Basis and Dimentions

Basis of a Subspace

As we discussed in <u>Section 2.6</u>, a subspace is the same as a span, except we do not have a set of spanning vectors in mind. There are infinitely many choices of spanning sets for a nonzero subspace; to avoid reduncancy, usually it is most convenient to choose a spanning set with the *minimal* number of vectors in it. This is the idea behind the notion of a basis.

Definition. Let *V* be a subspace of \mathbb{R}^n . A *basis* of *V* is a set of vectors $\{v_1, v_2, \ldots, v_m\}$ in *V* such that:

1. $V = \text{Span}\{v_1, v_2, ..., v_m\}$, and

2. the set $\{v_1, v_2, \dots, v_m\}$ is linearly independent.

A nonzero subspace has *infinitely many* different bases, but they all contain the same number of vectors.

 \bigwedge **Definition.** Let *V* be a subspace of \mathbb{R}^n . The number of vectors in any basis of *V* is called the *dimension* of *V*, and is written dim *V*.

Example-1: Find a basis of R².

Solution

We need to find two vectors in \mathbb{R}^2 that span \mathbb{R}^2 and are linearly independent. One such basis is $\{\binom{1}{0}, \binom{0}{1}\}$:

1. They span because any vector $\binom{a}{b}$ can be written as a linear combination of $\binom{1}{0}, \binom{0}{1}$:

$$\binom{a}{b} = a \binom{1}{0} + b \binom{0}{1}.$$

2. They are linearly independent: if

$$x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

then x = y = 0.

This shows that the plane \mathbb{R}^2 has dimension 2.

Example2: The standard basis of Rⁿ

One shows exactly as in the above <u>example</u> that the standard coordinate vectors

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

form a basis for \mathbb{R}^n . This is sometimes known as the *standard basis*.

In particular, \mathbf{R}^n has dimension n.

The Basis Theorem

Basis Theorem. Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.

In other words, if you *already* know that dim V = m, and if you have a set of *m* vectors $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ in *V*, then you only have to check *one* of:

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V,

in order for \mathcal{B} to be a basis of V. If you did not already know that dim V = m, then you would have to check *both* properties.

To put it yet another way, suppose we have a set of vectors $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ in a subspace *V*. Then if any two of the following statements is true, the third must also be true:

- 1. \mathcal{B} is linearly independent,
- 2. \mathcal{B} spans V, and
- 3. dim V = m.

For example, if V is a plane, then any two noncollinear vectors in V form a basis.

Bases as Coordinate Systems

In this section, we interpret a basis of a subspace V as a *coordinate system* on V, and we learn how to write a vector in V in that coordinate system.

Fact. If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m$$

in exactly one way.

Proof:

Recall that to say \mathcal{B} is a *basis* for V means that \mathcal{B} spans V and \mathcal{B} is linearly independent. Since \mathcal{B} spans V, we can write any x in V as a linear combination of v_1, v_2, \ldots, v_m . For uniqueness, suppose that we had two such expressions:

$$x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m$$

$$x = c'_1 v_1 + c'_2 v_2 + \dots + c'_m v_m.$$

Subtracting the first equation from the second yields

$$0 = x - x = (c_1 - c'_1)v_1 + (c_2 - c'_2)v_2 + \dots + (c_m - c'_m)v_m.$$

Since \mathcal{B} is linearly independent, the only solution to the above equation is the trivial solution: all the coefficients must be zero. It follows that $c_i - c'_i$ for all i, which proves that $c_1 = c'_1, c_2 = c'_2, \ldots, c_m = c'_m$.

Example. Consider the standard basis of \mathbf{R}^3 from this <u>example</u>

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

According to the above fact, every vector in \mathbb{R}^3 can be written as a linear combination of e_1, e_2, e_3 , with unique coefficients. For example,

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

In this case, the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

What exactly are coordinates, anyway? One way to think of coordinates is that they give directions for how to get to a certain point from the origin. In the above example, the linear combination $3e_1 + 5e_2 - 2e_3$ can be thought of as the following list of instructions: start at the origin, travel 3 units north, then travel 5 units east, then 2 units down.

Definition. Let $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ be a basis of a subspace *V*, and let

$$x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m$$

be a vector in *V*. The coefficients c_1, c_2, \ldots, c_m are the **coordinates of** *x* **with respect to** *B*. The *B*-coordinate vector of *x* is the vector

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{in } \mathbf{R}^m.$$

If we change the basis, then we can still give instructions for how to get to the point (3, 5, -2), but the instructions will be different. Say for example we take the basis

$$v_1 = e_1 + e_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

We can write (3, 5, -2) in this basis as $3v_1 + 2v_2 - 2v_3$. In other words: start at the origin, travel northeast 3 times as far as v_1 , then 2 units east, then 2 units down. In this situation, we can say that "3 is the v_1 -coordinate of (3, 5, -2), 2 is the v_2 -coordinate of (3, 5, -2), and -2 is the v_3 -coordinate of (3, 5, -2)."

Linear transformaton

Definition. A linear transformation is a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ satisfying

$$T(u+v) = T(u) + T(v)$$
$$T(cu) = cT(u)$$

for all vectors u, v in \mathbb{R}^n and all scalars c.

Facts about linear transformations. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. *Then:*

1. T(0) = 0.

2. For any vectors v_1, v_2, \ldots, v_k in \mathbb{R}^n and scalars c_1, c_2, \ldots, c_k , we have

$$T(c_1v_1 + c_2v_2 + \dots + c_kv_k) = c_1T(v_1) + c_2T(v_2) + \dots + c_kT(v_k)$$

Proof:

1. Since 0 = -0, we have

$$T(0) = T(-0) = -T(0)$$

by the second <u>defining property</u>. The only vector w such that w = -w is the zero vector.

2. Let us suppose for simplicity that k = 2. Then

$$T(c_1v_1 + c_2v_2) = T(c_1v_1) + T(c_2v_2)$$
 first property
= $c_1T(v_1) + c_2T(v_2)$ second property.

In engineering, the second fact is called the *superposition principle*; it should remind you of the distributive property. For example, T(cu + dv) = cT(u) + dT(v) for any vectors u, v and any scalars c, d. To restate the first fact:

A linear transformation necessarily takes the zero vector to the zero vector.

Example: A non linear transformation.

Define $T : \mathbf{R} \to \mathbf{R}$ by T(x) = x + 1. Is T a linear transformation?

Solution

We have T(0) = 0 + 1 = 1. Since any linear transformation necessarily takes zero to zero by the above <u>important note</u>, we conclude that *T* is *not* linear (even though its graph is a line).

Note: in this case, it was not necessary to check explicitly that *T* does not satisfy both <u>defining properties</u>: since T(0) = 0 is a consequence of these properties, at least one of them must not be satisfied. (In fact, this *T* satisfies neither.)

Example: Verify linearity: dilation

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x) = 1.5x. Verify that T is linear.

Solution

We have to check the <u>defining properties</u> for *all* vectors u, v and *all* scalars c. In other words, we have to treat u, v, and c as *unknowns*. The only thing we are allowed to use is the definition of T.

$$T(u + v) = 1.5(u + v) = 1.5u + 1.5v = T(u) + T(v)$$
$$T(cu) = 1.5(cu) = c(1.5u) = cT(u).$$

Since T satisfies both defining properties, T is linear.

Example: Verify linearity: Rotation.

Define $T : \mathbf{R}^2 \to \mathbf{R}^2$ by

T(x) = the vector x rotated counterclockwise by the angle θ .

Verify that T is linear.

Solution

Since *T* is defined geometrically, we give a geometric argument. For the first property, T(u) + T(v) is the sum of the vectors obtained by rotating *u* and *v* by θ . On the other side of the equation, T(u + v) is the vector obtained by rotating the sum of the vectors *u* and *v*. But it does not matter whether we sum or rotate first, as the following picture shows.

For the second property, cT(u) is the vector obtained by rotating u by the angle θ , then changing its length by a factor of c (reversing direction of c < 0. On the other hand, T(cu) first changes the length of c, then rotates. But it does not matter in which order we do these two operations.

This verifies that T is a linear transformation.

Example: Linear transformation defined by formula.

Define $T : \mathbf{R}^2 \to \mathbf{R}^3$ by the formula

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 3x-y\\ y\\ x \end{pmatrix}.$$

Verify that *T* is linear.

Solution

We have to check the <u>defining properties</u> for all vectors u, v and all scalars c. In other words, we have to treat u, v, and c as unknowns; the only thing we are allowed to use is the definition of T. Since T is defined in terms of the coordinates of u, v, we need to give those names as well; say $u = \binom{x_1}{y_1}$ and $v = \binom{x_2}{y_2}$. For the first property, we have

$$T\left(\binom{x_1}{y_1} + \binom{x_2}{y_2}\right) = T\binom{x_1 + x_2}{y_1 + y_2} = \binom{3(x_1 + x_2) - (y_1 + y_2)}{y_1 + y_2}$$
$$= \binom{(3x_1 - y_1) + (3x_2 - y_2)}{y_1 + y_2}$$
$$= \binom{3x_1 - y_1}{x_1 + x_2} + \binom{3x_2 - y_2}{y_2} = T\binom{x_1}{y_1} + T\binom{x_2}{y_2}.$$

For the second property,

$$T\left(c\binom{x_{1}}{y_{1}}\right) = T\binom{cx_{1}}{cy_{1}} = \binom{3(cx_{1}) - (cy_{1})}{cy_{1}} \\ = \binom{c(3x_{1} - y_{1})}{cy_{1}} = c\binom{3x_{1} - y_{1}}{y_{1}} = cT\binom{x_{1}}{y_{1}}.$$

Since *T* satisfies the defining properties, *T* is a linear transformation. *Note:* we will see in this <u>example</u> below that

$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 3 & -1\\ 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Translatio:

Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T(x) = x + \begin{pmatrix} 1\\2\\3 \end{pmatrix}.$$

This kind of transformation is called a *translation*. As in a previous example, this *T* is not linear, because T(0) is not the zero vector.

Exercise: Find an example of a transformation that satisfies the first <u>property</u> <u>of linearity</u> but not the second.

Kernel and image of linear transformation

Definition: Let V and W be vector space and let $T:V \rightarrow W$ be a linear transformation. Then the image of T denoted by im(T) is defined to be the set { T(v): $v \in V$ }. In word, it consists of all vectors in W equal T(v).

The kernel, ker(T), consists of all $v \in V$ such that T(v)=0, that is,

 $ker(T) = \{v \in V: T(v) = 0\}.$

Then in fact, both im(T) and ker(T) are subspaces of W and V respectively.

Proposition-1: Let V and W be two vector spaces and T: V \rightarrow W be linear transformation. Then ker(T) \sqsubseteq V, and im(T) \sqsubseteq W, and both are vector space.

Proof:

First consider ker(T), let v_1 , v_2 are vectors in ker(T), and scalers $a, b \in R$, we have to prove $av_1+bv_2 \in ker(T)$.

 $T(av_1+bv_2)=T(av_1)+T(bv_2)=aT(v_1)+bT(v_2)=a.0+b.0=0$

Thus ker(T) is a subspace of V.

Next suppose $T(\vec{v}_1), T(\vec{v}_2)$ are two vectors in $\operatorname{im}(T)$. Then if a, b are scalars,

$$aT(ec{v}_2)+bT(ec{v}_2)=T\left(aec{v}_1+bec{v}_2
ight)$$

and this last vector is in im(T) by definition.

Example-1:

Let $T:\mathbb{P}_1
ightarrow\mathbb{R}$ be the linear transformation defined by

$$T(p(x))=p(1) ext{ for all } p(x)\in \mathbb{P}_1.$$

Find the kernel and image of T.

Solution

We will first find the kernel of T. It consists of all polynomials in \mathbb{P}_1 that have 1 for a root.

 $egin{aligned} &\ker(T) = \{p(x) \in \mathbb{P}_1 \mid p(1) = 0\} \ &= \{ax + b \mid a, b \in \mathbb{R} ext{ and } a + b = 0\} \ &= \{ax - a \mid a \in \mathbb{R}\} \end{aligned}$

Therefore a basis for $\ker(T)$ is

 $\{x - 1\}$

Notice that this is a subspace of \mathbb{P}_1 .

Now consider the image. It consists of all numbers which can be obtained by evaluating all polynomials in \mathbb{P}_1 at 1.

$$egin{aligned} \operatorname{im}(T) &= \{p(1) \mid p(x) \in \mathbb{P}_1\} \ &= \{a+b \mid ax+b \in \mathbb{P}_1\} \ &= \{a+b \mid a, b \in \mathbb{R}\} \ &= \mathbb{R} \end{aligned}$$

Therefore a basis for im(T) is

 $\{1\}$

Example-2:

Let $T:\mathbb{M}_{22}\mapsto\mathbb{R}^2$ be defined by

 $Tegin{bmatrix} a & b \ c & d \end{bmatrix} = egin{bmatrix} a-b \ c+d \end{bmatrix}$

Then T is a linear transformation. Find a basis for ker(T) and im(T).

Solution

You can verify that T represents a linear transformation.

Now we want to find a way to describe all matrices A such that $T(A) = \vec{0}$, that is the matrices in ker(T).

Suppose
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is such a matrix. Then
 $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a-b \\ c+d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

The values of a, b, c, d that make this true are given by solutions to the system

a-b=0c+d=0

The solution is a = s, b = s, c = t, d = -t where s, t are scalars. We can describe ker(T) as follows.

$$\ker(T) = \left\{ \begin{bmatrix} s & s \\ t & -t \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \right\}$$

It is clear that this set is linearly independent and therefore forms a basis for $\ker(T)$.

We now wish to find a basis for im(T). We can write the image of T as

$$\operatorname{im}(T) = \left\{ \begin{bmatrix} a - b \\ c + d \end{bmatrix} \right\}$$

Notice that this can be written as

 $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

 $\operatorname{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

However, this is clearly not linearly independent. By removing vectors from the set to create an independent set gives a basis of im(T).

- Notice that these vectors have the same span as the set above but are now linearly independent.
- Theorem-2: Let $T:V \rightarrow W$ be a linear transformation where V,W are vector spaces. Suppose the dimension of V is n. Then n=dim(ker(T))+dim(im(T))
- Proof: From <u>Proposition</u>-1, im(T) is a subspaces of W, then there exists a basis for im(T),{T(v^{-1}),...,T(v^{-r})}.. Similarly, ker(T) is a subspace in V, then there is a basis for ker(T), { u^{-1} ,..., u^{-s} }. Then if $v^{-1} \in V$, there exist scalars ci such that:

$$T(ec{v}) = \sum_{i=1}^r c_i T(ec{v}_i)$$

Hence $T(\vec{v} - \sum_{i=1}^{r} c_i \vec{v}_i) = 0$. It follows that $\vec{v} - \sum_{i=1}^{r} c_i \vec{v}_i$ is in ker(T).

Hence there are scalars ai such that

$$ec{v} - \sum_{i=1}^{r} c_i ec{v}_i = \sum_{j=1}^{s} a_j ec{u}_j$$

Hence $ec{v} = \sum_{i=1}^{r} c_i ec{v}_i + \sum_{j=1}^{s} a_j ec{u}_j$. Since $ec{v}$ is arbitrary, it follows that
 $V = \operatorname{span} \{ec{u}_1, \cdots, ec{u}_s, ec{v}_1, \cdots, ec{v}_r\}$

If the vectors $\{u^{i}, ..., u^{i}, v^{i}, ..., v^{i}\}$ are linearly independent, then it will follow that this set is a basis. Suppose then that

$$\sum_{i=1}^r c_iec v_i + \sum_{j=1}^s a_jec u_j = 0$$

Apply T to both sides to obtain

$$\sum_{i=1}^r c_i T(\vec{v}_i) + \sum_{j=1}^s a_j T(\vec{u}_j) = \sum_{i=1}^r c_i T(\vec{v}_i) = \vec{0}$$

Since $\{T(v_1), ..., T(v_r)\}$ is linearly independent, it follows that each $c_i=0$. Hence $\sum_{s_j=1}^{j}a_ju_j=0$ and so, since the $\{u_1, ..., u_r\}$ are linearly independent, it follows that each $a_j=0$ also. It follows that $\{u \rightarrow 1, ..., u \rightarrow s, v \rightarrow 1, ..., v \rightarrow r\}$ is a basis for V and so

n = s + r = dim(ker(T)) + dim(im(T))

Definition: The rank of linear transformation

Let $T:V \rightarrow W$ be a linear transformation and suppose V,W are finite dimensional vector spaces. Then the rank of T denoted as rank(T) is defined as the dimension of im(T). The nullity of T is the dimension of ker(T). Thus the above theorem says that rank(T)+dim(ker(T))=dim(V).

Definition: Let V, be vector spaces with v_1, v_2 be vectors in V. Then a linear transformation T:V \mapsto W is called **one to one** if whenever $v_1 \neq v_2$ it follows that

 $T(v_1) \neq T(v_2)$

A linear transformation $T:V \mapsto W$ is called **onto** if for all $w^{\vec{}} \in W^{\vec{}}$ there exists $v^{\vec{}} \in V$ such that $T(v^{\vec{}})=w^{\vec{}}$.

Lemma-3: The assertion that a linear transformation T is one to one is equivalent to saying that if $T(\vec{v})=0$, then $\vec{v}=0$.

Proof:

Suppose first that T is one to one.

 $T(0^{\rightarrow})=T(0^{\rightarrow}+0^{\rightarrow})=T(0^{\rightarrow})+T(0^{\rightarrow})$

and so, adding the additive inverse of $T(0^{\vec{}})$ to both sides, one sees that $T(0^{\vec{}})=0^{\vec{}}$. Therefore, if $T(v^{\vec{}})=0^{\vec{}}$, it must be the case that $v^{\vec{}}=0^{\vec{}}$ because it was just shown that $T(0^{\vec{}})=0^{\vec{}}$.

Now suppose that if $T(\vec{v})=0^{\vec{}}$, then $\vec{v}=0$. If $T(\vec{v})=T(\vec{u})$, then $T(\vec{v})-T(\vec{u})=T(\vec{v}-\vec{u})=0^{\vec{}}$ which shows that $\vec{v}-\vec{u}=0$ or in other words, $\vec{v}=\vec{u}$.

Corollary-4:

Let $T:V \rightarrow W$ be a linear map where the dimension of V is n and the dimension of W is m. Then T is one to one if and only if $ker(T)=\{0^{\uparrow}\}$ and T is onto if and only if rank(T)=m.

Proof: The statement ker(T)= $\{0^{\uparrow}\}$ is equivalent to saying if T(v^{\uparrow})= 0^{\uparrow} , it follows that $v^{\uparrow}=0^{\uparrow}$ Thus by Lemma-3, T is one to one.

If T is onto, then im(T)=W and so rank(T) which is defined as the dimension of im(T) is m. If rank(T)=m, then by <u>Theorem</u>, since im(T) is a subspace of W, it follows that im(T)=W.

Example: Let $S:P_2 \rightarrow M_{2*2}$ be a linear transformation defined by

$$S(ax^2+bx+c)=egin{bmatrix}a+b&a+c\b-c&b+c\end{bmatrix} ext{ for all }ax^2+bx+c\in\mathbb{P}_2.$$

Prove that S is one to one but not onto.

Solution

Here we will determine that S is one to one, but not onto, using the method provided in <u>Corollary</u> -3.

By definition,

$$ker(S) = \{ax^2+bx+c \in P_2 \mid a+b=0, a+c=0, b-c=0, b+c=0\}.$$

Suppose $p(x)=ax^2+bx+c \in ker(S)$. This leads to a homogeneous system of four equations in three variables. Putting the augmented matrix in reduced row-echelon form:

Γ	1	1	0	0		1	0	0	0	
	1	0	1	0	$\rightarrow \cdots \rightarrow$	0	1	0	0	
	0	1	-1	0		0	0	1	0	
L	0	1	1	0		0	0	0	0	

Since the unique solution is a=b=c=0a=b=c=0, $ker(S)=\{0^{\rightarrow}\}ker[f_0](S)=\{0\rightarrow\}$, and thus SS is one-to-one by <u>Corollary</u>.

Similarly, by <u>Corollary</u>, if S is onto it will have $rank(S)=dim(M_{22})=4$ The image of S is given by

$$\operatorname{im}(S) = \left\{ egin{bmatrix} a+b & a+c \ b-c & b+c \end{bmatrix}
ight\} = \operatorname{span} \left\{ egin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix}, egin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}, egin{bmatrix} 0 & 1 \ -1 & 1 \end{bmatrix}
ight\}$$

These matrices are linearly independent which means this set forms a basis for im(S). Therefore, the dimension of im(S), also called rank(S), is equal to 3. It follows that S is not onto.