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Abstract. One of the more exciting polynomials among the newly presented graph algebraic poly-
nomials is theM−Polynomial, which is a standard method for calculating degree−based topological
indices. In this paper, we define the Mve−polynomials based on vertex–edge degree and derive
various vertex–edge degree based topological indices from them. Thus, for any graph, we provide
some relationships between vertex–edge degree topological indices. Also, we discuss the general
Mve−polynomial of r−regular simple graph. Finally, we computed the Mve−polynomial of the
2−ary tree graph.
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1. Introduction

Let G be a connected simple graph and let w be a weight given to its vertices. That
is, for each v ∈ V (G) ”V = V (G) be the vertex set”, w(v) is a positive integer. A
Wve−polynomial of G is defined by:

Wve(G;x, y) = Σuv∈E(G)x
w(u)yw(v), w(u) ≤ w(v), (1.1)

where ”E = E(G) be the edge set”. Collecting all similar terms xiyj we can rewrite this
polynomial as:

Wve(G;x, y) = Σuv∈E(G)nijx
iyj , i ≤ j, (1.2)
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where nij is the number of all edges uv such that w(u) = i and w(v) = j.

The degree of a vertex u ∈ V is the number of edges incident on u, denoted as
du. The neighborhood of a vertex u ∈ V,NG(u) is a set of all neighbors of u, i.e.,
NG(u) = {v|uv ∈ E(G)} and its called open neighborhood. The closed neighborhood
of a vertex u, denoted by NG[u], is obtained by adding a vertex u to NG(u), that is,
NG[u] = NG(u) ∪ {u}. The δu denotes the degrees sum of neighbors of u in G.

It is clear that (1.1) is a general Wve−polynomial. If w(u) = du for all u ∈ V (G), then
(1.1) is M−polynomial of G, which may simplified as:

M(G;x, y) = Σuv∈E(G)mijx
iyj , i ≤ j, (1.3)

where mij is the number of edges uv ∈ E(G) such that {du, dv} = {i, j}. This polynomial
was first introduced by Deutsch and Klavžar [6].

And, if w(u) = δu for all u ∈ V (G), then from (1.1), we get NM−polynomial of G:

NM(G;x, y) = Σuv∈E(G)m
′
ijx

iyj , i ≤ j, (1.4)

where m′
ij is the total number of edges uv ∈ E(G) such that {δu, δv} = {i, j}. Mondal

and others [13] developed a M−polynomial into a NM−polynomial of a graph G.

Now, for each u ∈ V (G), τu is defined as the number of all edges in G incident to a
vertex of NG[u]. From (1.1), substituting w(u) = τu, we get Mve−polynomial:

Mve(G) = Σuv∈E(G)x
τuyτv , τu ≤ τv, (1.5)

Simplifying (1.5) by collecting similar terms, we get

Mve(G) = Σuv∈E(G)cijx
τuyτv , τu ≤ τv,

in which cij is the number of all edges uv ∈ E(G) such that {τu, τv} = {i, j}.

The terms vertex–edge degree of the graphs, τu were first introduced by Chellali and
others [4]. The authors defined these novel degree concepts in relation to the vertex−edge
domination parameters [4, 10]. The vertex–edge degree (ve−degree) concepts of the graphs
were extensively used in chemical graph theory [3, 7, 8] and [19].

The M−polynomial is the most general polynomial that may generate a wide range
of degree−based topological indices [5, 6, 9, 11–13, 15, 17] and [18].
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From the above three definitions, we get some properties:

(i) Σi≤jmijx
iyj |x=y=1 = Σi≤jnijx

iyj |x=y=1 = Σi≤jcijx
iyj |x=y=1 = q.

(ii) For any vertex u in a graph G, we have: du ≤ τu ≤ δu.

(iii) Let f(hu, hv) be the index function, where hz ∈ {dz, τz, δz}. Then f(du, dv) ≤
f(τu, τv) ≤ f(δu, δv), where f ∈ [first and second Zagreb, reduced first and second
Zagreb, hyper Zagreb index, forgotten index, albertson index, sigma index].

Finally, there are many polynomials that have been found over the current century
that have chemical applications; see [1, 2] and [14]

2. Some Relations Between Vertex – Edge Degree Topological Indices

In this section, we give some relations between vertex–edge degree topological indices
for any graph G. Also, the lower and upper bounds for vertex–edge degree topological
indices via Wve−polynomial are determined; some of them are shown in Table 1. for any
graph G.

Table 1: Some vertex–edge–degree based topological indices for Wve−polynomial.

Topological index Symbol Index Formula f(w(u), w(v)) Derivation from Wve(G;x, y)

First Zagreb W 1
ve(G) Σuv∈E(G)(w(u) + w(v)) (Dx +Dy)Wve(G;x, y)|x=y=1

Second Zagreb W 2
ve(G) Σuv∈E(G)(w(u)w(v)) (DxDy)Wve(G;x, y)|x=y=1

Reduced First Zagreb RW 1
ve(G) Σuv∈E(G)(w(u) + w(v)− 2) (Dx +Dy − 2)Wve(G;x, y)|x=y=1

Reduced Second Zagreb RW 2
ve(G) Σuv∈E(G)(w(u)− 1)(w(v))− 1) (Dx − 1)(Dy − 1)Wve(G;x, y)|x=y=1

Hyper Zagreb index HypWve(G) Σuv∈E(G)(w(u) + w(v))2 D2
xJWve(G;x, y)|x=y=1

Forgotten index FWve(G) Σuv∈E(G)((w(u))
2 + (w(v))2) (D2

x +D2
y)Wve(G;x, y)|x=y=1

Albertson index AlbWve(G) Σuv∈E(G)|w(u)− w(v)| DxIWve(G;x, y)|x=y=1

Sigma index σWve(G) Σuv∈E(G)(w(u)− w(v))2 D2
xIWve(G;x, y)|x=y=1

Where the operator Dx and Dy on Wve(G;x, y) are defined as:

DxWve(G;x, y) = x
∂Wve(G;x, y)

∂x
,DyWve(G;x, y) = y

∂Wve(G;x, y)

∂y
, JWve(G;x, y) = Wve(G;x, x)

and IWve(G;x, y) = Wve(G;x, x−1).

Theorem 2.1: Let G be any graph with order p = |V (G)| and size q = |E(G)|. Then

1. RW 1
ve(G) = W 1

ve(G)− 2q.
2. RW 2

ve(G) = W 2
ve(G)−W 1

ve(G) + q.
3. FWve(G) = HypWve(G)− 2W 2

ve(G).
4. σWve(G) = HypWve(G)− 4W 2

ve(G).
5. σWve(G) = 2FWve(G)−HypWve(G).
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Proof:

1. From the definition of the reduced first Zagreb, we have:

RW 1
ve(G) = Σuv∈E(G)(w(u) + w(v)− 2)

= Σuv∈E(G)(w(u) + w(v))− Σuv∈E(G)2

= W 1
ve(G)− 2q.

2. From the definition of the reduced second Zagreb, we have:

RW 2
ve(G) = Σuv∈E(G)(w(u)− 1)(w(v)− 1)

= Σuv∈E(G)w(u)w(v)− Σuv∈E(G)(w(u) + w(v)) + Σuv∈E(G)1

= R2
ve(G)−R1

ve(G) + q.

3. From the definition of the Forgotten index, we have:

FWve(G) = Σuv∈E(G)(w(u)
2 + w(v)2)

= Σuv∈E(G)(w(u) + w(v))2 − 2Σuv∈E(G)w(u)w(v)

= HypWve(G)− 2W 2
ve(G).

4. From the definition of the sigma index, we have:

σWve(G) = Σuv∈E(G)(w(u)− w(v))2

= Σuv∈E(G)((w(u))
2 + (w(v))2)− 2Σuv∈E(G)w(u)w(v)

= FWve(G)− 2W 2
ve(G)

= HypWve(G)− 4W 2
ve(G).

5. From 3 and 4, we have:

σWve(G) = 2FWve(G)−HypWve(G).

.
In the next theorem, the upper and lower boundaries will be found using the vertex−degree−based
topological indices τu, u ∈ V (G).

Theorem 2.2: Let G be any graph with order p and size q. Then

1. 2q ≤ M1
ve(G) ≤ 2q2.

2. q ≤ M2
ve(G) ≤ q3.

3. 0 ≤ RM1
ve(G) ≤ 2q(q − 1).

4. 0 ≤ RM2
ve(G) ≤ q(q − 1)2.

5. 4q ≤ HypMve(G) ≤ 4q3.
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6. 2q ≤ FMve(G) ≤ 2q3.

Proof:

Since 1 ≤ τu ≤ q, for all u in G, then

1. 2 ≤ τu + τv ≤ 2q , this implies that

Σuv∈E(G)2 ≤ Σuv∈E(G)(τu + τv) ≤ Σuv∈E(G)2q, then
2q ≤ M1

ve(G) ≤ 2q2.

2. 1 ≤ τuτv ≤ q2, this implies that

Σuv∈E(G)1 ≤ Σuv∈E(G)(τuτv) ≤ Σuv∈E(G)q
2, then

q ≤ M2
ve(G) ≤ q3.

3. 0 ≤ τu + τv − 2 ≤ 2(q − 1) , this implies that

Σuv∈E(G)0 ≤ Σuv∈E(G)(τu + τv − 2) ≤ Σuv∈E(G)2(q − 1), then
0 ≤ RM1

ve(G) ≤ 2q(q − 1).

4. 0 ≤ (τu − 1)(τv − 1) ≤ (q − 1)2, this implies that

Σuv∈E(G)0 ≤ Σuv∈E(G)(τu − 1)(τv − 1) ≤ Σuv∈E(G)(q − 1)2, then
0 ≤ RM2

ve(G) ≤ q(q − 1)2.

5. 4 ≤ (τu + τv)
2 ≤ 4q2, this implies that

Σuv∈E(G)4 ≤ Σuv∈E(G)(τu + τv)
2 ≤ Σuv∈E(G)4q

2, then
4q ≤ HypMve(G) ≤ 4q3.

6. 2 ≤ (τu)
2 + (τv)

2 ≤ 2q2, this implies that

Σuv∈E(G)2 ≤ Σuv∈E(G)((τu)
2 + (τv)

2) ≤ Σuv∈E(G)2q
2, then

2q ≤ FMve(G) ≤ 2q3.

Remark: We note that equality exists for all topological indices in Theorem 2.2, if G =
K2.

3. Mve−Polynomials of r−Regular Graphs

In the next theorems, we discuss the general Mve−polynomial of r−regular simple
graph of size q.

Theorem 3.1: Let G is an r−regular simple graph G of size q, then
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1. M(G;x, y) = qxryr.
2. NM(G;x, y) = qxr

2
yr

2
.

3. If the graph G without triangle cycles, then Mve(G;x, y) = qxr
2
yr

2
.

Proof:

1. Let G is r−regular graph with q edges, then every edge in G is an incident on two
vertices which have r degree. Hence, M(G;x, y) = qxryr.

2. Since every vertex u in r−regular graph G is adjacent r vertices, then δu = r2. Hence,
NM(G;x, y) = qxr

2
yr

2
.

3. If G is an r−regular simple graph without triangle cycles, then τu = τv = r2, for every
edge e = uv where u, v ∈ V (G). Hence Mve(G;x, y) = qxr

2
yr

2
.

Example 3.2: Let Hi be 3−regular graph for all i = 1, 2, 3. See Figure 1.

Figure 1: 3−regular graphs.

We note that:
M(H1;x, y) = 9x3y3, NM(H1;x, y) = 9x9y9 and Mve(H1;x, y) = 9x8y8.
M(H2;x, y) = 12x3y3 and NM(H2;x, y) = Mve(H2;x, y) = 12x9y9.
M(H3;x, y) = 15x3y3, NM(H3;x, y) = 15x9y9 and
Mve(H3;x, y) = 7x8y8 + 4x8y9 + 4x9y9.

It is very difficult to find a general formula for Mve−polynomial of a regular graph, so
some conditions were given on the regular graphs in order to obtain Mve−polynomial.

Theorem 3.3: Let G is an r−regular simple graph such that every vertex in G lies on
only one triangle cycle, then
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Mve(G;x, y) = qxr
2−1yr

2−1, where q = |E(G)|.

Proof:

Let e = uv be any edge in G where u, v ∈ V (G), then the two vertices u and v are
adjacent with third vertex, then τu = τv = r2 − 1. Hence Mve(G;x, y) = qxr

2−1yr
2−1,

where q = |E(G)|.

Theorem 3.4: Let G is a r−regular simple graph such that any vertex in G lies at most
on one triangular cycle. If h be the number of edges lies between any two vertices belong
to triangular cycle (or cycles) and k be the number of edges which one of whose ends, but
not both lies on a triangular cycle. Then

Mve(G;x, y) = hxr
2−1yr

2−1 + kxr
2−1yr

2
+ (q − h− k)xr

2
yr

2
,

where q = |E(G)|.

Proof: Obvious.

Definition 3.5: Let G be a simple graph and a vertex u ∈ V (G), we can rewrite δu as:

δu = Σz∈N(u)dz = du + 2ε1 + ε2,

where ε1 be the number of edges of which both its ends belong to a triangular cycle and
ε2 be the number of edges which lies on the vertices are neighbors of a vertex u.

Theorem 3.6: Let G be a any graph without triangular cycle, then,

NM(G;x, y) = Mve(G;x, y).

Proof:

For edge e = uv where u, v ∈ V (G), then m′
δuδv

xδuyδv = m′
δuδv

xdu+2ε1+ε2ydv+2ε1+ε2 ,
by Definition 3.5. Since G is a graph without triangular cycles, then ε1 = 0. Hence
m′

δuδv
xδuyδv = m′

δuδv
xdu+ε2ydv+ε2 = cδuδvx

τuyτv , by definition vertex – edge degree of the
graph. Hence,

NM(G;x, y) = Mve(G;x, y).

4. Mve−Polynomials of 2−Ary Tree Graph

Definition 4.1: [16] A rooted tree G is an acyclic connected graph with a special node
that is called the root of the tree and every edge directly or indirectly originates from the
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root. An ordered rooted tree is a rooted tree where the children of each internal vertex
is ordered. If every internal vertex of a rooted tree has not more than m children, it is
called an m−ary tree. In this section, we determine the Mve−polynomial of special case
of m−ary tree is 2−ary tree of n levels denoted by ℵn and as shown in Figure 2.

Figure 2: 2−Ary Tree graph ℵn.

Some Properties of a 2−Ary Tree Graph ℵn:

• At each level of i, the number of vertices are 2i, for 0 ≤ i ≤ n.

• The order and the size are p(ℵn) = 2n+1 − 1 and q(ℵn) = 2n+1 − 2, respectively.

• The rooted vertex of degree 2, the degrees of vertices at each level of i, 1 ≤ i ≤ n−1
are 3 which represent the maximum degree ” △ (ℵn) = 3” and the degrees of the
last level are 1 which represent the minimum degree ”δ(ℵn) = 1”.

• The maximum and minimum ve−degree are △ve (ℵn) = 9 and δve(ℵn) = 3, respec-
tively.

Theorem 4.2: Let ℵn be the 2−ary tree graph of order 2n+1 − 1 , n ≥ 4. Then,

Mve(ℵn;x, y) = 2x6y8 + 4x8y9 + 2nx3y5 + 2n−1x5y9 + (2n−1 − 8)x9y9.

Proof:

From the Definition 4.1 and Figure 2 of 2−ary tree graph ℵn, we can observe that the
vertices are divided into five partitions:

|V1| = |v ∈ V (ℵn) : τv = 3| = 2n,
|V2| = |v ∈ V (ℵn) : τv = 5| = 2n−1,
|V3| = |v ∈ V (ℵn) : τv = 6| = 20,
|V4| = |v ∈ V (ℵn) : τv = 8| = 21,
|V5| = |v ∈ V (ℵn) : τv = 9| = 2n−1 − 4.
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The edges set of 2 − ary tree graph ℵn can be partitioned as |E3,5| = |uv ∈ E(ℵn) :
τu = 3 and τv = 5| = 2n, |E5,9| = |uv ∈ E(ℵn) : τu = 5 and τv = 9| = 2n−1, |E6,8| = |uv ∈
E(ℵn) : τu = 6 and τv = 8| = 2, |E8,9| = |uv ∈ E(ℵn) : τu = 8 and τv = 9| = 22, |E9,9| =
|uv ∈ E(ℵn) : τu = τv = 9| = |E(ℵn)| − |E3,5| − |E5,9| − |E6,8| − |E8,9| = 2n−1 − 8.

Thus, the Mve−polynomial of 2−ary tree graph ℵn is

Mve(ℵn;x, y) = Σi≤jcijx
iyj

= Σ3≤5c35x
3y5 +Σ5≤9c59x

5y9 +Σ6≤8c68x
6y8 +Σ8≤9c89x

8y9 +Σ9≤9c99x
9y9

= Σuv∈E3,5c35x
3y5+Σuv∈E5,9c59x

5y9+Σuv∈E6,8c68x
6y8+Σuv∈E8,9c89x

8y9+Σuv∈E9,9c99x
9y9.

= |E3,5|x3y5 + |E5,9|x5y9 + |E6,8|x6y8 + |E8,9|x8y9 + |E9,9|x9y9

= 2nx3y5 + 2n−1x5y9 + 2x6y8 + 4x8y9 + (2n−1 − 8)x9y9.

Corollary 4.3: Let ℵn be the 2− ary tree graph of order 2n+1 − 1 , n ≥ 4. Then

1. M1
ve(ℵn) = 8(2n+1 + 2n − 6).

2. M2
ve(ℵn) = 3(42× 2n−1 + 5× 2n − 88).

3. RM1
ve(ℵn) = (2n+4 + 2n+3 − 2n+2 − 44).

4. RM2
ve(ℵn) = 2(2n+2 + 48× 2n−1 − 109).

5. HypMve(ℵn) = 4(2n+4 + 130× 2n−1 − 261).
6. FMve(ℵn) = 2(17× 2n + 134× 2n−1 − 258).
7. AlbMve(ℵn) = 4(2n + 2).
8. σMve(ℵn) = 4(2n+1 + 2n + 3).

Remark 4.4: From Theorem 3.5, we get

Mve(ℵn;x, y) = NM(ℵn;x, y) = 2x6y8 + 4x8y9 + 2nx3y5 + 2n−1x5y9 + (2n−1 − 8)x9y9.

5. Conclusion:

In this paper, we have given a new polynomial based on the terms of a vertex–edge degree
of a graph G. From this polynomial we proved many properties and proved that it’s equal
to the neighbor polynomial when G there is a graph without a triangular cycle. We also
discover a vertex−edge degree polynomial for an r−regular graph under certain conditions.
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