Q1 State the existence and uniqueness theorem of fixed point, then use it to show that $g(x)=\left(x^{2}-1\right) / 3$ has a unique fixed point on the interval $[-1,1]$.

Q2// Let $p(x)=x^{5}-2 x^{4}-x^{2}+2 x+3$. Use synthetic division method to find

1. the first approximation $\left(x_{1}\right)$ of a root of $p(x)$ (put $x_{0}=1$). the value of $\left(p^{\prime} \circ p\right)(1)$.

Q3// Define an $(n \times n)$ strictly diagonally dominant matrix, then use it in Gauss-Seidle method to solve the linear system:

$$
\begin{aligned}
& 4 x+3 y=3-8 z \\
& 6 x-4 z=4+y \\
& 3 x-6 y+2 z=2
\end{aligned}
$$

where $(x, y, z)=(0,0,0) . \quad$ (Stop iteration after one steps)

Q4// Use Modified Newton-Raphson Method to calculate $\left(x_{1}, y_{1}, z_{1}\right)$ for the system:

$$
\begin{gathered}
f(x, y, z)=2 x^{2}+y^{4}-z^{3} \\
g(x, y, z)=x-3 y^{3}+5 z \\
h(x, y, z)=-x^{2}-y+z^{2} ; \quad \text { put }\left(x_{0}, y_{0}, z_{0}\right)=(1,0,0) .
\end{gathered}
$$

Q5// The iteration form $x_{n+1}=g\left(x_{n}\right), n=0,1,2, \ldots$ is used to find the root $x=\lambda$ of the equation $f(x)=0$, if $g(x)=x-h_{1}(x) f(x)-h_{2}(x)[f(x)]^{2}-h_{3}(x)[f(x)]^{3}$, and the derivatives of $g \& f$ are exists, then prove that $\boldsymbol{g}(\boldsymbol{x})$ is of order two if $\left(1-h_{1}(x) f^{\prime}(x)\right)=0$

Q6 Use Modified Newton Raphson method to find the first approximation $\left(x_{1}, y_{1}\right)$ of the system:

$$
\begin{aligned}
& x^{2}-3 x y-1=0 \\
& x y^{2}+3 x^{2}=0, \quad \text { with }\left(x_{0}, y_{0}\right)=(1,1) .
\end{aligned}
$$

Q7\ Use the best x_{0} and the best method among the FD.I.F, BD.I.F., and Bsseel method to estimate the value of $f(4)$ from the data $(2.5,3),(3.5,5),(4.5,6)$, and $(5.5,8)$.

Q8 \backslash Define $k^{\text {th }}$ degree Spline function, then from the values $(1,2),(3,5),(6,7)$, and $(7,10)$ determine $f(5)$, using second degree Spline function.

Q9 \backslash Consider a linear approximation $f(x)=A x+B$ of the nodes $\left(x_{i}, y_{i}\right) ; i=0,1, \ldots, n$. Find the best value of A, and B such that the error $E_{2}=\sqrt{\frac{\left(y_{i}-f\left(x_{i}\right)\right)^{2}}{n}}$ is minimize.

Q1\Let $\left.\begin{array}{l}f(x, y)=0 \\ g(x, y)=0\end{array}\right\}$ be a non-linear system of equations, and $\left.\begin{array}{l}x=F(x, y) \\ y=G(x, y)\end{array}\right\}$ be a Fixed-Point iteration form of it. Show that the sufficient condition for convergence of this iteration is $\left|F_{x}\right|+\left|G_{x}\right|<1 \&\left|F_{y}\right|+\left|G_{y}\right|<1$.

Q21 Find the approximate solution of the following system

$$
\begin{aligned}
& 3 x_{1}+x_{2}+x_{3}=2 \\
& x_{1}+5 x_{2}+3 x_{3}=3 \\
& 4 x_{1}+2 x_{2}+8 x_{3}=5, \text { using Triangular factorization method. }
\end{aligned}
$$

Q3\a- Derive Lagrange interpolation polynomial of degree one.
b- Use the best method and best x_{0} to estimate the value of $f(1.9)$ and $f(3)$ from the data $(0.5,3),(1.5,5),(2.5,6)$, and $(3.5,8)$.

