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Abstract

In this research we study three important numerical methods in mathematics:
Taylor series, Euler method, and Runge-Kutta method. The Taylor series represents
functions as an infinite sum, while Euler method and Runge-Kutta method are used
to solve ordinary differential equations. These methods have wide-ranging
applications in various fields and are essential tools for researchers and

professionals. Finally, some examples were given to illustrate three methods.
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CHAPTER ONE
INTRODUCTION

Today, numerical analysis is a vast and diverse field, with applications in
almost every area of science, engineering, and technology. Some of the most
important areas of research in numerical analysis today include the development of
fast algorithms for solving linear and nonlinear systems of equations, the
development of efficient methods for solving partial differential equations, and the
study of numerical stability and error analysis. Additionally, there is a growing
interest in the development of high-performance computing techniques for solving
very large-scale numerical problems, as well as in the use of machine learning and

other data-driven techniques in numerical analysis. (Kendall, 1978)

To solve an initial value problem, we need to find a particular solution that satisfies
both the differential equation and the initial condition. The initial condition provides
a starting point for solving the differential equation, and helps to determine the value

of the arbitrary constants that appear in the general solution. (Kendall, 1978)

There are several methods that can be used to solve initial value problems, including
separation of variables, integrating factors, and using series solutions. In some cases,
numerical methods such as Euler's method or the Runge-Kutta method may be used
to approximate the solution. (Coralie, et al., 2021) (Md.Amirul, 2015)

Once a particular solution is found, it can be used to make predictions about the
behavior of the system described by the differential equation. This can be especially
useful in fields such as physics, engineering, and economics, where differential
equations are commonly used to model physical and economic systems. (Coralie, et
al., 2021) (Md.Amirul, 2015)



Overall, initial value problems are an important part of calculus and differential
equations, and have a wide range of applications in science and engineering.
(Coralie, et al., 2021) (Md.Amirul, 2015)

In other words, an initial value problem is a differential equation that has a given
value for the dependent variable (usually denoted as y) and its derivative at a specific
point, which is referred to as the initial condition. The goal is to find a solution to
the differential equation that satisfies this initial condition. (Coralie, et al., 2021)
(Md.Amirul, 2015)

To solve an initial value problem, one typically applies techniques from differential
calculus and integral calculus to obtain an explicit solution for the differential
equation. This solution will be expressed in terms of the unknown function, y, and
any constants that appear in the equation. The initial condition is then used to
determine the values of these constants. (Coralie, et al., 2021) (Md.Amirul, 2015)

For example, consider the initial value problem given by the differential equation:

dy
A 2
I X + 2y

with the initial condition y(0) = 1. To solve this initial value problem, one can
use the method of separation of variables, which involves rewriting the equation

as.

dy

— 2 -4
(x + 2y) %

Integrating both sides with respect to their respective variables, we obtain:
1
Elnlx + 2y|| = x+ C

where C is a constant of integration. Solving for y, we have:



VxZ + 4e?¢

= —x +
y Xt

Using the initial condition y(0) = 1, we can determine the value of the constant
C:

C—l1
_n2

Substituting this value of C into the expression for y, we obtain the solution to the

initial value problem:

This solution satisfies the differential equation % = x + 2y and the initial

condition y(0) = 1. (Coralie, et al., 2021) (Md.Amirul, 2015)



CHAPTER TWO
BACKGROUND

Definition 2.1: (Joel, 2021)

Initial value problem, an IVP is deferential equation together with a place for a

solution to start. They are often written

y' = f(xy)
y(a) =b

Where (a, b) is the point the solution y(x) must go through. The initial value

problem:

Consider the ordinary differential equation

d
I O BIOEE

Where f is a function from RV*lin to RY for some n > 0 (if N = 1, then we
have a scalar equation; otherwise, a vector equation), t, is a given scalar value, often
taken to be t, = 0, and known as the initial point; and y, is known vector in RY,

known as the initial value. We want to find the unknown function y(t). In the sense
thaty'(t) — f(t,¥(£)) = 0

Forallt > t,, and y(t,) = y,.



Definition 2.2: (Charles, 2012)

initial condition, the state of a time-dependent dynamical system, for instance, an

NWP model, at a given time used to start a forecast of the future state of the system.

Definition 2.3: (George B. Thomas, et al., 2014)

A function f from a set D to a set Y is rule that assigns a unique (single) element

f(x)€Y to each element xeD

Definition 2.4: (George B. Thomas, et al., 2014)

Let c be a real number on the x — axis

The function f is continues at c if lim f(x) = f(¢)
n—-c

The function f is right-continues at ¢ if ~ lim_f(x) = f(c)
n—-c

The function f is left-continues at ¢ if  lim f(x) = f(c)
n—-c

Definition 2.5: (George B. Thomas, et al., 2014)
The derivative of function f at a point x,. Denoted f'(x,). Is
f (xo+h)—f(xq)

f'(Grp) lim L0220

Provide this limit exists.



Definition 2.6: (George B. Thomas, et al., 2014)

Given a sequence of numbers {a,,}, an expression of the form
a+a;+az+--+a,+-

Is an infinite series. The number a,is the nth terms of the series. The sequence

{s, }defined by

NgE

k=1
Is the sequence of partial sums of the series, the number s,, , being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

n

a1+a2+--°+an+--°=2ak
k=1

If the sequence of partial sums of the series does not converge, we say that the series

diverges.

Definition 2.7: (Homles, 2000)

A Boundary value problem is a system of ordinary differential equations with

solution and derivative values specified at more than one point. Most commonly, the



solution and derivatives are specified at just two points (the boundaries) defining a
two-point boundary value problem. y"' =
fxy,y), a<x<b y@=a and y) =

Taylor series method 2.8: (James, 2013)

Consider the first order differential equation

%:f(x,y) , Yo) =yo ... (1)

If y(x) is the exact solution of (1) then y(x) can be expanded into a Tylor’s series

about point x = x, as

(x=x0)%* (x—x0)3

5 Yot

y(x) =y + (x —x0)y', + "o+ (2)

Differentiating (1) w.r.t x we get

., _Of o0fdy of _of
=t arax "ot @—fx‘l‘fyf

V" = fux t+ fxyf + fyx + fyyfz + fxfy + fyzf

and so on.

Putting x = x, and y = y, inexpressions for y’, y", y""”,... and substituting them in

Equ (2), we get a power series for y(x) in powers of (x — x,).

(x=x0)* (x—x0)3

2! Yot 3!

e, y(x) =yo + (x —x0)y', + Yot (4



putting x = xo + h in (4), we get
! 1 14} 1 2 1
y1=Y(x0) = Yo + yoh + 2y h? + 5 yg b + ygh*+... (5)

Here y0.,v6, 4, ¥4, ¥4, ... can be found by using (1) and successive differentiations

(3) at x = x,. The series (5) can be truncated at any stage if h, is small.

"

After obtaining y,, we can calculate y,,y1,y1,vi", v{, ... from (1) at x = x, + h.

Now, expanding y(x) by Taylor’s series about x = x;, we get

hz 144 h3 22 h4 4
Y2=y1=hyi+—yr + 5y vt ()
Proceeding on, we get

nr

h%z ,, . h3 h* 4
Yne1 = Yn = hyn + EYn +;Yn +ZYn+--- ®)
Taylor series Method for Simultaneous first order O.D. 2.9: (James, 2013)

The Simultaneous first order differential equation of the form:

d d
— = fi(x,y,2) and — = f,(x,y,2)
With initial values y(x,) = y, and z(x,) = z,

To solve this system of equations at interval h ,the incrreaments in y and z are

obtained by using the formula:

h? h3
yi=Yo+hyo+—vo +5 ¥ +- and

! hz 1 h3 nr
zZy = zy + hz, t-,%0 t57%0 o



Euler’s method 2.10: (Md.Amirul, 2015)

Euler’s method is simplest one-step method. It is basic explicit method for numerical
integration of ordinary differential equations. Euler proposed his method for initial
value problem (IVP) in 1768. It is first numerical method for solving IVVP and serves
to illustrate the concepts involved in the advanced methods. It is important to study
because the error analysis is easier to understand. The general formula for Euler

approximation is

VYne1(xX) = v, (x) + hf (x,, + ), n = 0,1,2,3, ...

Leonhard Euler (1707-1783). (James, 2013)
Consider the equation % = f(x,y)

Given that y(x,) = y,. Its curve solution through p(x,, y,) is shown dotted in

figure. Now we have to find the ordinate of any other Q on this curve.

_~ Q@ True value of y
| yerror
i >
on approximate value of y
/,.

“—— Rn

L L1 L2 M
x0 x(+h %x0+2h x0+nh
x1 X2 *n

Figure 2.1.3 Curve Solution of p(x,, yo)



Let us divide LM into n sub-intervals each of width hat L,, L,,L3 .... So that h is
quite small. In the interval LL,, we approximate the curve by tangent at p. if the

ordinate through L; meets this tangent in p(x, + h, y;), then
dy
y1 =PiL; =LP+RP, =y, + PRy tan 0 =y, +h(a)p = Yo + hf (x0,¥0)

Let P, Q, be the curve of solution of (1) through p, and let its tangent at p; meet the
ordinate through L, in P, (x, + 2h, y,). Then

Y2 =y1+hf(xo +hy1)
Repeating this process n times, we finally reach an approximation M B, of MQ given
by
Yn = Yn-1 thf (xg + (n — DA, yp_1)
This is Euler’s method of finding an approximate solution of (1).

Geometrically it is an approximation of the curve of y(x) by polygon whose first

side is the curve at x,.

Runge Kutta Method 2.11: (Md.Amirul, 2015)

Runge Kutta Method, this method was devised by two Germain mathematicians,
Runge about 1894 and extended by Kutta a few years later. The Runge Kutta Method
IS most popular because it is quite accurate, stable and easy to program. This method
Is distinguished by their order in the sense that they agree with Taylor’s series
solution up to terms of A" where r is the order of the method, it do not demand prior
computational of higher derivatives of y(x) as in Tylor’s series method. The fourth

order Runge Kutta method (RK4) is widely used for solving initial value problem

10



(IVP) for ordinary differential equation (ODE). The general formula for Runge Kutta

approximation is

VYne1(xX) = v, (x) + hf (x,, + y,,),n = 0,1,2,3, ...

2 2 2
=hf(x+hy+k3).

ok ok,
k= hf G by = Bf (x5, +5) ks = b (x 43,7 +22) ks

11



CHAPTER THREE

EXAMPLES OF TAYLOR SERIES, RUNGE KUTTA
METHOD AND EULER METHOD

Example 3.1:
By using Taylor’s series find the value of y at x = 0.1 to five places of

decimations form

dy/dx =x*y—1.....(1),y(0) =1
Solution:

For this example

h=x—-—x0 =01-0=0.1

1 1
yo'hi +— 4170 oht +

r ., .,
Yo hi +3'

Y1 =Yo+Yohi +=; o1
Yier =i + 0.1y! +0.05y" + 0.00016y!" + 0.0000041y* + ---

The derivatives of equation (1),

) 2

y=xy-—1

y' = x*y' + 2xy

Yy =x*y" + 4xy’ + 2y

y* = x*y"”" + 6xy” + 6y’
Using the given initial value:

Yo =1

yo =0

12



v =2

Putting these values in the Taylor’s series of y;:

y; =14 0.1(=1) + 0.005(0) + 0.00016(2) + 0.00000(—6) + ---

y, = 0.90033
Example 3.2:
3 2
Solve by Taylor series method of third order equation Z—z = x:% y(0) = 1 fory

atx = 0.1x,x = 0.2and x = 0.3

Solution:

We have y' = (x3 + xy%)e ™ ;y'(0) =0

Differentiating successively and substituting x = 0,y = 1.

y"' =3 +xy?)(—e ™)+ (3x% +x.2.y.y)e”*

= (=27 —xy® +3x* + y* + 2xyy")(e™) y"(0) = 1

Yy =(=x®—xy? +3x2 +y? + 2xyy )(—e ™) + {-3x2 = (2 + x.2.y.y") +
6x + 2yy' + 2[yy’ + x(y’2 +yy'")]}e™) ¥"'(0) = -2

Putting these values in the Taylor’s series, we have:

2 3
y(0) =y(0) + xy'(0) + %y”(o) + %y”’(o) F e

13



2 3
=1+ 2(0) + 5 (D) + 5 (-2) + -

PP
B 2 6
Hence
0.1) 0.1)3
y(0.1)=1+( ) —( ) + .- = 1.005
2 6
0.2)? 0.2)3
y(0.2)=1+( ) —( ) + ... =1.017
2 6
0.3)? 0.3)3
y(0.3)=1+( ) —( ) +...=1.036
2 6
Example 3.3:

Find y(0.3) and z(0.3) given % =x+2z, % =x —y?and y(0) = 22

z(0)=1,h=0.1
Solution:

h =10.1

2 3

y(0.1) = yo + hy, + gyé’ + gyé” + -

y =x+z
y'=1+72
yIII=1_2y

Yo=1
14



yo = =3

i

Yo =3

(0.1)2 (0.1)3
TR LT

y(0.1) = 2 4+ (0.1)(1) +

(_3) + ...

= 2.08295

h? 3
2(0.1) =zo + hzp + -y 29 + 57 20" + -+

z'"" = =2yy"
zy = —4
zy = —3
zy =10

(0.1)2 (0.1)3

2(0.1) =1+ (0.)(=4) +——(=3) +—;

(10) + ---

= 0.58666

Example 3.4:

Given 2 = x + z , & = X=X wjth the initial condition y, = 1 ,x, = 0 find y
dx dz y+x

For x = 0.1 ,by Euler’s method.

Solution:

15



We take n=5

x—x9 01-0
h = = = 0.02
n 5

Yn+1 = Yn + hf (xo + nh,yp)

Y1 = Yo + hf (x0,¥0)

=1+ (0.02) (1;—8)

= 1.02

Y2 =y1 + hf(x1,¥1)

1.02 — 0.02

= 1.0392

V3 =¥, + hf (x3,¥7)

1.0392 — 0.02

= 1.0392 + (0.0 5305 7 0.00)

= 1.0577

Vs =y3 + hf(x3,¥3)

1.0577 — 0.02

= 10577+ (002) (577 10,02

= 1.0738

Vs = Y4 + hf (x4, ys)

1.0738 — 0.02
1.0738 + 0.02)

= 1.0738 + (0.02)(

16



= 1.0910
Hence the required approximation value of y = 1.0910
Example 3.5:

Use Euler’s method with A = 0.1 to find approximate values for the solution of the

initial value problem:
y' +2y=x3"%*,y(0) =1 atx =0.1,0.2,0.3.
Solution: We rewrite equation as
y' = =2y+x3e % ,y(0) =1

Which is of the form equation of Euler, with

flx,y) ==-2y+x3 2 ,xo=0and y, = 1
Euler’s method yields
Y1 = Yo + hf (x0,¥0)
=1+ (0.1)f(0,1) =1+ (0.1)(—2) =0.8
Y2 =y1 +hf (e, 31)
= 0.8+ (0.1)£(0.1.0.8) = 0.8 + (0.1)(—2(0.8) + (0.1)3e792)
= 0.64008187
y3 = Y2 + hf (x2,¥2)
= 0.64008187 + +(0.1)(—2(0.64008187) + (0.2)3e~%4
= 0.51260175

Example 3.6:

17



Find the value of ki by Runge-Kutta method of fourth order if dy/dx = 2x + 3y ?
and y(0.1) = 1.1165,h = 0.1.

Solution:

Given,

dy/dx = 2x + 3y ?and y(0.1) = 1.1165,h = 0.1
So, f(x,y) = 2x + 3y2

xo = 0.1,y, = 1.1165

By Runge-Kutta method of fourth order, we have
ki = hf(xo.Yo0)

= (0.1) £(0.1,1.1165)

= (0.1)[2(0.1) + 3(1.1165)?]

= (0.1) [0.2 + 3(1.2465)]

= (0.1)(0.2 + 3.7395)

= (0.1)(3.9395)

= 0.39395

Example 3.7:

Consider an ordinary differential equation dy/dx = x* + y*,y(1) = 1.2 Find
v(1.05) using the fourth order Runge- Kutta method.

Solution:

18



Given,

dy/dx = x* + y*,y(1) = 1.2

So, f(x,y) = x* + ¥

Xo = landy, = 1.2

Also, h = 0.05

Let us calculate the values of k4, k», ks and k..
ki = hf(xo,Y0)

(0.05)[x0®> + ¥o°]

= (0.05)[(1)* + (1.2)?]

= (0.05) (1 + 1.44)

= (0.05)(2.44)

= 0.122

ky = hf[xo + (1/2) h,yo + (1/2) k1]

= (0.05)[f(1 + 0.025,1.2 + 0.061)]{sinceh /2 = 0.05/2
= 0.025and k, /2 = 0.122/2 = 0.061}

= (0.05) [£(1.025,1.261)]
= (0.05) [ (1.025)2 + (1.261)?]
= (0.05) (1.051 + 1.590)

= (0.05)(2.641)

= 0.1320

19



ks = hf[xo + (1/2) h,yo + (1/2) k2]

= (0.05) [f(1 + 0.025,1.2 + 0.066)] {since h / 2 = 0.05/2
= 0.025and k, /2 = 0.132/2 = 0.066}

= (0.05)[f(1.025,1.266)]

= (0.05)[(1.025)% + (1.266)7]

= (0.05)(1.051 + 1.602)

= (0.05)(2.653)

= 0.1326

ks = hf(xo+ h,yo+ ks3)

= (0.05) [f(1 + 0.05,1.2 + 0.1326)]

= (0.05)[f(1.05,1.3326)]

= (0.05)[ (1.05)? + (1.3326)?]

= (0.05)(1.1025 + 1.7758)

= (0.05) (2.8783)

= 0.1439

By RK4 method, we have;

y1 = Yo+ (1/6) (k1 + 2k + 2ks + ky)

y1 =y(1.05) yo + (1/6) (k1 + 2k, + 2ks + ky)
By substituting the values of y,, k4, k2, k3 and k,, we get,

y(1.05) = 1.2 + (1/6) [0.122 + 2(0.1320) + 2(0.1326) + 0.1439]

20



= 1.2+ (1/6) (0.122 + 0.264 + 0.2652 + 0.1439)
= 1.2 + (1/6) (0.7951)

= 1.2+ 0.1325

1.3325

Example 3.8: Apply Range-Kutta method to find an approximate value of y for

x = 0.2 in steps of 0.1, if% = x + y?, giventhat y = 1, where x = 0.

Solution: Here we take h = 0.1 and carry out the calculations in two steps.
Step 1.x0 = 0, Yo = 1,h = 0.1

ki = hf (x0,¥0) = 0.1£(0,1) = 0.1000

k, = hf (xo + 1/2h,yo + 1/2ks) = 0.1£(0.05,1.1) = 0.1152

ks = hf (xo+ 1/2h,y0 + 1/2k;) = 0.1£(0.05,1.1152) = 0.1168
ks = hf (xo+ h,yo + k3) =0.1f(0.1.1,1168) = 0.1347

k =1/6 (ke + 2ks + 2ks + ka)

= 1/6(0.1000 + 0.2304 + 0.2336 + 0.1347) = 0.1165

Giving y(0.1) = yo + k = 1.1165

StepIl.x; = xo + h = 0.1,y; = 1.1165,h = 0.1

ki = hf (x1,y1) = 0.1£(0.1,1.1165) = 0.1347

k2 = hf (x1,1/2h,y1 + 1/2k:) = 0.1f(0.15,1.1838) = 0.1551

ks = hf (x1+1/2h,y1 +1/2k;) = 0.1£(0.15,1.194) = 0.1576

21



ko = hf (x1 + hy1 + ks) = 0.1£(0.2,1.1576) = 0.1823
k = 1/6(ks + 2k, + 2ks + ks) = 0.1571

Hence y(0.2) = y; + k = 1.2736.

22
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