

Subject: **Experimental Design** Date: 12-4-2022 Stage: four Time: **90** minutes

2. CRD (9×4) with 5 replications.

Q1//	A) Create the <u>design</u> for:	(10 Marks)
	1- GLS with 4 replications.	1. CRD $(2 \times 3 \times 2)$ with 2 replications.
	B) Create the <u>Linear</u> Model for:	(10 Marks)

Q2// from the following data Factorial (RCBD) **test** if there are any deferent or not? a=5% (40 Marks)

	b 1		b	2	b ₃		
	a_1	a_2	a_1	a_2	a_1	a ₂	
r1	4	3	9	8	1	2	
r2	5	2	10	9	3	4	
ant deference)							

Q3// from Q2 find LSD_a (least significant deference)

1. RCBD $(9 \times 3 \times 5)$ r=6.

 $\mathbf{F}_{(0.05;5,1)} = 230.1619, \ \mathbf{F}_{(0.05;1,5)} = 6.6079, \ \mathbf{F}_{(0.01;1,5)} = 16.2582, \ \mathbf{F}_{(0.05;2,5)} = 5.7861, \ \mathbf{t}_{(0.025;5)} = 2.571, \ \mathbf{t}_{(0.05;5)} = 2.015$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Salahaddin University-Erbil College of Administration and Economics Department: Statistics and Information 2nd Examination

01//

A) Create the <u>design</u> for: 2- GLS with 4 replications.

B) Create the <u>Linear</u> Model for: 2. RCBD $(9 \times 3 \times 5)$ r=6. Subject: **Experimental Design** Date: 12-4-2022 Stage: four Time: **<u>90</u>** minutes

(10 Marks)

1. CRD $(2 \times 3 \times 2)$ with 2 replications.

(10 Marks)

(40 Marks)

2. CRD (9×4) with 5 replications.

Q2// from the following data Factorial (RCBD) **test** if there are any deferent or not? a=5% (40 Marks)

	b ₁		b	2	b ₃	
	a_1	a_2	a_1	a_2	a_1	a ₂
r1	4	3	9	8	1	2
r2	5	2	10	9	3	4

Q3// from Q2 find LSD_a (least significant deference)

 $\mathbf{F}_{(0.05;5,1)} = 230.1619, \ \mathbf{F}_{(0.05;1,5)} = 6.6079, \ \mathbf{F}_{(0.01;1,5)} = 16.2582, \ \mathbf{F}_{(0.05;2,5)} = 5.7861, \ \mathbf{t}_{(0.025;5)} = 2.571, \ \mathbf{t}_{(0.05;5)} = 2.015$

Good Luck

Dr. Omiad Saber Abdullah Shwany

(40 Marks)

if:

$$\begin{split} F_{(0.05;3;6)} &= 4.7571 \\ F_{(0.05;6;3)} &= 8.9407 \\ F_{(0.05;2,9)} &= 4.2565 \\ F_{(0.05;4,9)} &= 3.6331 \end{split}$$

Q1// from the following data test if there are any deferent or not? if the experimental unit are homogeneous? With five stapes, alpha=0.05: (20 Marks)

т	Л		Course A		
I emperature	Replications	b1=200	b ₂ =215	b ₃ =230	Sum A _i
a. – 150	\mathbf{r}_1	90.4	90.7	90.2	517 5
$a_1 = 150$	\mathbf{r}_2	90.2	90.6	90.4	542.5
1.00	\mathbf{r}_1	90.1	90.5	89.9	5/11 5
a ₂ -100	r ₂	90.3	90.6	90.1	541.5
0170	\mathbf{r}_1	90.5	90.8	90.4	5131
a3-170	r ₂	90.7	90.9	90.1	545.4
Sum B _j		542.2	544.1	541.1	1627.4

(3) alpha=0.05

d.f.2=<u>d.f._{Error}=ab(r-1)=3*3*(2-1)=</u>9

d.f._{1A}=a-1=3-1=**2**

Solution//

(4)

... Let Temperature = Factor A then (a1= 150, a2=160, a3=170) Let Pressure= Factor B then (b1= 200, b2=215, b3=230), alpha=5%

(1) $\begin{array}{ll} H_{0A}: \ \mu_1 = \mu_2 = \mu_3 \\ H_{0B}: \ \mu_1 = \mu_2 = \mu_3 \\ H_{0AB}: \ \mu_{11} = \mu_{12} = \cdots = \mu_{33} \end{array}$

(2) H_{1A} : at least two means are not equal H_{1B} : at least two means are not equal H_{1AB} at least two means are not equal

Y...= 1627.4
C. F. =
$$\frac{(Y...)^2}{abr} = \frac{(1627.4)^2}{3(3)(2)} = 147135.04$$

 $d.f_{.1B}=a-1=3-1=2$ $d.f_{.1AB}=(a-1)(b-1)=(3-1)(3-1)=2*2=4$

 $SSB = \frac{\sum_{j=1}^{3} Y_{j,}^{2}}{ar} - C.F. = \frac{542.2^{2} + 544.1^{2} + 541.1^{2}}{3(2)} - 147135.04$ = 147135.81-147135.04= 0.786

$$\begin{split} \text{SST}{=}\sum_{i=1}^{3}\sum_{j=1}^{3}\sum_{k=1}^{2} \left(Y_{ijk}^2\right) - \textit{C.F.} = (90.4^2 + 90.2^2 \text{+...+} 90.1^2)\text{-}147135.04 \\ = 147136.34\text{-}147135.04\text{=}1.298 \end{split}$$

= 1.289-0.301-0.768-0.069= 0.160

SSE_{rror} = SST - SSA - SSB - SSAB

$$\begin{split} \text{SSA} = & \frac{\sum_{i=1}^{3} Y_{i_i}^2}{br} - \textit{C. F.} = \frac{542.5^2 + 541.5^2 + 543.4^2}{3(2)} - 147135.04 \\ & = 147135.34 - 147135.04 = 0.301 \end{split}$$

S.O.V.	d.f.	s.s.	MS	E _{Cal} .	E _{tab.}
Factor A	2	0.301	0.151	*8.466	4.256
Factor B	2	0.768	0.384	*21.6	4.256
Interaction AB	4	0.069	0.017	0.97	3.633
Error	9	0.16	0.018		
Total	17	1.298			

(5) We reject $\rm H_{0A}$ and $\rm H_{0B}$ only.

 $\begin{array}{l} F_{A(0.05,2,9)=} & \textbf{4.2565} \\ F_{B(0.05,2,9)=} & \textbf{4.2565} \\ F_{AB(0.05,4,9)=} & \textbf{3.6331} \end{array}$

Q2// A) From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: RCBD(Row & Columns) and RE (LSD: CRD): (10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	5.6	
Column	4	63.2	
treatments	4	46.3	
Error	12	3.54	

 $R.E._{(LD:RCBD_{Row})} = \frac{MS_{Col.} + (r-1)MS_E}{rMS_E} \times 100$ $R.E._{(LD:CRD)} = \frac{MS_{Row} + MS_{Col.} + (r-1)MS_E}{(r+1)MS_E} \times 100$

- 1) 1151.186% (RE for LSD better than RCBD Row.)
- 2) 174.9153% (RE for LSD better than RCBD _{Col.})
- (RE for LSD better than CRD) 3) 1038.418%

Q2//B) Use LSD α with five stapeses, for the following information at alpha=0.05: (10 Marks)

	t1	t2	t3	t4	t5	S.O.V.	SS	df	MS	Fcal	1.	Ftab.				
	4	12	6	20	2	treatments	1079.5	4	269.875	54.72	21 3	3.35669	t _{(0.025}	5;11)=2	2.201	
	5	14	8	21	3	Error	54.25	11	4.932							
	2	13	7	26		Total	1133.75	15								
	3			28												
(3) $\alpha = d. f. Err$ $t \frac{\alpha}{2} d. f. Er$ $LSD_{\alpha} (\mu_1)$	Solution (1) H_0 : (2) H_1 : $0.05 \rightarrow \frac{\alpha}{2} = \frac{1}{2}$ or = 11 then ror) = $t_{(0.02t)}$ $=\mu_2 \ \mu_1 = \mu_3, \mu_2$:	: Let Alph $\mu_1 = \mu_2$ $\mu_1 \neq \mu_2$ 0.025 n: $_{i=\mu_0, \mu_3=\mu_4}$	ha=0.05 , $\mu_1 = \mu$, $\mu_1 \neq \mu$ h1 = $t_{(\frac{\alpha}{2}, d, f, x)}$	μ ₃ , , μ ₄ μ ₃ , , μ ₄	$\mu = \mu_5$ $\neq \mu_5$ $\overline{ASE(\frac{1}{r_1} + \frac{1}{r_2})} = t_{(0.5)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 44 45 20 2 1 21 3 2 26 28 2 28 20 2 200.275 200.275 2 200.275 54.721 3.35600 5 202 2					Man	1 Magn2	Magn2	Man4	Maans
		_	= t _{(0.025;1}	$_{1)} \times \sqrt{MSE}$	$\overline{f\left(\frac{1}{4} + \frac{1}{3}\right)} = 2.201$	$\sqrt{4.932\left(\frac{1}{4}+\frac{1}{3}\right)} = 3.733$		e.e.		21.5 C.R.	Maria	3.5	1 Mean2 13	7	23.75	2.5
$LSD_{\alpha (\mu_1)}$	$=\mu_{4}) = t_{(0.02)}$	$_{5;11} \times \sqrt{M_{2}}$	$SE\left(\frac{1}{4}+\frac{1}{4}\right)$	= 2.201 ×	$\sqrt{4.932\left(\frac{1}{4}+\frac{1}{4}\right)} =$	3.456		<u>α</u> 2		$\frac{\alpha}{2}$ 3	Mean1 Mean2	13	-9.5 *	-5.5 6 *	-10.75*	10.5 *
$LSD_{\alpha \langle \mu_1 \rangle}$	$=\mu_{5},\mu_{4}=\mu_{5}) =$	t(0.025;11)	< \MSE ($\frac{1}{4} + \frac{1}{2} = 2.5$	$201 \times \sqrt{4.932 \left(\frac{1}{4} + \right)}$	$\left(\frac{1}{2}\right) = 4.233$		- 00 3	111 D 3	3	Mean3	7			-16.75*	4.5 4
$LSD_{\alpha \ (\mu_2)}$	$=\mu_{3}) = t_{(0.02)}$	$_{5;11} \times \sqrt{M_{2}}$	$SE\left(\frac{1}{3}+\frac{1}{3}\right)$	= 2.201 ×	$\sqrt{4.932\left(\frac{1}{3}+\frac{1}{3}\right)}=$	3.991		< <u>c</u> _R .		$\stackrel{(R)}{\longrightarrow} \frac{4}{2}$	Mean4 Mean5	23.75				21.25
LSD _{α (μ2}	$=\mu_{5},\mu_{3}=\mu_{5}) =$	t _(0.025;11) >	< \mathcal{MSE}	$\frac{1}{3} + \frac{1}{2} = 2.$	$201 \times \sqrt{4.932 \left(\frac{1}{3} + \right)}$	$\frac{1}{2}$ = 4.462		2	+62 0 4		5) we n	ot reject H ₀ :	$\mu_{1} = \mu_{3}$, μ ₁ = μ	ι ₅ only.	

Q1//

A) Create the <u>design</u> for:

- 3- CRD with four replications and four treatments.
- 4- CRD (S=4, t=3, r=2).
- 5- RCBD with four Blocks and four treatments after that if we have messing data in Y_{32} .
- 6- GLS (Graeco Latin Square Design) with six replications.
- 7- Factorial CRD $(2 \times 3 \times 2)$ with two replications.

B) Create the <u>Linear</u> Model for:

- 3. RCBD (t=4, r=5)
- 4. Sampling CRD if (t=5, r=4, s=6).
- 5. LSD (Latin Square Design) if r=8.
- 6. GLS (Graeco Latin Square Design) with seven replications.
- 7. Factorial CRD $(8 \times 5 \times 4)$ with ten replications.

Q2// A) from the following data (Latin Square Design) test if there are any deferent or not? If alpha=0.05: (15 Marks)

Row	Column 1	Column 2	Column 3	Column 4	Rows Total
1	1 (A)	2 (C)	4 (B)	2 (D)	9
2	2 (C)	2 (A)	1 (D)	6 (B)	11
3	5 (B)	1 (D)	0 (A)	2 (C)	8
4	1 (D)	9 (B)	2 (C)	1 (A)	13
Columns Total	9	14	7	11	41

B) From (Q2// A) above find LSD_a (Least Significant Difference) with 5 stapes. (10 Marks)

Q3// From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: RCBD_(Row & Columns) and RE (LSD: CRD): (10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	1.34	
Column	4	2.83	
treatments	4	3.44	
Error	12	0.12	

 $\overline{\text{if }F_{(0.05;3;6)}=4.7571,\,F_{(0.05;6;3)}=8.9407,\,F_{(0.01;3;6)}=9.7795,\,F_{(0.01;6;3)}=27.9107,\,t_{(0.025,6)}=2.496,}$

$$R.E_{\cdot(LD:RCBD_{Row})} = \frac{MS_{Col.} + (r-1)MS_{E}}{rMS_{E}} \times 100 \qquad R.E_{\cdot(LD:CRD)} = \frac{MS_{Row} + MS_{Col.} + (r-1)MS_{E}}{(r+1)MS_{E}} \times 100$$

Good Luck

Dr. Omiad Saber Abdullah Shwany

(10 Marks)

(15 Marks)

Q1//

A) Create the **<u>design</u>** for:

8- CRD (S=6, t=3, r=2).

9- Factorial CRD ($2 \times 2 \times 2$) with two replications.

- 10- CRD with three replications and three treatments.
- 11-GLS (Graeco Latin Square Design) with four replications.
- 12-RCBD with three Blocks and four treatments after that if we have messing data in Y_{42} .

B) Create the <u>Linear</u> Model for:

- 8. GLS (Graeco Latin Square Design) with 10 replications.
- 9. Factorial CRD ($5 \times 6 \times 7$) with ten replications.
- 10. LSD (Latin Square Design) if r=7.
- 11. Sampling CRD if (t=6, r=4, s=8).
- 12. RCBD (t=6, r=4)

Q2// A) from the following data (CRD) test if there are any deferent or not? If alpha=0.05:

(15 Marks)

Dombiosta	Treatment						
Replicate	t1	t2	t3	t4			
1	2	1.7	2	2.1			
2	2.2	1.9	2.4	2.2			
3	1.8	1.5	2.7	2.2			
4	2.3		2.5	1.9			
5	1.7		2.4				

B) From (Q2// A) above find LSD_a (Least Significant Difference) with 5 stapeses. (10 Marks)

Q3// From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: RCBD _(Row & Columns) and RE (LSD: CRD): (10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	0.05	
Column	4	0.72	
treatments	4	2.65	
Error	12	0.12	

 $\overline{\text{if }F_{(0.025;3;13)}} = 4.3472, F_{(0.05;3;13)} = 3.4105, F_{(0.01;3;13)} = 5.7394, F_{(0.05;13;3)} = 26.9831, t_{(0.025,13)} = 2.16, F_{(0.01,13)} = 2.16, F_{(0.01,13)}$

$$R.E._{(LD:CRD)} = \frac{MS_{Row} + MS_{Col.} + (r-1)MS_{E}}{(r+1)MS_{E}} \times 100$$

$$R.E_{\cdot(LD:RCBD_{Row})} = \frac{MS_{Col.} + (r-1)MS_E}{rMS_E} \times 100$$

Good Luck

Dr. Omiad Saber Abdullah Shwany

(10 Marks)

(15 Marks)

A) Create the <u>design</u> for:

(15 Marks)

(10 Marks)

13-CRD with four replications and four treatments.

14-CRD (S=4, t=3, r=2).

15-RCBD with four Blocks and four treatments after that if we have messing data in Y_{32} .

16-GLS (Graeco Latin Square Design) with six replications.

17-Factorial CRD $(2 \times 3 \times 2)$ with two replications.

B) Create the <u>Linear</u> Model for:

13. RCBD (t=4, r=5)

14. Sampling CRD if (t=5, r=4, s=6).

15. LSD (Latin Square Design) if r=8.

16. GLS (Graeco Latin Square Design) with seven replications.

17. Factorial CRD $(8 \times 5 \times 4)$ with ten replications.

Q2// A) from the following data (Latin Square Design) test if there are any deferent or not? If alpha=0.05: (15 Marks)

Row	Column 1	Column 2	Column 3	Column 4	Rows Total
1	1 (A)	2 (C)	4 (B)	2 (D)	9
2	2 (C)	2 (A)	1 (D)	6 (B)	11
3	5 (B)	1 (D)	0 (A)	2 (C)	8
4	1 (D)	9 (B)	2 (C)	1 (A)	13
Columns Total	9	14	7	11	41

B) From (Q2// A) above find LSD_a (Least Significant Difference) with 5 stapes. (10 Marks)

Q3// From the ANOVA table below (LSD Latin Square Design) find the relative efficiency of RE (LSD: RCBD_(Row & Columns) and RE (LSD: CRD): (10 Marks)

S.O.V.	d.f.	SS	MS
Row	4	1.34	
Column	4	2.83	
treatments	4	3.44	
Error	12	0.12	

 $\overline{\text{if }F_{(0.05;3;6)}=4.7571,\,F_{(0.05;6;3)}=8.9407,\,F_{(0.01;3;6)}=9.7795,\,F_{(0.01;6;3)}=27.9107,\,t_{(0.025,6)}=2.496,}$

$$R.E_{(LD:RCBD_{Row})} = \frac{MS_{Col.} + (r-1)MS_{E}}{rMS_{E}} \times 100 \qquad R.E_{(LD:CRD)} = \frac{MS_{Row} + MS_{Col.} + (r-1)MS_{E}}{(r+1)MS_{E}} \times 100$$

Good Luck

Dr. Omiad Saber Abdullah Shwany

Experimental Design and Analysis		University of Salahadden-Erbil
Time: 90 minutes		Collage of Adm. and
	2 nd Examination	Economics
Date: 8-5-2014 Thursday		Statistics Department 4 th
		Stage

Q1// Create the design (انشاء تصميم) and find the Linear Model for: (40 Degrees)

1- (4×2) CRD with 3 replications.

- 2- (3×3) RCBD with 2 Blocks.
- 3- 2^3 confounding 2blocks and 3repleaction.
- 4- RCBD (4×3) r=3 if Factor A is Whole Plots and Factor B (Sub-plot).

Q2// Define these designs (ما نوع التصميم المستخدم) and find the linear model: (20 Degrees)

(A)							-			(B)		1	ope 2	rators	4		1	ope/	rators	4		1	opei 2	ators	4
(· ·)		С	1	с	2	С	3	С	4	(-)		<u> </u>	-	<u> </u>	7	ו ו	<u> </u>	-	Ű				-		
		b1		b1		b3		b2			1	Α	В	С	D	5	D	Α	в	С	9	С	D	Α	в
	rl	b3	a4	b2	a2	b2	a3	b3	al							4									
		b2		b3		b1		b1			on 2	B	C	п	Δ	× 6	Δ	в	С	D	m10	Р	•	Б	C
		b3		b2		b3		b3			ine		U		~	arire	· ·	-	Ŭ	2	ine		۲	Ъ	U.
	r2	b2	a3	b3	a1	b1	a2	b1	a4		1acl		-		(nacl			-		nacl		6	6	•
		b1		b1		b2		b2			= 3	C	U	A	в	= 7	в	C	U	A	=11	•	D	U.	U
		b3		b2		b1		b3								1									
	r3	b2	a1	b1	a3	b2	a4	b2	a2		4	D	Α	B	С	8	С	D	Α	в	12	в	С	D	Α
		b1		b3		b3		b1								J									
		b2		b1		b1		b2					Re	ep 1				Re	p 2				Re	p 3	
	r4	b1	a2	b3	a4	b3	a1	b1	a3				Fact	ory 1				Fact	ory 2				Fact	ory 3	
		b3		b2		b2		b3																	

Q3// Test the hypotheses with LSD if possible for:

(40 Degrees)

Row	Column 1	Column 2	Column 3	Column 4	Row $(\sum R)$
1	1.640 (B)	1.210 (D)	1.425 (C)	1.345 (A)	5.620
2	1.475 (C)	1.185 (A)	1.400 (D)	1.290 (B)	5.350
3	1.670 (A)	0.710 (C)	1.665 (B)	1.180 (D)	5.225
4	1.565 (D)	1.290 (B)	1.655 (A)	0.660 (C)	5.170
Column total $(\sum C)$	6.350	4.395	6.145	4.475	21.365

If \longrightarrow F_(0.05;3;3)= 9.2766, F_(0.025;3;6)= 15.439, t_(0.05;6)= 2.4469; t_(0.025;6)= 2.9687; F_(0.05;3;6)= 4.7571

Total
5.855
5.885
4.270
5.355

Experimental Design and Analysis		University of Salahadden-Erbil
Time: 90 minutes		Collage of Adm. and
	3 rd Examination	Economics
Date: 18-5-2014 Sunday		Statistics Department 4 th
		Stage

Q1// Create the design (انشاء تصميم) and find the Linear Model for: (50 Degrees)

- 1- 2^3 confounding 2 blocks and 2 replications.
- 2- GLS with 4 treatments.
- 3- (2×4) RCBD with 3 Blocks.
- 4- RCBD (4×3) r=4 if Factor A is Whole Plots and Factor B (Sub-plot).
- 5- (2×5) CRD with 3 replications.
- Q2// The yield (نتيجه) of a chemical process is being studied. The two most important variables are thought to be the pressure and the temperature. Three levels of each factor are selected, and a factorial experiment with two replicates is performed. The yield data follow; Test the hypotheses with LSD if possible: (50

Degrees)

Tomporatura	Poplications		Pressure		
Temperature	Replications	200	215	230	Sum Rows
150	<i>r</i> ₁	90.4	90.7	90.2	E 4 2 E
150	r ₂	90.2	90.6	90.4	542.5
160	<i>r</i> ₁	90.1	90.5	89.9	E 41 E
100	r ₂	90.3	90.6	90.1	541.5
170	<i>r</i> ₁	90.5	90.8	90.4	F 42 4
170	r ₂	90.7	90.9	90.1	543.4
Sum Co	olumns	542.2	544.1	541.1	1627.4

If $F_{(0.01;2;2)} = 99$, $F_{(0.025;2;9)} = 5.7147$, $F_{(0.05;2;9)} = 4.2565$, $t_{(0.025;9)} = 2.685$; $t_{(0.05;9)} = 2.262$

Experimental Design and Analysis Time: 90 minutes	1 st Examination	University of Salahadden-Erbil Collage of Administration and Economics
Date: 8-12-2016 Thursday		Statistics Department 4 th Stage

Q1// create the design and find the Linear Model for (ديز اين و مۆدێڵ بدۆز موه): (30 Degrees)

CRD with four replications and five treatments if t₃ is missing.
2- RCBD with three Blocks and four treatments.

Q2// from the following information (CRD design) do the Duncan multiple range test with five stapes if MSE=6.23 and alpha=5%: (40 Degrees)

Treatments	t_1	t2	t3	t4	t5
Mean Value	6.4	8.7	9.1	16.3	14
r	4	6	8	7	5

Q3// find ANOVA with 5 stapes:

Blocks	Treatment							
DIOCKS	t_1	t_2	t ₃	t4				
1	9	11	4	7				
2	8	13	6	10				
3	9	8	7	5				

if: $F_{(0.01;6,3)} = 27.9107$, $F_{(0.01;3,6)} = 9.7795$, $F_{(0.05;3,6)} = 4.7571$, $F_{(0.05;6,3)} = 8.9406$

Dr. O_{MIAD} S_{ABER} A_{BDULLAH}

&

M. K_{ARZAN} F_{AEZY} H_{AMAD}

if:

d.f. _{Error}	2	3	4	5	6	7	8
5	3.635	3.749	3.796	3.814	3.814	3.814	3.814

Critical values q'(p, df; 0.05) for Duncan's multiple range tests

di Liloi		-		-				-
5	3.635	3.749	3.796	3.814	3.814	3.814	3.814	3.814
:	:	:	:	:	:	:	:	:
25	2.913	3.059	3.154	3.221	3.271	3.310	3.341	3.366
29	2.892	3.039	3.135	3.202	3.253	3.293	3.326	3.352
30	2.888	3.035	3.131	3.199	3.250	3.290	3.322	3.349

(30 Degrees)

9

Date: 6-2-2019 Thursday

Q1// create the design and find the Linear Model for:

1- CRD with three replications and five treatments.

- 2- CRD with two replications and four treatments and 5 samples.
- Q2// from the following information (CRD design) do the Duncan multiple range test with five stapeses if MSE=8.23 and alpha=5%: (35 Degrees)

Treatments	t_1	t_2	t3	t4	t 5
Mean Value	4.31	8.7	19.1	16.3	14
r	4	6	8	7	5

Q3// find ANOVA with 5 stapes if alpha 2.5%:

replications	Treatment						
reprietations	t_1	t_2	t3	t4			
1	9	11	4	7			
2	8	13	6	10			
3	9	8	7	5			
4	10	15	8	8			

if: $F_{(0.05;3,12)} = 3.4903$, $F_{(0.05;12,3)} = 8.7446$, $F_{(0.025;3,12)} = 4.4742$, $F_{(0.025;12,3)} = 14.3366$

Dr. Omiad Saber Abdullah

6-2-2019 Lecturer

if:

d.f. _{Error}	2	3	4	5	6	7	8	9
5	3.635	3.749	3.796	3.814	3.814	3.814	3.814	3.814
:	•	••	••	••	••	:	••	•
25	2.913	3.059	3.154	3.221	3.271	3.310	3.341	3.366
29	2.892	3.039	3.135	3.202	3.253	3.293	3.326	3.352
30	2.888	3.035	3.131	3.199	3.250	3.290	3.322	3.349

University of Salahadden-Erbil Collage of Administration and Economics Statistics Department 4th Stage

(35 Degrees)

(30 Degrees)

Q1// Create the design and find the Linear Model for:

(50 Degrees)

1- $(2 \times 3 \times 2)$ CRD with 3 replications.

- 2- LSD (Latin Square Design) with 5 treatments.
- 3- GLS (Graeco-Latin Square Design) with 4 treatments.
- 4- (4×3) CRD with 2 replications.
- 5- RCBD (4 treatments, 2 Blocks)

Q2// Test the hypotheses of this design (Factorial CRD):

(50 Degrees)

Tanata	D - 11 - 41 - 11	Pressure			
Temperature	Replications	b ₁	b ₂	b ₃	
а	r_{1}	4	7	2	
1	r_2	2	6	4	
а	r ₁	1	5	-1	
^u 2	r ₂	3	6	1	
a	r	5	8	4	
3	r ₂	7	9	1	

If:

 $F_{(0.01,2,9)}$ =8.0215, $F_{(0.01,9,2)}$ =99.3881, $F_{(0.01,4,9)}$ =6.4221, $F_{(0.01,9,4)}$ =14.6591

 $F_{(0.05,2,9)}=4.2565$, $F_{(0.05,9,2)}=19.3848$, $F_{(0.05,4,9)}=3.6331$, $F_{(0.05,9,4)}=5.9988$

good luck

Dr. Omiad Saber Abdullah Shwany

omiad.abdullah@su.edu.krd