Basis and Dimentions

Basis of a Subspace

As we discussed in Section 2.6, a subspace is the same as a span, except we do not have a set of spanning vectors in mind. There are infinitely many choices of spanning sets for a nonzero subspace; to avoid reduncancy, usually it is most convenient to choose a spanning set with the minimal number of vectors in it. This is the idea behind the notion of a basis.

4 Definition. Let V be a subspace of \mathbf{R}^{n}. A basis of V is a set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V such that:

1. $V=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and
2. the set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is linearly independent.

A nonzero subspace has infinitely many different bases, but they all contain the same number of vectors.

\triangle
Definition. Let V be a subspace of \mathbf{R}^{n}. The number of vectors in any basis of V is called the dimension of V, and is written $\operatorname{dim} V$.

Example-1: Find a basis of R^{2}.

Solution

We need to find two vectors in \mathbf{R}^{2} that span \mathbf{R}^{2} and are linearly independent. One such basis is $\left.\left\{\begin{array}{l}1 \\ 0\end{array}\right),\binom{0}{1}\right\}$:

1. They span because any vector $\binom{a}{b}$ can be written as a linear combination of $\binom{1}{0},\binom{0}{1}$:

$$
\binom{a}{b}=a\binom{1}{0}+b\binom{0}{1} .
$$

2. They are linearly independent: if

$$
x\binom{1}{0}+y\binom{0}{1}=\binom{x}{y}=\binom{0}{0}
$$

then $x=y=0$.
This shows that the plane \mathbf{R}^{2} has dimension 2.

Example2: The standard basis of R^{n}

One shows exactly as in the above example that the standard coordinate vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right), \quad \ldots, \quad e_{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1 \\
0
\end{array}\right), \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

form a basis for \mathbf{R}^{n}. This is sometimes known as the standard basis.

In particular, \mathbf{R}^{n} has dimension n.

The Basis Theorem

Basis Theorem. Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

In other words, if you already know that $\operatorname{dim} V=m$, and if you have a set of m vectors $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in V, then you only have to check one of:

1. \mathcal{B} is linearly independent, or
2. \mathcal{B} spans V,
in order for \mathcal{B} to be a basis of V. If you did not already know that $\operatorname{dim} V=m$, then you would have to check both properties.

To put it yet another way, suppose we have a set of vectors $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ in a subspace V. Then if any two of the following statements is true, the third must also be true:

1. \mathcal{B} is linearly independent,
2. \mathcal{B} spans V, and
3. $\operatorname{dim} V=m$.

For example, if V is a plane, then any two noncollinear vectors in V form a basis.

Bases as Coordinate Systems

In this section, we interpret a basis of a subspace V as a coordinate system on V, and we learn how to write a vector in V in that coordinate system.

Fact. If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

in exactly one way.
Proof:
Recall that to say \mathcal{B} is a basis for V means that \mathcal{B} spans V and \mathcal{B} is linearly independent. Since \mathcal{B} spans V, we can write any x in V as a linear combination of $v_{1}, v_{2}, \ldots, v_{m}$. For uniqueness, suppose that we had two such expressions:

$$
\begin{aligned}
& x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m} \\
& x=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{m}^{\prime} v_{m} .
\end{aligned}
$$

Subtracting the first equation from the second yields

$$
0=x-x=\left(c_{1}-c_{1}^{\prime}\right) v_{1}+\left(c_{2}-c_{2}^{\prime}\right) v_{2}+\cdots+\left(c_{m}-c_{m}^{\prime}\right) v_{m} .
$$

Since \mathcal{B} is linearly independent, the only solution to the above equation is the trivial solution: all the coefficients must be zero. It follows that $c_{i}-c_{i}^{\prime}$ for all i, which proves that $c_{1}=c_{1}^{\prime}, c_{2}=c_{2}^{\prime}, \ldots, c_{m}=c_{m}^{\prime}$.

Example. Consider the standard basis of \mathbf{R}^{3} from this example

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

According to the above fact, every vector in \mathbf{R}^{3} can be written as a linear combination of e_{1}, e_{2}, e_{3}, with unique coefficients. For example,

$$
v=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right)=3\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-2\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=3 e_{1}+5 e_{2}-2 e_{3} .
$$

In this case, the coordinates of v are exactly the coefficients of e_{1}, e_{2}, e_{3}.
What exactly are coordinates, anyway? One way to think of coordinates is that they give directions for how to get to a certain point from the origin. In the above example, the linear combination $3 e_{1}+5 e_{2}-2 e_{3}$ can be thought of as the following list of instructions: start at the origin, travel 3 units north, then travel 5 units east, then 2 units down.

Definition. Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis of a subspace V, and let

$$
x=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

be a vector in V. The coefficients $c_{1}, c_{2}, \ldots, c_{m}$ are the coordinates of x with respect to \mathcal{B}. The \mathcal{B}-coordinate vector of x is the vector

$$
[x]_{\mathcal{B}}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right) \quad \text { in } \mathrm{R}^{m}
$$

If we change the basis, then we can still give instructions for how to get to the point $(3,5,-2)$, but the instructions will be different. Say for example we take the basis

$$
v_{1}=e_{1}+e_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad v_{2}=e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad v_{3}=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

We can write $(3,5,-2)$ in this basis as $3 v_{1}+2 v_{2}-2 v_{3}$. In other words: start at the origin, travel northeast 3 times as far as v_{1}, then 2 units east, then 2 units down. In this situation, we can say that " 3 is the v_{1}-coordinate of $(3,5,-2), 2$ is the v_{2}-coordinate of $(3,5,-2)$, and -2 is the v_{3}-coordinate of $(3,5,-2)$."

Linear transformaton

Definition. A linear transformation is a transformation $T: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$ satisfying

$$
\begin{aligned}
T(u+v) & =T(u)+T(v) \\
T(c u) & =c T(u)
\end{aligned}
$$

for all vectors u, v in \mathbf{R}^{n} and all scalars c.

Facts about linear transformations. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then:

1. $T(0)=0$.
2. For any vectors $v_{1}, v_{2}, \ldots, v_{k}$ in \mathbf{R}^{n} and scalars $c_{1}, c_{2}, \ldots, c_{k}$, we have

$$
T\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}\right)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\cdots+c_{k} T\left(v_{k}\right)
$$

Proof:

1. Since $0=-0$, we have

$$
T(0)=T(-0)=-T(0)
$$

by the second defining property. The only vector w such that $w=-w$ is the zero vector.

2 . Let us suppose for simplicity that $k=2$. Then

$$
\begin{array}{rlr}
T\left(c_{1} v_{1}+c_{2} v_{2}\right) & =T\left(c_{1} v_{1}\right)+T\left(c_{2} v_{2}\right) & \text { first property } \\
& =c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right) & \text { second property. }
\end{array}
$$

In engineering, the second fact is called the superposition principle; it should remind you of the distributive property. For example, $T(c u+d v)=c T(u)+d T(v)$ for any vectors u, v and any scalars c, d. To restate the first fact:

A linear transformation necessarily takes the zero vector to the zero vector.

Example: A non linear transformation.

Define $T: \mathrm{R} \rightarrow \mathrm{R}$ by $T(x)=x+1$. Is T a linear transformation?

Solution

We have $T(0)=0+1=1$. Since any linear transformation necessarily takes zero to zero by the above important note, we conclude that T is not linear (even though its graph is a line).

Note: in this case, it was not necessary to check explicitly that T does not satisfy both defining properties: since $T(0)=0$ is a consequence of these properties, at least one of them must not be satisfied. (In fact, this T satisfies neither.)

Example: Verify linearity: dilation

Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $T(x)=1.5 x$. Verify that T is linear.

Solution

We have to check the defining properties for all vectors u, v and all scalars c. In other words, we have to treat u, v, and c as unknowns. The only thing we are allowed to use is the definition of T.

$$
\begin{aligned}
T(u+v) & =1.5(u+v)=1.5 u+1.5 v=T(u)+T(v) \\
T(c u) & =1.5(c u)=c(1.5 u)=c T(u) .
\end{aligned}
$$

Since T satisfies both defining properties, T is linear.
Example: Verify linearity: Rotation.
Define $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by

$$
T(x)=\text { the vector } x \text { rotated counterclockwise by the angle } \theta \text {. }
$$

Verify that T is linear.

Solution

Since T is defined geometrically, we give a geometric argument. For the first property, $T(u)+T(v)$ is the sum of the vectors obtained by rotating u and v by θ. On the other side of the equation, $T(u+v)$ is the vector obtained by rotating the sum of the vectors u and v. But it does not matter whether we sum or rotate first, as the following picture shows.

For the second property, $c T(u)$ is the vector obtained by rotating u by the angle θ, then changing its length by a factor of c (reversing direction of $c<0$. On the other hand, $T(c u)$ first changes the length of c, then rotates. But it does not matter in which order we do these two operations.

This verifies that T is a linear transformation.
Example: Linear transformation defined by formula.
Define $T: \mathrm{R}^{2} \rightarrow \mathrm{R}^{3}$ by the formula

$$
T\binom{x}{y}=\left(\begin{array}{c}
3 x-y \\
y \\
x
\end{array}\right)
$$

Verify that T is linear.

Solution

We have to check the defining properties for all vectors u, v and all scalars c. In other words, we have to treat u, v, and c as unknowns; the only thing we are allowed to use is the definition of T. Since T is defined in terms of the coordinates of u, v, we need to give those names as well; say $u=\binom{x_{1}}{y_{1}}$ and $v=\binom{x_{2}}{y_{2}}$. For the first property, we have

$$
\begin{aligned}
T\left(\binom{x_{1}}{y_{1}}+\binom{x_{2}}{y_{2}}\right) & =T\binom{x_{1}+x_{2}}{y_{1}+y_{2}}=\left(\begin{array}{c}
3\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right) \\
y_{1}+y_{2} \\
x_{1}+x_{2}
\end{array}\right) \\
& =\left(\begin{array}{c}
\left(3 x_{1}-y_{1}\right)+\left(3 x_{2}-y_{2}\right) \\
y_{1}+y_{2} \\
x_{1}+x_{2}
\end{array}\right) \\
& =\left(\begin{array}{c}
3 x_{1}-y_{1} \\
y_{1} \\
x_{1}
\end{array}\right)+\left(\begin{array}{c}
3 x_{2}-y_{2} \\
y_{2} \\
x_{2}
\end{array}\right)=T\binom{x_{1}}{y_{1}}+T\binom{x_{2}}{y_{2}} .
\end{aligned}
$$

For the second property,

$$
\begin{aligned}
T\left(c\binom{x_{1}}{y_{1}}\right) & =T\binom{c x_{1}}{c y_{1}}=\left(\begin{array}{c}
3\left(c x_{1}\right)-\left(c y_{1}\right) \\
c y_{1} \\
c x_{1}
\end{array}\right) \\
& =\left(\begin{array}{c}
c\left(3 x_{1}-y_{1}\right) \\
c y_{1} \\
c x_{1}
\end{array}\right)=c\left(\begin{array}{c}
3 x_{1}-y_{1} \\
y_{1} \\
x_{1}
\end{array}\right)=c T\binom{x_{1}}{y_{1}} .
\end{aligned}
$$

Since T satisfies the defining properties, T is a linear transformation. Note: we will see in this example below that

$$
T\binom{x}{y}=\left(\begin{array}{cc}
3 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
$$

Translatio:

Define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by

$$
T(x)=x+\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

This kind of transformation is called a translation. As in a previous example, this T is not linear, because $T(0)$ is not the zero vector.

Exercise: Find an example of a transformation that satisfies the first property of linearity but not the second.

Kernel and image of linear transformation

Definition: Let V and W be vector space and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then the image of T denoted by $\mathrm{im}(\mathrm{T})$ is defined to be the set $\{T(v): v \in V\}$. In word, it consists of all vectors in W equal $T(v)$.

The kernel, $\operatorname{ker}(\mathrm{T})$, consists of all $\mathrm{v} \in \mathrm{V}$ such that $\mathrm{T}(\mathrm{v})=0$, that is, $\operatorname{ker}(\mathrm{T})=\{\mathrm{v} \in \mathrm{V}: \mathrm{T}(\mathrm{v})=0\}$.

Then in fact, both im(T$)$ and $\operatorname{ker}(\mathrm{T})$ are subspaces of W and V respectively.
Proposition-1: Let V and W be two vector spaces and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear transformation. Then $\operatorname{ker}(\mathrm{T}) \subseteq \mathrm{V}$, and $\mathrm{im}(\mathrm{T}) \subseteq \mathrm{W}$, and both are vector space.

Proof:

First consider $\operatorname{ker}(T)$, let v_{1}, v_{2} are vectors in $\operatorname{ker}(T)$, and scalers $a, b \in R$, we have to prove $\mathrm{av}_{1}+\mathrm{bv}_{2} \in \operatorname{ker}(\mathrm{~T})$.
$\mathrm{T}\left(\mathrm{av}_{1}+\mathrm{bv}_{2}\right)=\mathrm{T}\left(\mathrm{av}_{1}\right)+\mathrm{T}\left(\mathrm{bv}_{2}\right)=\mathrm{aT}\left(\mathrm{v}_{1}\right)+\mathrm{bT}\left(\mathrm{v}_{2}\right)=\mathrm{a} .0+\mathrm{b} .0=0$
Thus $\operatorname{ker}(\mathrm{T})$ is a subspace of V .

Next suppose $T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right)$ are two vectors in $\operatorname{im}(T)$. Then if a, b are scalars,

$$
a T\left(\vec{v}_{2}\right)+b T\left(\vec{v}_{2}\right)=T\left(a \vec{v}_{1}+b \vec{v}_{2}\right)
$$

and this last vector is in $\operatorname{im}(T)$ by definition.
Example-1:
Let $T: \mathbb{P}_{1} \rightarrow \mathbb{R}$ be the linear transformation defined by

$$
T(p(x))=p(1) \text { for all } p(x) \in \mathbb{P}_{1}
$$

Find the kernel and image of T.

Solution

We will first find the kernel of T. It consists of all polynomials in \mathbb{P}_{1} that have 1 for a root.

$$
\begin{aligned}
\operatorname{ker}(T) & =\left\{p(x) \in \mathbb{P}_{1} \mid p(1)=0\right\} \\
& =\{a x+b \mid a, b \in \mathbb{R} \text { and } a+b=0\} \\
& =\{a x-a \mid a \in \mathbb{R}\}
\end{aligned}
$$

Therefore a basis for $\operatorname{ker}(T)$ is

$$
\{x-1\}
$$

Notice that this is a subspace of \mathbb{P}_{1}.
Now consider the image. It consists of all numbers which can be obtained by evaluating all polynomials in \mathbb{P}_{1} at 1 .

$$
\begin{aligned}
\operatorname{im}(T) & =\left\{p(1) \mid p(x) \in \mathbb{P}_{1}\right\} \\
& =\left\{a+b \mid a x+b \in \mathbb{P}_{1}\right\} \\
& =\{a+b \mid a, b \in \mathbb{R}\} \\
& =\mathbb{R}
\end{aligned}
$$

Therefore a basis for $\mathrm{im}(T)$ is

Example-2:
Let $T: \mathbb{M}_{22} \mapsto \mathbb{R}^{2}$ be defined by

$$
T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{l}
a-b \\
c+d
\end{array}\right]
$$

Then T is a linear transformation. Find a basis for $\operatorname{ker}(T)$ and $\operatorname{im}(T)$.

Solution

You can verify that T represents a linear transformation.
Now we want to find a way to describe all matrices A such that $T(A)=\overrightarrow{0}$, that is the matrices in $\operatorname{ker}(T)$.
Suppose $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is such a matrix. Then

$$
T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{l}
a-b \\
c+d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The values of a, b, c, d that make this true are given by solutions to the system

$$
\begin{aligned}
& a-b=0 \\
& c+d=0
\end{aligned}
$$

The solution is $a=s, b=s, c=t, d=-t$ where s, t are scalars. We can describe $\operatorname{ker}(T)$ as follows.

$$
\operatorname{ker}(T)=\left\{\left[\begin{array}{cc}
s & s \\
t & -t
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\right\}
$$

It is clear that this set is linearly independent and therefore forms a basis for $\operatorname{ker}(T)$.
We now wish to find a basis for $\operatorname{im}(T)$. We can write the image of T as

$$
\operatorname{im}(T)=\left\{\left[\begin{array}{l}
a-b \\
c+d
\end{array}\right]\right\}
$$

Notice that this can be written as

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

However, this is clearly not linearly independent. By removing vectors from the set to create an independent set gives a basis of im(T).
$\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

Notice that these vectors have the same span as the set above but are now linearly independent.

Theorem-2: Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation where V, W are vector spaces. Suppose the dimension of V is n. Then $n=\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))$

Proof: From Proposition $-1, \mathrm{im}(\mathrm{T})$ is a subspaces of W , then there exists a basis for $\operatorname{im}(T),\left\{T\left(\overrightarrow{v^{1}}\right), \cdots, T\left(\overrightarrow{v_{r}}\right)\right\} .$. Similarly, $\operatorname{ker}(T)$ is a subspace in V, then there is a basis for $\operatorname{ker}(T), \quad\{\vec{u} 1, \cdots, \vec{u} s\}$. Then if $v \vec{v} \in V$, there exist scalars ci such that:

$$
T(\vec{v})=\sum_{i=1}^{r} c_{i} T\left(\vec{v}_{i}\right)
$$

Hence $T\left(\vec{v}-\sum_{i=1}^{r} c_{i} \vec{v}_{i}\right)=0$. It follows that $\vec{v}-\sum_{i=1}^{r} c_{i} \vec{v}_{i}$ is in $\operatorname{ker}(T)$.
Hence there are scalars ai such that

$$
\vec{v}-\sum_{i=1}^{r} c_{i} \vec{v}_{i}=\sum_{j=1}^{s} a_{j} \vec{u}_{j}
$$

Hence $\vec{v}=\sum_{i=1}^{r} c_{i} \vec{v}_{i}+\sum_{j=1}^{s} a_{j} \vec{u}_{j}$. Since \vec{v} is arbitrary, it follows that

$$
V=\operatorname{span}\left\{\vec{u}_{1}, \cdots, \vec{u}_{s}, \vec{v}_{1}, \cdots, \vec{v}_{r}\right\}
$$

If the vectors $\left\{\vec{u} 1, \cdots, \vec{u} s, \vec{v}_{1}, \cdots, v_{r}\right.$ r\}are linearly independent, then it will follow that this set is a basis. Suppose then that

$$
\sum_{i=1}^{r} c_{i} \vec{v}_{i}+\sum_{j=1}^{s} a_{j} \vec{u}_{j}=0
$$

Apply T to both sides to obtain

$$
\sum_{i=1}^{r} c_{i} T\left(\vec{v}_{i}\right)+\sum_{j=1}^{s} a_{j} T\left(\vec{u}_{j}\right)=\sum_{i=1}^{r} c_{i} T\left(\vec{v}_{i}\right)=\overrightarrow{0}
$$

Since $\left\{T\left(v^{3} 1\right), \cdots, T\left(v^{3}\right)\right\}$ is linearly independent, it follows that each $\mathrm{c}=0$. Hence $\sum_{\mathrm{s}=1}=1 \mathrm{aju}{ }^{\mathrm{j}} \mathrm{j}=0$ and so , since the $\left\{\mathrm{u}{ }^{1}, \cdots, \cdots \overrightarrow{\mathrm{u}}\right.$ s\}are linearly independent, it follows that each $\mathrm{aj}=0$ also. It follows that $\{u \rightarrow 1, \cdots, u \rightarrow s, v \rightarrow 1, \cdots, v \rightarrow r\}$ is a basis for V and so

$$
\mathrm{n}=\mathrm{s}+\mathrm{r}=\operatorname{dim}(\operatorname{ker}(\mathrm{T}))+\operatorname{dim}(\operatorname{im}(\mathrm{T}))
$$

Definition: The rank of linear transformation

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation and suppose V, W are finite dimensional vector spaces. Then the rank of T denoted as $\operatorname{rank}(\mathrm{T})$ is defined as the dimension of $\operatorname{im}(\mathrm{T})$. The nullity of T is the dimension of $\operatorname{ker}(\mathrm{T})$. Thus the above theorem says that $\operatorname{rank}(\mathrm{T})+\operatorname{dim}(\operatorname{ker}(\mathrm{T}))=\operatorname{dim}(\mathrm{V})$.

Definition: Let V, be vector spaces with $\mathrm{v}_{1}, \mathrm{v}_{2}$ be vectors in V . Then a linear transformation $\mathrm{T}: \mathrm{V} \mapsto \mathrm{W}$ is called one to one if whenever $\mathrm{v}_{1} \neq \mathrm{V}_{2}$ it follows that

$$
\mathrm{T}\left(\mathrm{v}_{1}\right) \neq \mathrm{T}\left(\mathrm{v}_{2}\right)
$$

A linear transformation $\mathrm{T}: \mathrm{V} \mapsto \mathrm{W}$ is called onto if for all $\overrightarrow{\mathrm{w}} \in \mathrm{W}$ there exists $\vec{v} \in V$ such that $T(\vec{v})=w \vec{w}$.

Lemma-3: The assertion that a linear transformation T is one to one is equivalent to saying that if $T(\vec{v})=0 \overrightarrow{ }$, then $\vec{v}=0$.

Proof:

Suppose first that T is one to one.

$$
\mathrm{T}\left(0^{\vec{r}}\right)=\mathrm{T}\left(0^{\vec{r}}+0^{\rightarrow}\right)=\mathrm{T}\left(0^{\vec{~}}\right)+\mathrm{T}\left(0^{\vec{r}}\right)
$$

and so, adding the additive inverse of $\mathrm{T}\left(0^{\vec{~}}\right)$ to both sides, one sees that $\mathrm{T}\left(0^{\vec{~}}\right)=0 \overrightarrow{0}$. Therefore, if $\mathrm{T}\left(\overrightarrow{v^{\prime}}\right)=0 \overrightarrow{ }$, it must be the case that $\mathrm{v} \overrightarrow{ }=\overrightarrow{0}$ because it was just shown that $\mathrm{T}(0 \vec{~})=0 \overrightarrow{~ . ~}$

Now suppose that if $T(\vec{v})=0 \overrightarrow{~, ~ t h e n ~} \vec{v}=0$. If $T(\vec{v})=T\left(u^{\vec{~}}\right)$,
then $T(\vec{v})-T(u \vec{u})=T(\vec{v}-u \vec{u})=0 \overrightarrow{~ w h i c h ~ s h o w s ~ t h a t ~} \vec{v}-u \vec{u}=0$ or in other words, $\mathrm{v} \overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{u}}$.

Corollary-4:

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear map where the dimension of V is n and the dimension of W is m . Then T is one to one if and only if $\operatorname{ker}(\mathrm{T})=\left\{0^{\rightarrow}\right\}$ and T is onto if and only if $\operatorname{rank}(\mathrm{T})=\mathrm{m}$.

Proof: The statement $\operatorname{ker}(\mathrm{T})=\left\{0^{\vec{\prime}}\right\}$ is equivalent to saying if $\mathrm{T}(\overrightarrow{\mathrm{v}})=0 \overrightarrow{0}$, it follows that $\vec{v}=0 \rightarrow$ Thus by Lemma-3, T is one to one.

If T is onto, then $\mathrm{im}(\mathrm{T})=\mathrm{W}$ and so $\operatorname{rank}(\mathrm{T})$ which is defined as the dimension of $\mathrm{im}(\mathrm{T})$ is m . If $\operatorname{rank}(\mathrm{T})=\mathrm{m}$, then by Theorem, since $\mathrm{im}(\mathrm{T})$ is a subspace of W , it follows that im $(\mathrm{T})=\mathrm{W}$.

Example: Let $\mathrm{S}: \mathrm{P} 2 \rightarrow \mathrm{M}_{2}{ }^{*}$ be a linear transformation defined by

$$
S\left(a x^{2}+b x+c\right)=\left[\begin{array}{ll}
a+b & a+c \\
b-c & b+c
\end{array}\right] \text { for all } a x^{2}+b x+c \in \mathbb{P}_{2} .
$$

Prove that S is one to one but not onto.

Solution

Here we will determine that S is one to one, but not onto, using the method provided in Corollary - 3 .

By definition,

$$
\operatorname{ker}(S)=\left\{a x^{2}+b x+c \in P_{2} \mid a+b=0, a+c=0, b-c=0, b+c=0\right\} .
$$

Suppose $p(x)=a x^{2}+b x+c \in \operatorname{ker}(S)$. This leads to a homogeneous system of four equations in three variables. Putting the augmented matrix in reduced rowechelon form:

$$
\left[\begin{array}{rrr|r}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the unique solution is $\mathrm{a}=\mathrm{b}=\mathrm{c}=0 \mathrm{a}=\mathrm{b}=\mathrm{c}=0, \operatorname{ker}(\mathrm{~S})=\{0 \rightarrow\} \operatorname{ker}, \overrightarrow{f 0}(\mathrm{~S})=\{0 \rightarrow\}$, and thus SS is one-to-one by Corollary.

Similarly, by Corollary, if S is onto it will have $\operatorname{rank}(S)=\operatorname{dim}(M 22)=4$ The image of S is given by

$$
\operatorname{im}(S)=\left\{\left[\begin{array}{ll}
a+b & a+c \\
b-c & b+c
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right]\right\}
$$

These matrices are linearly independent which means this set forms a basis for $\mathrm{im}(\mathrm{S})$. Therefore, the dimension of $\mathrm{im}(\mathrm{S})$, also called rank(S), is equal to 3. It follows that S is not onto.

