathrm{~b}_{2}$		$\mathrm{~b}_{3}$	
	a_{1}	a_{2}	a_{1}	a_{2}	a_{1}	a_{2}
r1	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{2}$
r2	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{4}$

Q3// from Q2 find LSD_{a} (least significant deference)
(40 Marks)
$\mathbf{F}_{(0.05 ; 5,1)}=230.1619, \mathbf{F}_{(0.05 ; 1,5)}=6.6079, \mathbf{F}_{(0.01 ; 1,5)}=16.2582, \mathbf{F}_{(0.05 ; 2,5)}=5.7861, \mathbf{t}_{(0.025 ; 5)}=2.571, \mathbf{t}_{(0.05 ; 5)}=2.015$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Salahaddin University-Erbil
College of Administration and Economics
Department: Statistics and Information
Final Exam: $1^{\text {st }}$ Trial 2021-2022

Subject: Experimental Design
Date: 21-5-2022 Saturday
Stage: four
Time: 3 Hours

Q1// from the following data test if there are any deferent or not? if the experimental unit are homogeneous?
With five stapes, alpha $=0.05$:
(20 Marks)

$\mathrm{T}_{\text {emperature }}$	$\mathrm{R}_{\text {eplications }}$	Pressure			Sum Ai	
		$\mathrm{b}_{1}=200$	$\mathrm{b}_{2}=215$	$\mathrm{b}_{3}=230$		
$a_{1}=150$	r_{1}	90.4	90.7	90.2	542.5	if :
	r_{2}	90.2	90.6	90.4		$\mathrm{F}_{(0.05 ; 3 ; 6)}=4.7571$
$\mathrm{a}_{2}=160$	r_{1}	90.1	90.5	89.9	541.5	$\mathrm{F}_{(0.05 ; 6 ; 3)}=8.9407$
	r_{2}	90.3	90.6	90.1		$\mathrm{F}_{(0.05 ; 2,9)}=4.2565$
	I					$\mathrm{F}_{(0.05 ; 4,9)}=3.6331$
$\mathrm{a}_{3}=170$	r_{1}	90.5	90.8	90.4	543.4	
	r_{2}	90.7	90.9	90.1		
		542.2	544.1	541.1	1627.4	

(3) alpha=0.05

Solution//
Let Temperature $=$ Factor A then ($a 1=150, a 2=160, a 3=170$) Let Pressure= Factor B then ($b 1=200, b 2=215, b 3=230$), alpha=5\%
$1=3-1=2$
d. $f_{1 B}=a-1=3-1=2$
d.f. ${ }_{1 A B}=(a-1)(b-1)=(3-1)(3-1)=2 * 2=4$

(1) $\quad \mathrm{H}_{\mathrm{OA}}: \mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{F}_{\mathrm{A}(0.05,2,9)=} 4.2565$
$\mathrm{H}_{0 \mathrm{~B}}: \mu_{1}=\mu_{2}=\mu_{3} \quad \mathrm{~F}_{\mathrm{B}(0.05,2,9)=4.2565}$
$\mathrm{H}_{0 \mathrm{AB}}: \mu_{11}=\mu_{12}=\cdots=\mu_{33}$
$\mathrm{F}_{\mathrm{AB}(0.05,4,9)=} \mathbf{3 . 6 3 3 1}$
$\mathrm{F}_{(0.05 ; 3 ; 6)}=4.7571$
$\mathrm{F}_{(0.05 ; 6 ; 3)}=8.9407$
$\mathrm{F}_{(0.05 ; 2,9)}=4.2565$
$\mathrm{F}_{(0.05 ; 4,9)}=3.6331$

$$
\text { d.f. } 2=\text { d.f. } \text { Error }=a b(r-1)=3^{*} 3^{*}(2-1)=9
$$

$\mathrm{H}_{1 \mathrm{~A}}$: at least two means are not equal
$H_{1 B}$: at least two means are not equal
$\mathrm{H}_{1 \mathrm{AB}}$ at least two means are not equal

(4)
$Y . . .=1627.4$
$C . F .=\frac{(Y \ldots)^{2}}{a b r}=\frac{(1627.4)^{2}}{3(3)(2)}=147135.04$

$$
\begin{aligned}
& \mathrm{SSAB}=\frac{\sum_{i=1}^{3} \sum_{j=1}^{3} Y_{i j .}^{2}}{r}-C . F .-S S A-S S B \\
&=\frac{180.6^{2}+180.4^{2}+\cdots+180.5^{2}}{2}-147135.04-0.301-0.786= \\
&=147135.81-147135.04 \\
&=0.069
\end{aligned}
$$

$\mathrm{SST}=\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{2}\left(Y_{i j k}^{2}\right)-C . F .=\left(90.4^{2}+90.2^{2}+\ldots+90.1^{2}\right)-147135.04$
$\mathrm{SSA}=\frac{\sum_{i=1}^{3} Y_{i .}^{2}}{b r}-C . F .=\frac{542.5^{2}+541.5^{2}+543.4^{2}}{3(2)}-147135.04$
$=147135.34-147135.04=0.301$

S.O.V.	d.f.	S.S.	MS	F cal.	F $_{\text {tab. }}$
Factor A	2	0.301	0.151	$* 8.466$	4.256
Factor B	2	0.768	0.384	$* 21.6$	4.256
Interaction AB	4	0.069	0.017	0.97	3.633
Error	9	0.16	0.018		
Total	17	1.298			

(5) We reject $\mathrm{H}_{0 A}$ and $\mathrm{H}_{0 B}$ only.

Q2// A) From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: $\operatorname{RCBD}_{\text {(Row \& Columns) }}$ and RE (LSD: CRD):

S.O.V.	d.f.	SS	MS
Row	4	5.6	
Column	4	63.2	
treatments	4	46.3	
Error	12	3.54	

$$
\begin{aligned}
& \text { R.E. }_{(\text {(D.RCCBD } \text { Row })}=\frac{M S_{C o l .}+(r-1) M S_{E}}{r M S_{E}} \times 100 \\
& \text { RE. }_{(\text {LD.CRD) }}=\frac{M S_{\text {Row }}+M S_{\text {Col }}+(r-1) M S_{E}}{(r+1) M S_{E}} \times 100
\end{aligned}
$$

1) 1151.186% (RE for LSD better than RCBD Row.)
2) $174.9153 \% \quad$ (RE for LSD better than RCBD ${ }_{\text {Col. }}$)
3) 1038.418% (RE for LSD better than CRD)

Q2// B) Use LSD α with five stapeses, for the following information at alpha= 0.05 :
(10 Marks)

t 1	t 2	t 3	t 4	t 5
4	12	6	20	2
5	14	8	21	3
2	13	7	26	
3			28	

S.O.V.	SS	df	MS	Fcal.	Ftab.	
treatments	1079.5	4	269.875	54.721	3.35669	$t_{(0.025 ; 11)}=2.201$
Error	54.25	11	4.932			
Total	1133.75	15				

Solution: Let Alpha =0.05

(1) $H_{0}: \mu_{1}=\mu_{2}, \mu_{1}=\mu_{3}, \ldots, \mu_{4}=\mu_{5}$
(2) $H_{1}: \mu_{1} \neq \mu_{2}, \mu_{1} \neq \mu_{3}, \ldots, \mu_{4} \neq \mu_{5}$

$$
\begin{aligned}
& \text { (3) } \alpha=0.05 \rightarrow \frac{\alpha}{2}=0.025 \\
& \text { def. } \text { Error }=11 \text { then : } \\
& \left.t_{\left(\frac{\tilde{\sigma}}{2}\right.} \text { d.f.Error }\right)=t_{(0.025 ; 11)}=2.201 \\
& L S D_{\alpha\left(\mu_{1}=\mu_{2}, \mu_{1}=\mu_{3}, \mu_{2}=\mu_{4}, \mu_{3}=\mu_{4}\right)}=t_{\left(\frac{\tilde{\sigma}}{2} d . f E r r o r\right)} \times \sqrt{M S E\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)}=t_{((0.025,11)} \times \sqrt{M S E\left(\frac{1}{4}+\frac{1}{3}\right)} \\
& =t_{(0.025,11)} \times \sqrt{\operatorname{MSE}\left(\frac{1}{4}+\frac{1}{3}\right)}=2.201 \times \sqrt{4.932\left(\frac{1}{4}+\frac{1}{3}\right)}=3.733 \\
& L S D_{\alpha\left(\mu_{1}=\mu_{4}\right)}=t_{(0.025 ; 11)} \times \sqrt{M S E\left(\frac{1}{4}+\frac{1}{4}\right)}=2.201 \times \sqrt{4.932\left(\frac{1}{4}+\frac{1}{4}\right)}=3.456 \\
& L S D_{\alpha\left(\mu_{1}=\mu_{5 S} \mu_{4}=\mu_{5}\right)}=t_{(0.025: 11)} \times \sqrt{M S E\left(\frac{1}{4}+\frac{1}{2}\right)}=2.201 \times \sqrt{4.932\left(\frac{1}{4}+\frac{1}{2}\right)}=4.233 \\
& L S D_{\alpha\left(\mu_{2}=\mu_{3}\right)}=t_{(0.025 ; 11)} \times \sqrt{M S E\left(\frac{1}{3}+\frac{1}{3}\right)}=2.201 \times \sqrt{4.932\left(\frac{1}{3}+\frac{1}{3}\right)}=3.991 \\
& L S D_{\alpha\left(\mu_{2}=\mu_{S}, \mu_{3}=\mu_{5}\right)}=t_{(0.025 ; 11)} \times \sqrt{M S E\left(\frac{1}{3}+\frac{1}{2}\right)}=2.201 \times \sqrt{4.932\left(\frac{1}{3}+\frac{1}{2}\right)}=4.462
\end{aligned}
$$

(5) we not reject $H_{0}: \mu_{1}=\mu_{3}, \mu_{1}=\mu_{5}$ only.

Salahaddin University-Erbil
College of Administration and Economics

Subject: Experimental Design
Date: 26-5-2021 Wednesday
Stage: four
Time: 2 Hours

Q1//
A) Create the design for:
(15 Marks)
3- CRD with four replications and four treatments.
4- CRD ($\mathrm{S}=4, \mathrm{t}=3, \mathrm{r}=2$).
5- RCBD with four Blocks and four treatments after that if we have messing data in Y_{32}.
6- GLS (Graeco Latin Square Design) with six replications.
7- Factorial CRD $(2 \times 3 \times 2)$ with two replications.
B) Create the Linear Model for:
3. $\operatorname{RCBD}(t=4, r=5)$
4. Sampling CRD if $(t=5, r=4, s=6)$.
5. LSD (Latin Square Design) if $\mathrm{r}=8$.
6. GLS (Graeco Latin Square Design) with seven replications.
7. Factorial CRD $(8 \times 5 \times 4)$ with ten replications.

Q2// A) from the following data (Latin Square Design) test if there are any deferent or not? If alpha=0.05:
(15 Marks)

Row	Column 1	Column 2	Column 3	Column 4	Rows Total
1	$1(\mathrm{~A})$	$2(\mathrm{C})$	$4(\mathrm{~B})$	$2(\mathrm{D})$	9
2	$2(\mathrm{C})$	$2(\mathrm{~A})$	$1(\mathrm{D})$	$6(\mathrm{~B})$	11
3	$5(\mathrm{~B})$	1(D)	$0(\mathrm{~A})$	$2(\mathrm{C})$	8
4	1 (D)	9(B)	$2(\mathrm{C})$	$1(\mathrm{~A})$	13
Columns Total	9	14	7	11	41

B) From (Q2// A) above find LSD_{a} (Least Significant Difference) with 5 stapes. (10 Marks)

Q3// From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: $\operatorname{RCBD}_{\text {(Row \& columns) }}$ and RE (LSD: CRD):
(10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	1.34	
Column	4	2.83	
treatments	4	3.44	
Error	12	0.12	

if $\mathrm{F}_{(0.05 ; 3 ; 6)}=4.7571, \mathrm{~F}_{(0.05 ; 6 ; 3)}=8.9407, \mathrm{~F}_{(0.01 ; 3 ; 6)}=9.7795, \mathrm{~F}_{(0.01 ; 6 ; 3)}=27.9107, \mathrm{t}_{(0.025,6)}=2.496$,
$R . E_{\left(L D D R C B D_{\text {Row }}\right)}=\frac{M S_{C o l .}+(r-1) M S_{E}}{r M S_{E}} \times 100 \quad$ R.E. . $\left.L D . C R D\right)=\frac{M S_{\text {Row }}+M S_{C o l}+(r-1) M S_{E}}{(r+1) M S_{E}} \times 100$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Salahaddin University-Erbil
College of Administration and Economics
Department: Statistics and Information
Final Exam: $2^{\text {nd }}$ Trial 2020-2021

Subject: Experimental Design
Date: -6-2021
Stage: four
Time: 2 Hours

Q1//
A) Create the design for:
(15 Marks)
8- CRD ($\mathrm{S}=6, \mathrm{t}=3, \mathrm{r}=2$).
9- Factorial CRD $(2 \times 2 \times 2)$ with two replications.
$10-\mathrm{CRD}$ with three replications and three treatments.
11- GLS (Graeco Latin Square Design) with four replications.
12- RCBD with three Blocks and four treatments after that if we have messing data in Y_{42}.
B) Create the Linear Model for:
(10 Marks)
8. GLS (Graeco Latin Square Design) with 10 replications.
9. Factorial CRD $(5 \times 6 \times 7)$ with ten replications.
10. LSD (Latin Square Design) if $\mathrm{r}=7$.
11. Sampling CRD if $(t=6, r=4, s=8)$.
12. $\operatorname{RCBD}(\mathrm{t}=6, \mathrm{r}=4)$

Q2// A) from the following data (CRD) test if there are any deferent or not? If alpha=0.05:
(15 Marks)

Replicate	Treatment			
	t 1	t 2	t 3	t 4
1	2	1.7	2	2.1
2	2.2	1.9	2.4	2.2
3	1.8	1.5	2.7	2.2
4	2.3		2.5	1.9
5	1.7		2.4	

B) From (Q2// A) above find LSD_{a} (Least Significant Difference) with 5 stapeses. (10 Marks)

Q3// From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: RCBD (Row \& Columns) and RE (LSD: CRD):
(10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	0.05	
Column	4	0.72	
treatments	4	2.65	
Error	12	0.12	

if $\mathrm{F}_{(0.025 ; 3 ; 13)}=4.3472, \mathrm{~F}_{(0.05 ; 3 ; 13)}=3.4105, \mathrm{~F}_{(0.01 ; 3 ; 13)}=5.7394, \mathrm{~F}_{(0.05 ; 13 ; 3)}=26.9831, \mathrm{t}_{(0.025,13)}=2.16$,
R.E. $._{(L D . C R D)}=\frac{M S_{\text {Row }}+M S_{\text {Col }}+(r-1) M S_{E}}{(r+1) M S_{E}} \times 100 \quad$ R.E. $_{\left(L D D R C B D_{\text {Row }}\right)}=\frac{M S_{\text {Col }}+(r-1) M S_{E}}{r M S_{E}} \times 100$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Salahaddin University-Erbil
College of Administration and Economics

Subject: Experimental Design
Date: 26-5-2021 Wednesday
Stage: four
Time: 2 Hours

Q1//
A) Create the design for:
(15 Marks)
13-CRD with four replications and four treatments.
14- CRD ($\mathrm{S}=4, \mathrm{t}=3, \mathrm{r}=2$).
15- RCBD with four Blocks and four treatments after that if we have messing data in Y_{32}.
16- GLS (Graeco Latin Square Design) with six replications.
17 - Factorial CRD $(2 \times 3 \times 2)$ with two replications.
B) Create the Linear Model for:
13. $\operatorname{RCBD}(\mathrm{t}=4, \mathrm{r}=5)$
14. Sampling CRD if $(t=5, r=4, s=6)$.
15. LSD (Latin Square Design) if $\mathrm{r}=8$.
16. GLS (Graeco Latin Square Design) with seven replications.
17. Factorial CRD $(8 \times 5 \times 4)$ with ten replications.

Q2// A) from the following data (Latin Square Design) test if there are any deferent or not? If alpha=0.05:
(15 Marks)

Row	Column 1	Column 2	Column 3	Column 4	Rows Total
1	$1(\mathrm{~A})$	$2(\mathrm{C})$	$4(\mathrm{~B})$	$2(\mathrm{D})$	9
2	$2(\mathrm{C})$	$2(\mathrm{~A})$	$1(\mathrm{D})$	$6(\mathrm{~B})$	11
3	$5(\mathrm{~B})$	1(D)	$0(\mathrm{~A})$	$2(\mathrm{C})$	8
4	1 (D)	9(B)	$2(\mathrm{C})$	$1(\mathrm{~A})$	13
Columns Total	9	14	7	11	41

B) From (Q2// A) above find LSD_{a} (Least Significant Difference) with 5 stapes. (10 Marks)

Q3// From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: $\operatorname{RCBD}_{\text {(Row \& Columns) }}$ and RE (LSD: CRD):
(10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	1.34	
Column	4	2.83	
treatments	4	3.44	
Error	12	0.12	

if $\mathrm{F}_{(0.05 ; 3 ; 6)}=4.7571, \mathrm{~F}_{(0.05 ; 6 ; 3)}=8.9407, \mathrm{~F}_{(0.01 ; 3 ; 6)}=9.7795, \mathrm{~F}_{(0.01 ; 6 ; 3)}=27.9107, \mathrm{t}_{(0.025,6)}=2.496$,
$R . E_{\left(L D D R C B D_{\text {Row }}\right)}=\frac{M S_{C o l .}+(r-1) M S_{E}}{r M S_{E}} \times 100 \quad$ R.E. . $\left.L D . C R D\right)=\frac{M S_{\text {Row }}+M S_{C o l}+(r-1) M S_{E}}{(r+1) M S_{E}} \times 100$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Experimental Design and Analysis
Time: 90 minutes
$2^{\text {nd }}$ Examination
Date: 8-5-2014 Thursday

University of Salahadden-Erbil Collage of Adm. and Economics
Statistics Department $4^{\text {th }}$ Stage

Q1// Create the design (انشاء تصميم) and find the Linear Model for:
1- (4×2) CRD with 3 replications.
2- (3×3) RCBD with 2 Blocks.
3- 2^{3} confounding 2 blocks and 3repleaction.
4- RCBD $(4 \times 3) r=3$ if Factor A is Whole Plots and Factor B (Sub-plot).

Q2// Define these designs (ما نوع النصميم المستخدم) and find the linear model: (20 Degrees)
(A)

	c1		c2		c3		c4	
r1	b1	a4	b1	a2	b3	a3	b2	al
	b3		b2		b2		b3	
	b2		b3		b1		b1	
r2	b3	a3	b2	al	b3	a2	b3	a4
	b2		b3		b1		b1	
	b1		b1		b2		b2	
r3	b3	a1	b2	a3	b1	a4	b3	a2
	b2		b1		b2		b2	
	b1		b3		b3		b1	
r4	b2	a2	b1	a4	b1	al	b2	a3
	b1		b3		b3		b1	
	b3		b2		b2		b3	

(B)

Q3// Test the hypotheses with LSD if possible for:
(40 Degrees)

Row	Column 1	Column 2	Column 3	Column 4	Row $\left(\sum R\right)$
1	$1.640(\mathrm{~B})$	$1.210(\mathrm{D})$	$1.425(\mathrm{C})$	$1.345(\mathrm{~A})$	5.620
2	$1.475(\mathrm{C})$	$1.185(\mathrm{~A})$	$1.400(\mathrm{D})$	$1.290(\mathrm{~B})$	5.350
3	$1.670(\mathrm{~A})$	$0.710(\mathrm{C})$	$1.665(\mathrm{~B})$	$1.180(\mathrm{D})$	5.225
4	$1.565(\mathrm{D})$	$1.290(\mathrm{~B})$	$1.655(\mathrm{~A})$	$0.660(\mathrm{C})$	5.170
Column total $\left(\sum C\right)$	6.350	4.395	6.145	4.475	21.365

If $\Longleftrightarrow F_{(0.05 ; 3 ; 3)}=9.2766, F_{(0.025 ; 3 ; 6)}=15.439, \mathrm{t}_{(0.05 ; 6)}=2.4469 ; \mathrm{t}_{(0.025 ; 6)}=2.9687 ; \mathrm{F}_{(0.05 ; 3 ; 6)}=4.7571$

Treatment	Total
A	5.855
B	5.885
C	4.270
D	5.355

Experimental Design and Analysis
Time: 90 minutes
$3^{\text {rd }}$ Examination
Date: 18-5-2014 Sunday

Q1// Create the design (انشاء تصميم) and find the Linear Model for:
1- 2^{3} confounding 2 blocks and 2 replications.
2- GLS with 4 treatments.
3- (2×4) RCBD with 3 Blocks.
4- RCBD $(4 \times 3) \mathrm{r}=4$ if Factor A is Whole Plots and Factor B (Sub-plot).
5- (2×5) CRD with 3 replications.

Q2// The yield (نتيجه) of a chemical process is being studied. The two most important variables are thought to be the pressure and the temperature. Three levels of each factor are selected, and a factorial experiment with two replicates is performed. The yield data follow; Test the hypotheses with LSD if possible:
Degrees)

Temperature	Replications	Pressure			
		200	215	230	Sum Rows
150	r_{1}	90.4	90.7	90.2	542.5
	r_{2}	90.2	90.6	90.4	
160	r_{1}	90.1	90.5	89.9	541.5
	r_{2}	90.3	90.6	90.1	
170	r_{1}	90.5	90.8	90.4	543.4
	r_{2}	90.7	90.9	90.1	
Sum Columns		542.2	544.1	541.1	1627.4

If $\Longleftrightarrow \mathrm{F}_{(0.01 ; 2 ; 2)}=99, \mathrm{~F}_{(0.025 ; 2 ; 9)}=5.7147, \mathrm{~F}_{(0.05 ; 2 ; 9)}=4.2565, \mathrm{t}_{(0.025 ; 9)}=2.685 ; \mathrm{t}_{(0.05 ; 9)}=2.262$

Experimental Design and Analysis
Time: 90 minutes
$1^{s t}$ Examination

University of Salahadden-Erbil
Collage of Administration and Economics
Statistics Department $4^{\text {th }}$ Stage

Q1// create the design and find the Linear Model for (ديز اين و موّديّل بدوّزموه):
1- CRD with four replications and five treatments if t_{3} is missing.
2- RCBD with three Blocks and four treatments.
Q2// from the following information (CRD design) do the Duncan multiple range test with five stapes if MSE=6.23 and alpha=5\%:
Degrees)

Treatments	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
Mean Value	6.4	8.7	9.1	16.3	14
r	4	6	8	7	5

Q3// find ANOVA with 5 stapes:
(30 Degrees)

Blocks	Treatment			
	t_{1}	t_{2}	t_{3}	t_{4}
1	9	11	4	7
2	8	13	6	10
3	9	8	7	5

if : $\mathrm{F}_{(0.01 ; 6,3)}=27.9107, \mathrm{~F}_{(0.01 ; 3,6)}=9.7795, \mathrm{~F}_{(0.05 ; 3,6)}=4.7571, \mathrm{~F}_{(0.05 ; 6,3)}=8.9406$

Critical values $\mathrm{q}^{\prime}(\mathrm{p}, \mathrm{df} ; 0.05)$ for Duncan's multiple range tests

d.f.Error	2	3	4	5	6	7	8	9
5	3.635	3.749	3.796	3.814	3.814	3.814	3.814	3.814
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
25	2.913	3.059	3.154	3.221	3.271	3.310	3.341	3.366
29	2.892	3.039	3.135	3.202	3.253	3.293	3.326	3.352
30	2.888	3.035	3.131	3.199	3.250	3.290	3.322	3.349

Experimental Design and Analysis
Time: 90 minutes
Date: 6-2-2019 Thursday

University of Salahadden-Erbil
Collage of Administration and Economics
Statistics Department $4^{\text {th }}$ Stage

Q1// create the design and find the Linear Model for:
1- CRD with three replications and five treatments.
2- CRD with two replications and four treatments and 5 samples.
Q2// from the following information (CRD design) do the Duncan multiple range test with five stapeses if MSE=8.23 and alpha=5\%:
(35 Degrees)

Treatments	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
Mean Value	4.31	8.7	19.1	16.3	14
r	4	6	8	7	5

Q3// find ANOVA with 5 stapes if alpha 2.5\%:

replications	Treatment			
	t_{1}	t_{2}	t_{3}	t_{4}
1	9	11	4	7
2	8	13	6	10
3	9	8	7	5
4	10	15	8	8

if: $\mathrm{F}_{(0.05 ; 3,12)}=3.4903, \mathrm{~F}_{(0.05 ; 12,3)}=8.7446, \mathrm{~F}_{(0.025 ; 3,12)}=4.4742, \mathrm{~F}_{(0.025 ; 12,3)}=14.3366$

Critical values $\mathrm{q}^{\prime}(\mathrm{p}, \mathrm{df} ; 0.05)$ for Duncan's multiple range tests

d.f.Error	2	3	4	5	6	7	8	9
5	3.635	3.749	3.796	3.814	3.814	3.814	3.814	3.814
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
25	2.913	3.059	3.154	3.221	3.271	3.310	3.341	3.366
29	2.892	3.039	3.135	3.202	3.253	3.293	3.326	3.352
30	2.888	3.035	3.131	3.199	3.250	3.290	3.322	3.349

Q1// Create the design and find the Linear Model for:
1- $(2 \times 3 \times 2)$ CRD with 3 replications.
2- LSD (Latin Square Design) with 5 treatments.
3- GLS (Graeco-Latin Square Design) with 4 treatments.
4- (4×3) CRD with 2 replications.
5- RCBD (4 treatments, 2 Blocks)

Q2// Test the hypotheses of this design (Factorial CRD):

Temperature	Replications	Pressure		
		b_{1}	$\mathrm{~b}_{2}$	$\mathrm{~b}_{3}$
a_{1}	r_{1}	4	7	2
	r_{2}	2	6	4
a_{2}	r_{1}	1	5	-1
	r_{2}	3	6	1
a_{3}	r_{1}	5	8	4
	r_{2}	7	9	1

If :

$$
\begin{aligned}
& F_{(0.01,2,9)}=8.0215, F_{(0.01,9,2)}=99.3881, F_{(0.01,4,9)}=6.4221, F_{(0.01,9,4)}=14.6591 \\
& F_{(0.05,2,9)}=4.2565, F_{(0.05,9,2)}=19.3848, F_{(0.05,4,9)}=3.6331, F_{(0.05,9,4)}=5.9988
\end{aligned}
$$

Higher Edu. and Sci. Research Ministry
Salahaddin University
College of Administration \& Economic
Statistics and Informatics Department

Final Exam - Second Semester - $1^{\text {st }}$ trail 2022-2023

Q1-A// Create the design for:
1- \quad CRD $(3 \times 4) r=2$
2- RCBD with 2 Blocks and 5 treatments
3- LSD ($\mathrm{t}=4$) after that if we have messing data in Y_{342}
4- GLSD if $(\mathrm{t}=5)$
Q1-B// Find the linear model for:
($4 \times 3=12$ Marks)

1- GLSD ($\mathrm{t}=11$)
2- LSD ($\mathrm{t}=9$)
3- CRD ($\mathrm{S}=8, \mathrm{t}=7, \mathrm{r}=3$)
4- CRD (6×8) r=12

Q2// from the following Data, do the five stapes to know if there are differences or not between treatments?

$$
\text { (} 5 \times 4=20 \text { Marks) }
$$

$\mathrm{B} \beta(3)$	$\mathrm{C} \gamma(2)$	$\mathrm{A} \alpha(9)$	$\mathrm{D} \delta(1)$	$\mathrm{F}_{(0.05,3,15)}=3.2874$
$\mathrm{D} \alpha(2)$	$\mathrm{A} \delta(10)$	$\mathrm{C} \beta(3)$	$\mathrm{B} \gamma(4)$	$\mathrm{F}_{(0,0.1,2,3)}=27.052$
$\mathrm{~A} \gamma(11)$	$\mathrm{D} \beta(2)$	$\mathrm{B} \delta(2)$	$\mathrm{C} \alpha(3)$	$\mathrm{F}_{(0,053,3,3}=9.2766$
$\mathrm{C} \delta(3)$	$\mathrm{B} \alpha(2)$	$\mathrm{D} \gamma(2)$	$\mathrm{A} \beta(10)$	$\mathrm{F}_{(0.01,3,3)}=29.4567$

Q3_A// Prove that TSS $=\mathrm{SSt}+\mathrm{SSE}$ in CRD.

Q3_B// From the ANOVA table for (RCBD) design compare between the relative efficiency of (RCBD) and (CRD) design:
(8 Marks)

S.O.V.	d.f.	S.S.
Block	4	4.23
Treatment	3	13.2
Error	12	26.26
Total	19	

Good Luck

Dr. Bekhal Samad Sedeeq
Head of Department

Higher Edu. and Sci. Research Ministry
Salahaddin University
College of Administration \& Economic Statistics and Informatics Department

Subject: Testing Hypothesis
Stage: $4^{\text {th }}$ Class
Time: 2 Hours
Date: / /2022

Final Exam - First Semester 2022-2023

Q1// The following information is related to the rubber percentage of two types of Rubber plants, where the sample have been drawn independently. Test for their mean difference at the 5\% significant level. Assume that the population variances are not known and are unequal.

15 Marks

	Type I	Type II
n	12	12
Mean	5.63	6.74
Variance	0.38	1.45

Q2// Let's we have 5 treatment groups $t_{1}, t_{2}, t_{3}, t_{4}$, and t_{5}. Test for their mean difference at the 5% significant level and $(\mathrm{MSE}=5.2)$. Find the Least Significant Difference (LSD α).

15 Marks

$\mathbf{t}_{\mathbf{1}}$	$\mathbf{t}_{\mathbf{2}}$	$\mathbf{t}_{\mathbf{3}}$	$\mathbf{t}_{\mathbf{4}}$	$\mathbf{t}_{\mathbf{5}}$
4	10	28	3	8
5	14	21	4	9
2	11	24		6
3		20		

Q3// If have a random sample of 500 American adults who are questioned regarding their political affiliation and opinion on a tax reform bill. We will test if the political affiliation and their opinion on a tax reform bill are dependent at a 5\% level of significance. Calculate the Chi-Square Test of Independence.

15 Marks

	Favor	Indifferent	Opposed
Democrat	138	83	64
Republican	64	67	84

Q4// Answer 5 only:

1. What are the Type I Error and Type II Error?
2. Describe Critical region, Critical Value by chart.
3. Describe one tail and two tail tests?
4. What are the Hypothese for One Sample t-test?
5. What are the differences between Statistic and Parameter?

6 . What are the differences between Z -test and t -test?

If we have the following tabulated value:

$\mathrm{t}_{(0.025 ; 23)}=2.069$	$\mathrm{t}_{(0.025 ; 22)}=2.074$	$\mathrm{t}_{(0.05 ; 22)}=1.717$	$\mathrm{Z}_{(0.025)}=1.96$	$\mathrm{Z}_{(0.05)}=1.645$
$\mathrm{~F}_{(0.05 ; 5,11)}=3.2039$	$\mathrm{~F}_{(0.05 ; 4,11)}=3.3567$	$\mathrm{~F}_{(0.025 ; 4,16)}=3.0069$	$x^{2}{ }_{(0.05 ; 6)}=12.59$	$x^{2}{ }_{(0.05 ; 2)}=5.99$

Good Luck

Dr. Bekhal S. Sdeeq
Head of Department
M. Alan Ghafur Rahim

Examiner

Dr. Omiad Saber Abdullah
Examiner

Higher Edu. and Sci. Research Ministry Salahaddin University-Erbil College of Administration \& Economic Statistics and Informatics Department

Subject: Testing Hypothesis
Stage: $4^{\text {th }}$ Class
Time: 2 Hours
Date: / 1 /2023

Final Exam - First Semester- $\mathbf{2}^{\text {nd }}$ Trial 2022-2023

Q1// We randomly select 15 calls from each call center and calculate the average call lengths. The two call centers seem to have different average call lengths. Is this difference statistically significant? Assume these two samples come from populations with unequal variances. Use level of significance (0.05). 15 Marks

	Sample size	mean (sec)	Standard deviation
Call Center A	15	122	15
Call Center B	15	135	20

Q2// The illness caused by a virus in a city concerning some restaurant inspectors is not consistent with their evaluations of the cleanliness of restaurants. In order to investigate this possibility, the director has five restaurant inspectors to grade the cleanliness of three restaurants. Carry out two-way ANOVA at 5% level of significance, the results are shown below. 15 Marks

Inspectors (Treatments)	Restaurants (Blocks)		
	I	II	III
1	21	5	34
2	15	7	36
3	20	15	27
4	22	19	20
5	26	14	35

Q3// The following table shows three different airlines' row variables and the number of delayed or on-time flights column variable from light stats.com. Does on-time performance depend on the airline? Calculate the Chi-Square Test of Independence at 5\% level of significance.

15 Marks

	Delayed تاخير دهبيّت	On-time له كاتّى خوّى
American	112	843
Southwest	114	1416
United	61	896

Q3// If we have the following information test the Dunnett test.
If MSE $=2.6$ and $\alpha=0.05$

15 Marks

Treatments	Control $\mathbf{t}_{\mathbf{1}}$	$\mathbf{t}_{\mathbf{2}}$	$\mathbf{t}_{\mathbf{3}}$	$\mathbf{t}_{\mathbf{4}}$
Mean	4	8.5	7	11.5
\mathbf{n}	5	3	4	3

If we have the following tabulated value:

$\mathrm{t}_{(0.025 ; 29)}=2.045$	$\mathrm{t}_{(0.025 ; 28)}=2.048$	$\mathrm{t}_{(0.05 ; 29)}=1.699$	$\mathrm{Z}_{(0.025)}=1.96$	$\mathrm{Z}_{(0.05)}=1.645$
$\mathrm{t}_{(0.05 ; 28)}=1.701$	$\mathrm{t}_{(0.025 ; 10)}=2.228$	$\mathrm{t}_{(0.025 ; 11)}=2.201$	$F_{(0.025 ; 4,10)}=4.271$	$F_{(0.025 ; 5,10)}=4.236$
$\mathrm{~F}_{(0.05 ; 4,8)}=3.838$	$\mathrm{~F}_{(0.05 ; 4,10)}=3.48$	$\mathrm{~F}_{(0.05 ; 2,8)}=4.459$	$x^{2}{ }_{(0.05 ; 6)}=12.59$	$x^{2}{ }_{(0.05 ; 2)}=5.99$
Dunnett's $\mathrm{t}_{(0.05 ; 11)}=2.72$				
Dunnett's $\mathrm{t}_{(0.05 ; 14)}=2.63$				

Good Luck

Dr. Bekhal S. Sdeeq
Head of Department

Lec. Alan Ghafur Rahim
Examiner

Dr. Omiad Saber Abdullah
Examiner

