Q1 / If V and W are finite dimensional vector spaces, then V isomorphic to W if and only if $\operatorname{dimV}=\operatorname{dim} \mathrm{W}$, prove.
10 marks
Q2/ Let $T \in L\left(R^{3}, R^{2}\right)$ defined by $T(x, y, z)=(x+y, x+z)$. Find the basis for R^{3} and R^{2} which the matrix M_{T} for T relative to this basis is normal form.
10 marks
Q3/A- Define linear transformation, Is T: $M_{2 \times 2}(\mathrm{R}) \rightarrow \mathrm{R}^{4}$, defined by $\mathrm{T}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=(\mathrm{a}$,
-b, $0, \mathrm{~d}$), linear transformation?
B- Let V and W be vector spaces over F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation, then T is one to one if $\mathrm{kernT}=\{0\}$. Prove.
5+5 marks
Q4/ Define kernel, and Image of linear transformation, if $T: P_{2}(R) \rightarrow R^{4}$ be a linear transformation defined by $T\left(a+b x+c x^{2}\right)=(a+b, 0, a+b, 3 c)$, then find the following:

1 - kernT and ImagT.
2- rank and nullity of T
3- Is T bijective (one to one and on to)?
12 marks
Q5/ A- If T : $\mathrm{P}_{1}(\mathrm{R}) \rightarrow \mathrm{P}_{2}(\mathrm{R})$ defined by $\mathrm{T}(\mathrm{a}+\mathrm{bx})=\mathrm{ax}+\mathrm{bx}^{2}$, find the matrix M_{T} relative to the basis $\{2,1-\mathrm{x}\}$ for $\mathrm{P}_{1}(\mathrm{R})$ and $\left\{-1,3 \mathrm{x},-2 \mathrm{x}^{2}\right\}$ for $\mathrm{P}_{2}(\mathrm{R})$. 8 marks

Q6/ Define the inverse of linear transformation T, If $T: R^{2} \rightarrow R^{3}$ defined by $T(x, y)$ $=(x, x+2 y, x-y)$, and $S: R^{3} \rightarrow R^{2}$ defined by $S(x, y, z)=(x, y-2 x+z)$, show that S is left inverse of T. Is S right inverse of T ?
10 marks

