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17.1.6 General Comments on Linear Regression

Before proceeding to curvilinear and multiple linear regression, we must emphasize the 

introductory nature of the foregoing material on linear regression. We have focused on 

the simple derivation and practical use of equations to i t data. You should be cognizant 

of the fact that there are theoretical aspects of regression that are of practical importance 

but are beyond the scope of this book. For example, some statistical assumptions that 

are inherent in the linear least-squares procedures are

1. Each x has a i xed value; it is not random and is known without error.

2. The y values are independent random variables and all have the same variance.

3. The y values for a given x must be normally distributed.

 Such assumptions are relevant to the proper derivation and use of regression. For 

example, the i rst assumption means that (1) the x values must be error-free and (2) the 

regression of y versus x is not the same as x versus y (try Prob. 17.4 at the end of the 

chapter). You are urged to consult other references such as Draper and Smith (1981) to 

appreciate aspects and nuances of regression that are beyond the scope of this book.

 17.2 POLYNOMIAL REGRESSION

In Sec. 17.1, a procedure was developed to derive the equation of a straight line using 

the least-squares criterion. Some engineering data, although exhibiting a marked pattern 

such as seen in Fig. 17.8, is poorly represented by a straight line. For these cases, a curve 

would be better suited to i t these data. As discussed in the previous section, one method 

to accomplish this objective is to use transformations. Another alternative is to i t poly-

nomials to the data using polynomial regression.

 The least-squares procedure can be readily extended to i t the data to a higher-order 

polynomial. For example, suppose that we i t a second-order polynomial or quadratic:

y 5 a0 1 a1x 1 a2x2
1 e

For this case the sum of the squares of the residuals is [compare with Eq. (17.3)]

Sr 5 a
n

i51

(yi 2 a0 2 a1xi 2 a2x2
i )2 (17.18)

Following the procedure of the previous section, we take the derivative of Eq. (17.18) 

with respect to each of the unknown coefi cients of the polynomial, as in

0Sr

0a0

5 22a (yi 2 a0 2 a1xi 2 a2x2
i )

Thus, the intercept, log a2, equals 20.300, and therefore, by taking the antilogarithm, 

a2 5 1020.3 5 0.5. The slope is b2 5 1.75. Consequently, the power equation is

y 5 0.5x1.75

This curve, as plotted in Fig. 17.10a, indicates a good i t.
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0Sr

0a1

5 22a xi(yi 2 a0 2 a1xi 2 a2x
2
i )

0Sr

0a2

5 22a x2
i (yi 2 a0 2 a1xi 2 a2x

2
i )

These equations can be set equal to zero and rearranged to develop the following set of 

normal equations:

 (n)a0 1 (a xi)a1 1 (a x2
i )a2 5 a yi

 (a xi)a0 1 (a x2
i )a1 1 (a x3

i )a2 5 a xiyi (17.19)

 (a x2
i )a0 1 (a x3

i )a1 1 (a x4
i )a2 5 a x2

i yi

where all summations are from i 5 1 through n. Note that the above three equations are 

linear and have three unknowns: a0, a1, and a2. The coefi cients of the unknowns can be 

calculated directly from the observed data.

 For this case, we see that the problem of determining a least-squares second-order 

polynomial is equivalent to solving a system of three simultaneous linear equations. 

Techniques to solve such equations were discussed in Part Three.

 The two-dimensional case can be easily extended to an mth-order polynomial as

y 5 a0 1 a1x 1 a2x
2

1 p 1 amxm
1 e

The foregoing analysis can be easily extended to this more general case. Thus, we can 

recognize that determining the coefi cients of an mth-order polynomial is equivalent to 

solving a system of m 1 1 simultaneous linear equations. For this case, the standard 

error is formulated as

sy/x 5 B
Sr

n 2 (m 1 1)
 (17.20)

This quantity is divided by n 2 (m 1 1) because (m 1 1) data-derived coefi cients—

a0, a1, . . . , am—were used to compute Sr; thus, we have lost m 1 1 degrees of free-

dom. In addition to the standard error, a coefi cient of determination can also be 

computed for polynomial regression with Eq. (17.10).

 EXAMPLE 17.5 Polynomial Regression

Problem Statement. Fit a second-order polynomial to the data in the i rst two columns 

of Table 17.4.

Solution. From the given data,

m 5 2  a xi 5 15  a x4
i 5 979

n 5 6  a yi 5 152.6  a xiyi 5 585.6

x 5 2.5  a x2
i 5 55  a x2

i yi 5 2488.8

y 5 25.433  a x3
i 5 225
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Therefore, the simultaneous linear equations are

£ 6 15 55

15 55 225

55 225 979

§ •a0

a1

a2

¶ 5 • 152.6

585.6

2488.8

¶
Solving these equations through a technique such as Gauss elimination gives a0 5 2.47857, 

a1 5 2.35929, and a2 5 1.86071. Therefore, the least-squares quadratic equation for this case is

y 5 2.47857 1 2.35929x 1 1.86071x2

The standard error of the estimate based on the regression polynomial is [Eq. (17.20)]

syyx 5 A
3.74657

6 2 3
5 1.12

TABLE 17.4 Computations for an error analysis of the quadratic least-squares fi t.

 xi yi (yi 2 y )2 (yi 2 a0 2 a1xi 2 a2xi
2)2

 0 2.1 544.44 0.14332
 1 7.7 314.47 1.00286
 2 13.6 140.03 1.08158
 3 27.2 3.12 0.80491
 4 40.9 239.22 0.61951
 5 61.1 1272.11 0.09439

 S 152.6 2513.39 3.74657

FIGURE 17.11
Fit of a second-order polynomial.
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The coefi cient of determination is

r2
5

2513.39 2 3.74657

2513.39
5 0.99851

and the correlation coefi cient is r 5 0.99925.

These results indicate that 99.851 percent of the original uncertainty has been ex-

plained by the model. This result supports the conclusion that the quadratic equation 

represents an excellent i t, as is also evident from Fig. 17.11.

4th Polynomial Regression for Curve Fitting

[95]
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PROBLEMS

Determine (a) the mean, (b) the standard deviation, (c) the vari-

ance, (d) the coefi cient of variation, and (e) the 90% coni dence 

interval for the mean. (f) Construct a histogram. Use a range from 

28 to 34 with increments of 0.4. (g) Assuming that the distribution 

is normal and that your estimate of the standard deviation is valid, 

compute the range (that is, the lower and the upper values) that 

encompasses 68% of the readings. Determine whether this is a 

valid estimate for the data in this problem.

17.3 Use least-squares regression to i t a straight line to

x 0 2 4 6 9 11 12 15 17 19

y 5 6 7 6 9 8 7 10 12 12

Along with the slope and intercept, compute the standard error of 

the estimate and the correlation coefi cient. Plot the data and the 

regression line. Then repeat the problem, but regress x versus y—

that is, switch the variables. Interpret your results.

17.4 Use least-squares regression to i t a straight line to

x 6 7 11 15 17 21 23 29 29 37 39

y 29 21 29 14 21 15 7 7 13 0 3

Along with the slope and the intercept, compute the standard error of 

the estimate and the correlation coefi cient. Plot the data and the re-

gression line. If someone made an additional measurement of x 5 10, 

y 5 10, would you suspect, based on a visual assessment and the 

standard error, that the measurement was valid or faulty? Justify your 

conclusion.

17.5 Using the same approach as was employed to derive Eqs. (17.15) 

and (17.16), derive the least-squares i t of the following model:

y 5 a1x 1 e

That is, determine the slope that results in the least-squares i t for a 

straight line with a zero intercept. Fit the following data with this 

model and display the result graphically:

x 2 4 6 7 10 11 14 17 20

y 1 2 5 2 8 7 6 9 12

17.6 Use least-squares regression to i t a straight line to

x 1 2 3 4 5 6 7 8 9

y 1 1.5 2 3 4 5 8 10 13

(a) Along with the slope and intercept, compute the standard error 

of the estimate and the correlation coefi cient. Plot the data and 

the straight line. Assess the i t.

(b) Recompute (a), but use polynomial regression to i t a parabola 

to the data. Compare the results with those of (a).

17.7 Fit the following data with (a) a saturation-growth-rate model, 

(b) a power equation, and (c) a parabola. In each case, plot the data 

and the equation.

x 0.75 2 3 4 6 8 8.5

y 1.2 1.95 2 2.4 2.4 2.7 2.6

17.8 Fit the following data with the power model (y 5 axb). Use 

the resulting power equation to predict y at x 5 9:

x 2.5 3.5 5 6 7.5 10 12.5 15 17.5 20

y 13 11 8.5 8.2 7 6.2 5.2 4.8 4.6 4.3

17.9 Fit an exponential model to

x 0.4 0.8 1.2 1.6 2 2.3

y 800 975 1500 1950 2900 3600

Plot the data and the equation on both standard and semi-logarithmic 

graph paper.

17.10 Rather than using the base-e exponential model (Eq. 17.22), 

a common alternative is to use a base-10 model,

y 5 a510b5x

When used for curve i tting, this equation yields identical results 

to the base-e version, but the value of the exponent parameter (b5) 

will differ from that estimated with Eq. 17.22 (b1). Use the base-10 

version to solve Prob. 17.9. In addition, develop a formulation to 

relate b1 to b5.

17.11 Beyond the examples in Fig. 17.10, there are other models 

that can be linearized using transformations. For example,

y 5 a4xeb4x

[96]
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Determine the coefi cients by setting up and solving Eq. (17.25).

17.16 Given these data

x 5 10 15 20 25 30 35 40 45 50

y 17 24 31 33 37 37 40 40 42 41

use least-squares regression to i t (a) a straight line, (b) a power 

equation, (c) a saturation-growth-rate equation, and (d) a parabola. 

Plot the data along with all the curves. Is any one of the curves 

 superior? If so, justify.

17.17 Fit a cubic equation to the following data:

x 3 4 5 7 8 9 11 12

y 1.6 3.6 4.4 3.4 2.2 2.8 3.8 4.6

Along with the coefi cients, determine r2 and syyx.

17.18 Use multiple linear regression to i t

x1 0 1 1 2 2 3 3 4 4

x2 0 1 2 1 2 1 2 1 2

y 15.1 17.9 12.7 25.6 20.5 35.1 29.7 45.4 40.2

Compute the coefi cients, the standard error of the estimate, and the 

correlation coefi cient.

17.19 Use multiple linear regression to i t

x1 0 0 1 2 0 1 2 2 1

x2 0 2 2 4 4 6 6 2 1

y 14 21 11 12 23 23 14 6 11

Compute the coefi cients, the standard error of the estimate, and the 

correlation coefi cient.

17.20 Use nonlinear regression to i t a parabola to the following 

data:

x 0.2 0.5 0.8 1.2 1.7 2 2.3

y 500 700 1000 1200 2200 2650 3750

17.21 Use nonlinear regression to i t a saturation-growth-rate 

equation to the data in Prob. 17.16.

17.22 Recompute the regression i ts from Probs. (a) 17.3 and (b) 

17.17, using the matrix approach. Estimate the standard errors and 

develop 90% coni dence intervals for the coefi cients.

17.23 Develop, debug, and test a program in either a high-level 

language or macro language of your choice to implement linear 

regression. Among other things: (a) include statements to docu-

ment the code, and (b) determine the standard error and the coefi -

cient of determination.

17.24 A material is tested for cyclic fatigue failure whereby a 

stress, in MPa, is applied to the material and the number of cycles 

needed to cause failure is measured. The results are in the table 

below. When a log-log plot of stress versus cycles is generated, the 

Linearize this model and use it to estimate a4 and b4 based on the 

following data. Develop a plot of your i t along with the data.

x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7     1.8

y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28  0.18

17.12 An investigator has reported the data tabulated below for an 

experiment to determine the growth rate of bacteria k (per d), as a 

function of oxygen concentration c (mg/L). It is known that such 

data can be modeled by the following equation:

k 5
kmaxc

2

cs 1 c2

where cs and kmax are parameters. Use a transformation to linearize 

this equation. Then use linear regression to estimate cs and kmax and 

predict the growth rate at c 5 2 mg/L.

c 0.5 0.8 1.5 2.5      4

k 1.1 2.4 5.3 7.6     8.9

17.13 An investigator has reported the data tabulated below. It is 

known that such data can be modeled by the following equation

x 5 e(y2b)ya

where a and b are parameters. Use a transformation to linearize this 

equation and then employ linear regression to determine a and b. 

Based on your analysis predict y at x 5 2.6.

x 1 2 3 4    5

y 0.5 2 2.9 3.5    4

17.14 It is known that the data tabulated below can be modeled by 

the following equation

y 5 aa 1 1x

b1x
 b2

Use a transformation to linearize this equation and then employ 

linear regression to determine the parameters a and b. Based on 

your analysis predict y at x 5 1.6.

x 0.5 1 2 3    4

y 10.4 5.8 3.3 2.4    2

17.15 The following data are provided

x 1 2 3 4   5

y 2.2 2.8 3.6 4.5    5.5

You want to use least-squares regression to i t these data with the 

following model,

y 5 a 1 bx 1
c

x

[97]
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at which the concentration will reach 200 CFUy100 mL. Note that 

your choice of model should be consistent with the fact that nega-

tive concentrations are impossible and that the bacteria concentra-

tion always decreases with time.

17.28 An object is suspended in a wind tunnel and the force mea-

sured for various levels of wind velocity. The results are tabulated 

below.

v, m/s 10 20 30 40 50 60 70 80

F, N 25 70 380 550 610 1220 830 1450

Use least-squares regression to i t these data with (a) a straight line, 

(b) a power equation based on log transformations, and (c) a power 

model based on nonlinear regression. Display the results graphically.

17.29 Fit a power model to the data from Prob. 17.28, but use 

 natural logarithms to perform the transformations.

17.30 Derive the least-squares i t of the following model:

y 5 a1x 1 a2x
2

1 e

That is, determine the coefi cients that results in the least-squares i t 

for a second-order polynomial with a zero intercept. Test the ap-

proach by using it to i t the data from Prob. 17.28.

17.31 In Prob. 17.11 we used transformations to linearize and i t 

the following model:

y 5 a4xeb4x

Use nonlinear regression to estimate a4 and b4 based on the follow-

ing data. Develop a plot of your i t along with the data.

x 0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7 1.8

y 0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18

data trend shows a linear relationship. Use least-squares regression 

to determine a best-i t equation for these data.

N, cycles 1 10 100 1000 10,000 100,000 1,000,000

Stress, MPa 1100 1000 925 800 625 550 420

17.25 The following data show the relationship between the vis-

cosity of SAE 70 oil and temperature. After taking the log of the 

data, use linear regression to i nd the equation of the line that best 

i ts the data and the r2 value.

Temperature, 8C 26.67 93.33 148.89 315.56

Viscosity, m, N ? s/m2 1.35 0.085 0.012 0.00075

17.26 The data below represents the bacterial growth in a liquid 

culture over a number of days.

Day 0 4 8 12 16 20

Amount 3 106 67 84 98 125 149 185

Find a best-i t equation to the data trend. Try several possibilities—

linear, parabolic, and exponential. Use the software package of 

your choice to i nd the best equation to predict the amount of bac-

teria after 40 days.

17.27 The concentration of E. coli bacteria in a swimming area is 

monitored after a storm:

t (hr) 4 8 12 16 20 24

c (CFUy100 mL) 1600 1320 1000 890 650 560

The time is measured in hours following the end of the storm and 

the unit CFU is a “colony forming unit.” Use these data to estimate 

(a) the concentration at the end of the storm (t 5 0) and (b) the time 

[98]
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