College of Education	Theory Examination	Subject: Computer Application SPSS
Biology Depts. 2 nd Year	2019 -2020	Name:

Q1/A- Mark the following statements with (T) for true and (F) for false:	(7M)
 Inserting a Case. R.C on case then select insert cases.(
2- Use data editor to show the analyze result. ()	
3- Pearson correlation use Analyze, Descriptive Statistics/ Crosstabs . ()	
 4- Crosstab analysis 2 nominal variable with than 2-leabl .() 	
5- Variable View is where you see the data you are using.()	
6- Show just One output can one analyze result.()	
7- Choose the Simple Scatter option to graph the relationship between two variables.	.()
8- The model summary table results appear in the SPSS syntax Viewer.()	
9- One Sample T-Test is also known as related T-Test.()	
10- One-Sample T-Tests if the mean of a single variable differs from a specified .()
11- To run correlation, go to Analyze>Compear Mean.()	
12- The straight line is also called the correlation line or the fit line.($$)	
13- MLR takes dependent variable is explained by more than one independent variable	ટ.()
14- Each data editor cantina three data view.()	

2-Variable view B- Define :1-SPSS (3M) 3-Pi chart Q2/A-Find Age and Protein ratio effects on weight explain output use table 1. (5M) Table (1)

Model	Unstandardized Coefficients		Standardized Coefficients	95.0% Con	fidence Interval
	В	Std. Error	Beta	t	Sig.
(Constant)	143.994	48.395		2.975	.031
Age	-1.055	.370	-1.425	-2.852	.036
Protein ratio	592	.525	563	-1.128	.003

B-Find the difference between Age1 and Ag2 explain output use table 2. (5M)

Pair 1	df	†	Sig. (2-tailed)	Table (2) Paired Differences				
				95% Confidence		Std.	Std.	Mean
				Interval		Error	Deviation	
				Upper	Lower			
Age1-Age2	500	- 1.574	0.144	2.433	-7.433	1.588	5.502	-2.500

------ With best wishes ------ Assistant Lec.Paxshan A.Hamad

College of Education	Theory Examination	Subject: Computer Application SPSS
Biology Depts. 2 nd Year	2019 -2020	Name:

Q1/A- Mark the following statements with (T) for true and (F) for false:

1- Choose the Simple Scatter option to graph the relationship between two variables.(

(7M)

)

- 2- The model summary table results appear in the SPSS syntax Viewer.(
- 3- One Sample T-Test is also known as related T-Test.(
- 4- One-Sample T-Tests if the mean of a single variable differs from a specified .()
- 5- To run correlation, go to Analyze>Compear Mean.(
- 6- The straight line is also called the correlation line or the fit line.(
- 7- MLR takes dependent variable is explained by more than one independent variable.()

)

)

)

)

- 8- Each data editor cantina three data view.(
- 9- Inserting a Case. R.C on case then select insert cases.(
- 10- Use data editor to show the analyze result. (
- 11- Pearson correlation use Analyze, Descriptive Statistics/ Crosstabs . ()
- 12- Crosstab analysis 2 nominal variable with than 2-leabl .(
- 13- Variable View is where you see the data you are using.(
- 14- Show just One output can one analyze result.(

B- Define :1-SPSS2-Variable view3-Pi chart(3M)Q2/A-Find Age and Protein ratio effects on weight explain output use table 1.(5M)

Table (1)

Model	Unstandardized Coefficients		Standardized Coefficients	95.0% Con	fidence Interval
	В	Std. Error	Beta	t	Sig.
(Constant)	143.994	48.395		2.975	.031
Age	-1.055	.370	-1.425	-2.852	.036
Protein ratio	592	.525	563	-1.128	.003

B-Find the difference between Age1 and Ag2 explain output use table 2. (5M)

Pair 1	df	†	Sig. (2-tailed) Table		Table (2) Paired Differences				
				95% Confidence		Std.	Std.	Mean	
				Interval		Error	Deviation		
				Upper	Lower				
Age1-Age2	500	- 1.574	0.144	2.433	-7.433	1.588	5.502	-2.500	

----- With best wishes -----Assistant Lec.Paxshan A.Hamad

Salahaddin University	Theory Examination	Name:	Group
Education College	2018 -2019	Subject: Computer Applicatio	n.SPSS
Date&Time: 3/3/2019		Stage:2 nd (chemistry &Biology	dep.)

(8M) Q1/ Mark the following statements with (T) for true and (F) for false: 1- One-way ANOVA as an extension of the independent-samples t test. () 2- The One-way ANOVA compares the means of 2 or more independent groups.() 3- If data show "homogeneity of variance", it means that the data are normally distributed. (4- We need to know if there is group effects on dependent variable on between-groups t test. () 5- Paired-Sample T-Test is also known as dependent T-Test. (6- AVOVA-test the only one test that require our data are normally distributed. () 7- One sample T test us to determine the mean of a sample data is different than a known value. () 8- The equal variance assumption you want Levene's test to be significant. (9- A paired samples t-test is used when you have two non related observations. () 10- In one way ANOVA Each group represents a different level of a single independent variable. () 11- Normality tests on samples of n = 3 to 50 use Kolmogorov ,Smirnov. (12- The test statistic in the ANOVA is an F ratio, which is a ratio of two variances. () 13- To do repeated-measures T-test Click on Analyze, Compare Means, and then One-SamplesT test.() 14- The function you need to use for normality test, click "mathematics " in the Function group box. 15- This hypotheses HO: $\mu_{\text{Section 1}} = \mu_{\text{Section 2}}$, H1: $\mu_{\text{Section 1}} \neq \mu_{\text{Section 2}}$ for one-way ANOVA table. (16- SPSS Data Editor presented the log transformed data under the new variable name "log---" that you defined.() (12M) Q2/ Answers the following questions about each tables (A1, A2 and A3)

- 1-Analyses Name. 4- Test value.
- 2-Variable Name and type. 5- P-value .
- 3- Significant level **a**. $6-H_0$, H_1 and explain result.

Table A1

	Koln	nogorov-Smi	rnov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Life in hours	.108	72	.002 [*]	.968	72	.008

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	12335.444	2	6167.722	2.977	.058
Within Groups	142958.500	69	2071.862		
Total	155293.944	71			

Dependent Variable:LOG Life in hours Table A3

LSD

(I) material type	material type (J) material type		Std. Error	Sig.	99% Confide	ence Interval
		Difference (I-J)			Lower Bound	Upper Bound
Fo	Mg	-21.833	13.140	.101	-56.64	12.97
Fe	MgFe	-31.250	13.140	.020	-66.06	3.56
Mg	Fe	21.833	13.140	.101	-12.97	56.64
	MgFe	-9.417	13.140	.476	-44.22	25.39
MaEe	Fe	31.250	13.140	.020	-3.56	66.06
MgEe	Mg	9.417	13.140	.476	-25.39	44.22

Salahaddin University	Theory	Examination	Name:	Group:
Education College	2018	-2019	Subject: Computer Applicat	ion.SPSS
Date&Time: 3/3/2019			Stage:2 nd (chemistry &Biolog	y dep.)

Q1/ Mark the following statements with (T) for true and (F) for false: (8M) 1- The equal variance assumption you want Levene's test to be significant. (2- A paired samples t-test is used when you have two non related observations. () 3- In one way ANOVA Each group represents a different level of a single independent variable. () 4- Normality tests on samples of n = 3 to 50 use Kolmogorov , Smirnov. (5- The test statistic in the ANOVA is an F ratio, which is a ratio of two variances. (6- To do repeated-measures T-test Click on Analyze, Compare Means, and then One-SamplesT test.() 7- The function you need to use for normality test, click "mathematics" in the Function group box. 8- One sample T test us to determine the mean of a sample data is different than a known value. () 9- This hypotheses HO: $\mu_{\text{Section 1}} = \mu_{\text{Section 2}}$, H1: $\mu_{\text{Section 1}} \neq \mu_{\text{Section 2}}$ for one-way ANOVA table. (10- One-way ANOVA as an extension of the independent-samples t test. (11- The One-way ANOVA compares the means of 2 or more independent groups.() 12- If data show "homogeneity of variance", it means that the data are normally distributed. () 13- We need to know if there is group effects on dependent variable on between-groups t test. () 14- Paired-Sample T-Test is also known as dependent T-Test. () 15- AVOVA-test the only one test that require our data are normally distributed. (16- SPSS Data Editor presented the log transformed data under the new variable name "log---" that you defined.() Q2/ Answers the following questions about each tables (A1,A2 andA3) (12M)

- 1-Analyses Name. 4- Test value.
- 2-Variable Name and type. 5- P-value .
- 3- Significant level **a**. $6-H_0$, H_1 and explain result.

Table A1

	Kolm	nogorov-Smii	rnov ^a	Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Redbloodcell	.108	72	.200 [*]	.968	72	.365

Table A2

Redbloodcell

Sum of Squares	df	Mean Square	F	Sig.
----------------	----	-------------	---	------

Between Groups	12335.444	2	6167.722	2.977	.058
Within Groups	142958.500	69	2071.862		
Total	155293.944	71			

Dependent Variable: Redbloodcell Table A3

_	-	_	-	-	_	

(I) Bloodgroup	(J) Bloodgroup	Mean	Std. Error	Sig.	99% Confide	ence Interval
		Difference (I-J)			Lower Bound	Upper Bound
A	В	-21.833	13.140	.101	-56.64	12.97
A	AB	-31.250	13.140	.020	-66.06	3.56
R	A	21.833	13.140	.101	-12.97	56.64
_	AB	-9.417	13.140	.476	-44.22	25.39
AB	А	31.250	13.140	.020	-3.56	66.06
	В	9.417	13.140	.476	-25.39	44.22

LSD

Education College Theory Examination Chemistry Depts. 2nd Year

Subject: Computer Application SPSS Date:

- 15- MLR process fits a model relating a response variable Y to predictor variable X.
- 16- Compare paired or related data by Wilcoxon's test.
- 17- Paired-Sample T-Test we need to define group.
- 18- Crosstab analysis tow nominal variable with more than 2-leabl .
- 19- Pearson correlation use Analyze ,Descriptive Statistics/Crosstabs .
- 20-One output can show just one analyze result.
- 21- Choose the Simple Scatter option to graph the relationship between two variables.
- 22-computing T-Test between two or more variables used analyze list +crosstab.
- 23- The One-Sample T-Tests if the mean of a single variable differs from a specified
- 24-Inserting a Case. R.C on case then select insert cases.
- 25-Independent-Samples T-Test if we need to examine 3 group differences on scale variables.

Q2/Chose the correct answer:

1.	To run this, g	o to Analyze>Compear	Mean						
	a. correlation	b. regression	c.one-wayANOVA	d.2-wayANOVA					
2.	A multiple regressic independent variabl	on takes that your depe e.	endent variable is explaine	d by more than					
	a. two	b. four	c.three	d.one					
3.	The test statistic in	n the ANOVA is an							
	a. F-ratio	b. T-test	c. Addj.R ²	d. R ²					
4.	The straight line is a	ilso called the	.line or the fit line.						
	a. correlation	b. regression	c.one-wayANOVA	d.2-wayANOVA					
5.	The ANOVA summary table results appear in the SPSSViewer.								
	a. input	b. output	c. syntax	d. script					
6.	Sample T-	Test is also known as r	elated T-Test.						
	a. depend	b. in depend	c. Paired	d.one					
7.	Each data editor ca	ntina data view							
	a. four	b. one	c. three	d. two					
Q3/	write the steps when	:		(8M)					

- 1. Computing correlation between scale and nominal variable.
- 2. Analyze Kruskal-Wallis One-Way ANOVA.

Q3/Answering the following questions by using the tables(A&B) below : (8M) $\,$

- 1. Determine the Analyze Name.
- 2. Determine the significant level.
- 3. Writ the statistical hypothesis
- 4. Calculate the test statistic.
- 5. Write variables name and type.

(7M)

6. Compare The output.

Table A										
S	hapiro-W	ilk	Kolm	ogorov-Sn						
Sig.	df	Statistic	Sig.	df	Statistic					
.057	12	.859	.065	12	.235	Age				
.817	12	.962	.200*	12	.140	Protein ratio				
*. This is	*. This is a lower bound of the true significance.									
a. Lilliefo	rs Signifi	cance Corre	ection							

Table B

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	95.0% Confi fo	dence Interval or B
	В	Std. Error	Beta			Lower Bound	Upper Bound
(Constant)	143.994	48.395		2.975	.031	19.590	268.398
Age	-1.055	.370	-1.425	-2.852	.036	-2.006	104
Protein ratio	592	.525	563	-1.128	.311	-1.941	.757

a. Dependent Variable: weight

With best wishes

Assistant Lec.Paxshan A.Hamad

(7M)

(7M)

Q1/Mark the following statements with (T) for true and (F) for false:

- 1- In Variable View we can change font option.
- 2- comparing 2 independent groups using the Mann-Whitney Test.
- 3- Simple linear Regression we want to find the relationship between one scale variables.
- 4- Statistical tests AVOVA require that our data are normally distributed.
- 5- If we need to know there is gender effects on cholesterol then use paired simple T-Test.
- 6- The test statistic in the ANOVA is an F ratio, which is a ratio of two variances .
- 7- For tests on samples of n = 3 to 50 use Shapiro Wilks normality test.
- 8- Form Option in One-sample T-Test we change significant level a.
- 9- Transforming data is performed for transformed data is normally distributed.
- 10- One -way ANOVA compares the means of two or more independent groups.
- 11- Phi- correlation use Analyze, Correlation, Bivariate.
- 12- To run the multiple linear regression, go to Analyze>Regression>Linear.
- 13- Post hoc analyses to determine which of the sample means are different.

Q2/Chose the correct answer:

1. ANOVA is to understand if there is an interaction between the independent variables on the dependent variable.

a. two	b. four	c.three	d.one	
2button,	, make sure that me	ean difference between gro	oups are compear .	
a. options	b. post hoc	c. statistics	d. plots	
3it is file	e extension when w	e save output.		
a . sav	b.spv	c. sbv	d.sbs	
4is graph	nical way to represe	ent simple linear regressior	l.	
a. bar-chart	b. pi-char	t c. scatter	d. histogran	n
5menu i	tem would you use [.]	for cutting, copying, and pa	sting in the SPSS data ec	litor.
a. file	b. data	c. view	d. edit	
6it is fi	le extension when t	we save data editor.		
a . sav	b.spv	c. sbv	d.sbs	
7.Multiple linea	r regression are re	lation between three	variables.	
a. nominal	b. scale	c. ordinal	d. metric	

Q3/ write the steps when

(8M)

a. If the data about three samples, how can we know the effect each of them.

b. Non parametric Mann-Whitney Test.

Q4/Answering the following questions by using the tables(A&B) below :

- 1. Determine the Analyze Name.
- 2. Determine the significant level.
- **3**. Writ the statistical hypothesis
- 4. Calculate the test statistic.
- 5. Write variables name and type.
- **6**. Compare the output.

Table A										
S	ihapiro-W	ilk	Kolm	ogorov-Sn	nirnov ^a					
Sig.	df	Statistic	Sig.	Df	Statistic					
.077	500	.859	.065	500	.235	Age1				
0.817	500	.962	.200*	500	.140	Age2				
*. This is	*. This is a lower bound of the true significance.									
a. Lilliefo	rs Signifi	cance Corre	ection							

Table B												
Sig. (2-tailed)	df	†		Paired								
			99% Confidence		Std.	Std.	Mean					
			Interva	l of the	Error	Deviation						
			Difference		Mean							
			Upper	Lower								
0.144	500	-1.574	2.433	-7.433	1.588	5.502	-2.500	Age1-Age2	Pair 1			

(8M)

Q1/A- Mark the following statements with (T) for true and (F) for false: (7M) 1- MLR process fits a model relating a response variable Y to predictor variable X. () 2- Paired-Sample T-Test we need to define group. (3- Pearson correlation use Analyze ,Descriptive Statistics/Crosstabs . () 4- Choose the Simple Scatter option to graph the relationship between two variables. (5- The One-Sample T-Tests if the mean of a single variable differs from a specified constant. () 6- Independent-Samples T-Test if we need to examine 3 group differences on scale variables. () 7- Simple linear Regression we want to find the relationship between one scale variables. (8- If we need to know there is gender effects on cholesterol then use paired simple T-Test. () 9- Form Option in One-sample T-Test we change significant level a. (10- Paired-Sample T-Test is also known as independent T-Test. () 11- One -way ANOVA compares the means of two or more independent groups. () 12- Phi- correlation use Analyze, Correlation, Bivariate. () 13- The test statistic in the ANOVA is an F-ratio. () 14- Post hoc analyses to determine which of the sample means are different. ()

B- Write the steps to analyze independ sample T-Test:

Q2/A-Find Zinc-Carbon,Lithium life and Temperature effects on number of Batteries sold use table 1.

		Unstandardized Coefficients		Standardized Coefficients				99.0% Confidence In	terval for B
M	odel	В	Std. Error	Beta	t	t Sig. Lower Bound		Upper Bound	
1	(Constant)	304.299	63.544		4.789	.001	91.086	517.512	
	Zinc-Carbon	.207	2.247	.140	.092	.929	-7.332-	7.747	
	Lithium	.830	2.567	.526	.323	.755	-7.783-	9.442	
	Temperature	-1.285-	1.821	230-	706-	.500	-7.395-	4.825	

Coefficients': Table 1

B-Find Temperature effect on Zinc-Carbon Batteries life use table 2. Zinc-Carbon ANOVA: Table 2

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	18763.167	2	9381.583	31.641	.000
Within Groups	2668.500	9	296.500		
Total	21431.667	11			

With best wishes Assistant Lec.Paxshan A.Hamad

(5M)

(5M)

(3M)