Basis and Dimentions

Basis of a Subspace

As we discussed in Section 2.6, a subspace is the same as a span, except we do not
have a set of spanning vectors in mind. There are infinitely many choices of spanning
sets for a nonzero subspace; to avoid reduncancy, usually it is most convenient to
choose a spanning set with the minimal number of vectors in it. This is the idea

behind the notion of a basis.

A Definition. Let V be a subspace of R". A basis of V is a set of vectors
Vi, Va,..., v, } in V such that:
12 ¥2 m

1. Vv =Span{v,,v,,...,v,}, and

2. the set {v;,vy,...,v,} is linearly independent.

A nonzero subspace has infinitely many different bases, but they all contain the
same number of vectors.

A Definition. Let V be a subspace of R". The number of vectors in any basis of
V is called the dimension of V, and is written dim V.

Example-1: Find a basis of R2.



Solution

We need to find two vectors in R? that span R? and are linearly independent.
. (1) (0
One such basis is {(O),( )}

1

a . . . .
1. They span because any vector ( b) can be written as a linear combination

of ().
(5)=2(0)++(2)

2. They are linearly independent: if

(o) ++(1)=()=(o)

This shows that the plane R? has dimension 2.

Example2: The standard basis of R"



One shows exactly as in the above example that the standard coordinate
vectors

1 0 0 0

0 1 0 0
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0 0 1 0

0 0 0 1

form a basis for R". This is sometimes known as the standard basis.
In particular, R" has dimension n.

The Basis Theorem

Basis Theorem. Let V be a subspace of dimension m. Then:

e Any m linearly independent vectors in V form a basis for V.

» Any m vectors that span V form a basis for V.

In other words, if you already know that dim V = m, and if you have a set of m
vectors B = {v,,Vv,,..., v, }in V, then you only have to check one of:

1. B is linearly independent, or

2. Bspans V,



in order for B to be a basis of V. If you did not already know that dim V = m, then
you would have to check both properties.

To put it yet another way, suppose we have a set of vectors B = {v,Vv,,...,v, }ina
subspace V. Then if any two of the following statements is true, the third must also
be true:

1. B is linearly independent,
2. B spans V, and
3.dimV =m.

For example, if V is a plane, then any two noncollinear vectors in V form a basis.

Bases as Coordinate Systems

In this section, we interpret a basis of a subspace V as a coordinate
system on V, and we learn how to write a vector in V in that coordinate
system.

Fact. If B={v,Vvs,...,V,} is a basis for a subspace V, then any vector x in V can be
written as a linear combination

X=cCVy+CVg+ -+ CpVn

in exactly one way.

Proof:

Recall that to say B is a basis for V means that B spans V and B is linearly
independent. Since 5 spans V, we can write any x in V as a linear combination
of v, Vy,...,Vv,. For uniqueness, suppose that we had two such expressions:

X=cv;+cyvg o+,

x=cvy vy +ee el Vi
Subtracting the first equation from the second yields

0:x—x:(cl—c‘;)vl+(62—C;)V2+*'*+(Cm—c;}vm*



Since B is linearly independent, the only solution to the above equation is the
trivial solution: all the coefficients must be zero. It follows that ¢; — ¢/ for all i,

which proves that ¢; = ¢}, ¢y =¢,,..., ¢, =)

1 0 0
0 0 1

According to the above fact, every vector in R* can be written as a linear
combination of e, e,, e;, with unique coefficients. For example,

3 1 0 0
v=| 5 |=3[0|+5[1]—2|0]|=23e +5e,—2es.
—2 0 0 1

In this case, the coordinates of v are exactly the coefficients of e, e,, e5.

What exactly are coordinates, anyway? One way to think of coordinates is that they
give directions for how to get to a certain point from the origin. In the above
example, the linear combination 3e; + 5e, — 2e; can be thought of as the following

list of instructions: start at the origin, travel 3 units north, then travel 5 units east,
then 2 units down.

Definition. Let B = {v{,v,,..., Vv, }be a basis of a subspace V, and let

X = Cl'r'l +C2V2 + .- +Cm‘r"m



be a vector in V. The coefficients cy, c,, ..., c,, are the coordinates of x with respect
to B. The B-coordinate vector of x is the vector

€1
€y :
[(xIg=1] . in R™.

Cm

If we change the basis, then we can still give instructions for how to get to the point
(3,5,—2), but the instructions will be different. Say for example we take the basis

1 0 0
V-l:el+32: 1 , Vo = €9 = 1 , Vg = €7 = 0
0 0 1

We can write (3, 5,—2) in this basis as 3v, + 2v, — 2v,.In other words: start at the
origin, travel northeast 3 times as far as v,, then 2 units east, then 2 units down. In
this situation, we can say that “3 is the v,-coordinate of (3,5,—2), 2 is the
vy-coordinate of (3,5,—2), and —2 is the v;-coordinate of (3,5,—2).”

Linear transformaton

Definition. A linear transformation is a transformation T : R" — R™ satisfying

Tu+v)=T(u)+T(v)
T(cu) =cT(u)

for all vectors u, v in R" and all scalars c.

Facts about linear transformations. Let T: R" — R™ be a linear transformation.
Then:

1. T(0)=0.

2. For any vectors vy, V,,...,V, in R" and scalars c¢,,c,,...,c;, we have
1. V2 k 1, C2 k

T(cvi+ vy +--+ ) = Tv) + 6 T(v) + -+ ¢, T(v).



Proof:
1. Since 0 = —0, we have
r0)=T1(-0)=-T(0)

by the second defining property. The only vector w such that w = —w is
the zero vector.

2. Let us suppose for simplicity that k = 2. Then

T(cyvy +covy) = T(cyvy) + T(cyvy) first property
=c;T(vy)+ ¢ T(vy) second property.
In engineering, the second fact is called the superposition principle; it should remind

you of the distributive property. For example, T(cu+dv) =cT(u)+dT(v) for any
vectors u, v and any scalars ¢, d. To restate the first fact:

A linear transformation necessarily takes the zero vector to the zero vector.

Example: A non linear transformation.

Define T: R— R by T(x) = x + 1.Is T a linear transformation?
Solution

We have T(0) =0+ 1= 1. Since any linear transformation necessarily takes
zero to zero by the above important note, we conclude that T is not linear
(even though its graph is a line).

Note: in this case, it was not necessary to check explicitly that T does not satisfy
both defining properties: since T(0) = 0 is a consequence of these properties,
at least one of them must not be satisfied. (In fact, this T satisfies neither.)

Example: Verify linearity: dilation



Define T: R? — R? by T(x) = 1.5x. Verify that T is linear.
Solution

We have to check the defining properties for all vectors u, v and all scalars c. In
other words, we have to treat u, v, and ¢ as unknowns. The only thing we are
allowed to use is the definition of T.

T(u+v)=15u+v)=15u+15v=T(u)+ T(v)
T(cu) =1.5(cu) = c(1.5u) = cT (u).

Since T satisfies both defining properties, T is linear.
Example: Verify linearity: Rotation.
Define T: R — R? by
T(x) = the vector x rotated counterclockwise by the angle 6.

Verify that T is linear.
Solution

Since T is defined geometrically, we give a geometric argument. For the first
property, T(u)+ T(v)is the sum of the vectors obtained by rotating u and v by
6. On the other side of the equation, T(u+ v) is the vector obtained by rotating
the sum of the vectors u and v. But it does not matter whether we sum or
rotate first, as the following picture shows.

T - T(v)

T T(u+v)

u-+v Vv T(u)

u y




For the second property, ¢ T (u) is the vector obtained by rotating u by the angle
6, then changing its length by a factor of ¢ (reversing direction of ¢ < 0. On the
other hand, T(cu) first changes the length of ¢, then rotates. But it does not
matter in which order we do these two operations.

. .

Y »"?((;u)
- T(u)
i cu B
This verifies that T is a linear transformation.
Example: Linear transformation defined by formula.
Define T : R? — R® by the formula
3x—Yy

X
Y X
Verify that T is linear.

Solution

We have to check the defining properties for all vectors u, v and all scalars c. In
other words, we have to treat u, v, and ¢ as unknowns; the only thing we are
allowed to use is the definition of T. Since T is defined in terms of the
coordinates of u, v, we need to give those names as well; say u = (j;) and

V= (jj) For the first property, we have



X, PN 30x; +x3) —(y1 +y2)
T y + y =T Vity,) yit+ s
1 2 1+ X, + %,

((3-’51 — y1) + (Bxy — y2))

Y1+ Y2
X1+ X9 Y,

3x1—n 3x3—= Y2
(36
X X, ) ! ’
For the second property,
NN CCORCD
T|c =T = cyq
Y1 ) cx,
c(3x;—y1) 3x1—y1 X
= CY, =c Y1 :CT(y-l)'
CXy X4 !

Since T satisfies the defining properties, T is a linear transformation.

f()-(0 1)(2)

Translatio:



Define T: R® — R® by

1
T(x)=x+ (2)
3

This kind of transformation is called a translation. As in a previous example,
this T is not linear, because T(0) is not the zero vector.

Exercise: Find an example of a transformation that satisfies the first property
of linearity but not the second.

Kernel and image of linear transformation

Definition: Let V and W be vector space and let T:V— W be a linear
transformation. Then the image of T denoted by im(T) is defined to be the
set { T(v): v € V}. In word, it consists of all vectors in W equal T(v).

The kernel, ker(T), consists of all ve V such that T(v)=0, that is,
ker(T) ={ve V: T(v) =0}.
Then in fact, both im(T) and ker(T) are subspaces of W and V respectively.

Proposition-1: Let V and W be two vector spaces and T: V— W be linear
transformation. Then ker(T)E V, and im(T) E W, and both are vector space.

Proof:

First consider ker(T), let vy, v, are vectors in ker(T), and scalers a, b € R, we have
to prove av;tbv; € ker(T).

T(avitbvy)= T(avy)+ T(bvy) =aT(vy) +bT(v2) =a.0 +b.0=0

Thus ker(T) is a subspace of V.


https://textbooks.math.gatech.edu/ila/linear-transformations.html
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Next suppose T'(9, ), T(U,) are two vectors in im (7). Then if a, b are scalars,
aT(ﬁg’} + bT(gQJ =T (ﬂ.’i_}l + b‘ﬁg)
and this last vector is in im (T") by definition.

Example-1:

Let T: P; — R be the linear transformation defined by
T(p(x)) = p(1) for all p(z) € P

Find the kernel and image of T.

Solution

We will first find the kernel of T'. It consists of all polynomials in P; that have 1 for a root.

ker(T) = {p(z) € P; | p(1) = 0}
={ar+b|la,bcRanda+b=0}
={az —a|a € R}

Therefore a basis for ker(T') is
{z -1}
Notice that this is a subspace of P;.

Now consider the image. It consists of all numbers which can be obtained by evaluating all polynomials in P, at 1.

im(T) = {p(1) | p(x) € P1}
={a+blaz+becP}
={a+b|abecR}
=R

Therefore a basis for im(T) is
{15

Example-2:

Let T : M, — R? be defined by

(e 1]

Then T is a linear transformation. Find a basis for ker(7T") and im(T').

o]



Solution

You can verify that T represents a linear transformation.

Now we want to find a way to describe all matrices A such that T(A4) = 0, that is the matrices in ker(T).

(L

Suppose A = [ b] is such a matrix. Then

C

a b a—b 0
T = —
c d c+d 0
The values of a, b, ¢, d that make this true are given by solutions to the system

a—b=20
ct+d=20

The solution is @ = 5, b = s,e¢ = t,d = —t where s, ¢ are scalars. We can describe ker(T') as follows.

ker(T}:{[: i]}ﬁpaﬂ{ﬁ ;H? —DJ}

It is clear that this set is linearly independent and therefore forms a basis for ker(T').

We now wish to find a basis for im(T"). We can write the image of T as
a—b
(T —
mm {24}

Notice that this can be written as

However, this is clearly not linearly independent. By removing vectors from the
set to create an independent set gives a basis of im(T).

o) L]}



Notice that these vectors have the same span as the set above but are now
linearly independent.

Theorem-2: Let T:V—W be a linear transformation where V,W are vector spaces.
Suppose the dimension of V is n. Then n=dim(ker(T))+dim(im(T))

Proof: From Proposition -1, im(T) is a subspaces of W, then there exists a basis
for im(T),{T(v" 1),---, T(v"r)}.. Similarly, ker(T) is a subspace in V, then
there is a basis for ker(T), {u 1,-,u’s}. Then if v’ €V, there exist
scalars ci such that:

= Z ﬂiT(ﬁi}

Hence T (v — 3.7, ¢;%;) = 0. It follows that 7 — 3°7_, ¢;¥; is in ker(T).

Hence there are scalars ai such that

v —EC:’U-; Z ajuj

Hence v = 37, &%; + >}, aju;. Since v is arbitrary, it follows that

V = SpEl.Il{Hl,"',u.nvl:"':yr}

If the vectors {u” 1,---,u’s,v_ 1,---,v_r}are linearly independent, then it will follow
that this set is a basis. Suppose then that

T &
Zc,-ﬁi + Zajﬁj —0
i=1 =1

Apply T to both sides to obtain
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i eT(T;) + Z a,T(;) = Z &T(;) =0
i=1 j=1

i=1

Since {T(v” 1),~--, T(v" r)} is linearly independent, it follows that each ci=0.
Hence Ysi=1aju” j=0 and so, since the {u” 1,---,u” s}are linearly independent, it
follows that each aj=0also. It follows that {u—1,---,u—s,v—1,--- v—r} is a basis
for V and so

n= s+ r= dim(ker(T))+ dim(im(T))
Definition: The rank of linear transformation

Let T:V—>W be a linear transformation and suppose V,W are finite dimensional
vector spaces. Then the rank of T denoted as rank(T) is defined as the
dimension of im(T). The nullity of T is the dimension of ker(T). Thus the above
theorem says that rank(T)+dim(ker(T))=dim(V).

Definition: Let V, be vector spaces with v1,v2 be vectors in V. Then a linear
transformation T:V—=W is called one to one if whenever vi#v: it follows that

T(v1)#T(v2)

A linear transformation T:V—W is called onto if for all w” €W~ there
exists v_ €V such that T(v™ )=w".

Lemma-3: The assertion that a linear transformation T is one to one is
equivalent to saying that if T(v”)=0", then v" =0.

Proof:
Suppose first that T is one to one.
T(0”)=T(0” +07 )=T(0”)+T(0”)

and so, adding the additive inverse of T(0”) to both sides, one sees
that T(0” )=0". Therefore, if T(v_)=0", it must be the case
that v' =0~ because it was just shown that T(0”)=0".

Now suppose that if T(v")=0", then v_ =0. If T(v_ )=T(u"),
then T(v")-T(u” )=T(v" —u~)=0" which shows that v_ —u~ =0 or in other
words, v_ =u’.



Corollary-4:

Let T:V—>W be a linear map where the dimension of V is n and the dimension
of W is m. Then T is one to one if and only if ker(T)={0" } and T is onto if and
only if rank(T)=m.

Proof: The statement ker(T)={0"} is equivalent to saying if T(v")=0", it follows
that v’ =0~ Thus by Lemma-3, T is one to one.

If T is onto, then im(T)=W and so rank(T) which is defined as the dimension
of im(T) is m. If rank(T)=m, then by Theorem , since im(T) is a subspace of W,
it follows that im(T)=W.

Example: Let S:P2—Mz2*2 be a linear transformation defined by

at+b a+e

S(az? +b ) =
(az” + bz + ) [b—c bt c

} for all az® + bz + ¢ € Ps.

Prove that S is one to one but not onto.
Solution

Here we will determine that S is one to one, but not onto, using the method provided
in Corollary -3.

By definition,
ker(S)={ax%+bx+c €P2 | a+b=0, a+c=0, b-c=0, b+c=0}.

Suppose p(x)=axz+bx+c €ker(S). This leads to a homogeneous system of four
equations in three variables. Putting the augmented matrix in reduced row-
echelon form:
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(11 o0]o0] 1 0 0|0 ]
1 0 110 01 0|0
—p e —

01 —1]0 00 1|0
01 1]0 [ 0 0 00

Since the unique solution is a=b=c=0a=b=c=0, ker(S)={0" }ker.f}(S)={0—}, and
thus SS is one-to-one by Corollary.

Similarly, by Corollary , if S is onto it will have rank(S)=dim(Mz22)=4The image of S is
given by

ms) ={[3 50 §rel b=l [ o)1 1)1 2]}

These matrices are linearly independent which means this set forms a basis
for im(S). Therefore, the dimension of im(S), also called rank(S), is equal to 3.
It follows that S is not onto.
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