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Chapter one 

Number theory 

Number theory divided in to three branches as follow: 

i- Elementary number theory 

ii- Algebraic number theory 

iii- Analytic number theory 

    The theory of numbers is concerned, at least in its elementary aspects, with 

properties of the integers and more particularly with the positive integers 1, 2, 3, 

... (also known as the natural numbers). The origin of this misnomer harks back 

to the early Greeks for whom the word number meant positive integer, and 

nothing else. The natural numbers have been known to us for so long that the 

mathematician Leopold Kronecker once remarked, "God created the natural 

numbers, and all the rest is the work of man." Far from being a gift from 

Heaven, number theory has had a long and sometimes painful evolution, a story 

that is told in the ensuing pages. We shall make no attempt to construct the 

integers axiomatically, assuming instead that they are already given and that any 

reader of this book is familiar with many elementary facts about them. Among 

these is the Well-Ordering Principle, stated here to refresh the memory. 

Definition1.1: Well-Ordering Principle. 

 Every nonempty set S of nonnegative integers contains a least element; that is, 

there is some integer a in S such that a ≤ b for all b's belonging to S.  

 Because this principle plays a critical role in the proofs here and in subsequent 

chapters, let us use it to show that the set of positive integers has what is known 

as the Archimedean property.  

Theorem 1.2: Archimedean property. 

    If a and b are any positive integers, then there exists a positive integer n such 

that na ≥ b. Proof. Assume that the statement of the theorem is not true, 

 so that for some a and b, na < b for every positive integer n.  

   Then the set S = {b - na│n a positive integer} consists entirely of positive 

integers. By the Well-Ordering Principle, S will possess a least element, say,     

b - ma.  



Notice that b - (m + l)a also lies in S, because S contains all integers of this 

form.  

Furthermore, we have b - (m + l)a = (b - ma) - a < b - ma contrary to the choice 

of b - ma as the smallest integer in S.  

This contradiction arose out of our original assumption that the Archimedean 

property did not hold; hence, this property is proven true.  

Mathematical induction 

With the Well-Ordering Principle available, it is an easy matter to derive the 

First Principle of Finite Induction, which provides a basis for a method of proof 

called mathematical induction. Loosely speaking, the First Principle of Finite 

Induction asserts that if a set of positive integers has two specific properties, 

then it is the set of all positive integers. To be less cryptic, we state this 

principle in Theorem 1.3. 

Theorem 1.3: First Principle of Finite Induction. 

 Let S be a set of positive integers with the following properties:  

(a) The integer 1 belongs to S. 

 (b) Whenever the integer k is in S, the next integer k + 1 must also be in S.  

Then S is the set of all positive integers. 

Here is a typical formula that can be established by mathematical induction:  

  

for n = 1, 2, 3, .... 

 In anticipation of using Theorem 1.2, let S denote the set of all positive integers 

n for which Eq. (1) is true. We observe that when n = 1, the formula becomes 

 

This means that 1 is in S. Next, assume that k belongs to S (where k is a fixed 

but unspecified integer) so that 



 

To obtain the sum of the first k + 1 squares, we merely add the next one, (k + 

1)2, to both sides of Eq. (2). This gives 

 

After some algebraic manipulation, the right-hand side becomes 

 

which is precisely the right-hand member of Eq. (1) when n = k + 1. Our 

reasoning shows that the set S contains the integer k + 1 whenever it contains 

the integer k. By Theorem 1.2, S must be all the positive integers; that is, the 

given formula is true for n = 1, 2, 3, .... 

Although mathematical induction provides a standard technique for attempting 

to prove a statement about the positive integers, one disadvantage is that it gives 

no aid in formulating such statements. Of course, if we can make an "educated 

guess" at a property that we believe might hold in general, then its validity can 

often be tested by the induction principle. Consider, for instance, the list of 

equalities  

We seek a rule that gives the integers on the right-hand side. After a little 

reflection, the reader might notice that 



 

 

for every positive integer n. (3) To confirm that our guess is correct, let S be the 

set of positive integers n for which Eq. (3) holds. For n = 1, Eq. (3) is certainly 

true, whence 1 belongs to the set S. We assume that Eq. (3) is true for a fixed 

integer k, so that for this k        

  

 

 

 

But this says that Eq. (3) holds when n = k + 1, putting the integer k + 1 in S so 

that k + 1 is in S whenever k is in S. According to the induction principle, S 

must be the set of all positive integers. Mathematical induction is often used as 

a method of definition as well as a method of proof. For example, a common 

way of introducing the symbol n ! (pronounced "n factorial") is by means of the 

inductive definition 

 

Binomial Theorem 1.4: For any positive integer n and any integer k satisfying 

0 < k < n, the binomial coefficient defined by 

 



        

 

Theorem 1.5: (Pascal’s Rule) For 1≤ 𝑘 ≤n  

                       

 

 

This leads us to suspect that the general binomial expansion takes the form 

 

 

 

 

 



2- The Division Algorithm. 

Theorem 2.1: Division Algorithm. Given integers a and b, with b > 0, there 

exist unique integers q and r satisfying a= qb + r , 0 ≤ 𝑟 < b.  

The integers q and r are called, respectively, the quotient and remainder in the 

division of a by b. 

Corollary 2.2: If a and b are integers, with b ≠ 0, then there exist unique 

integers q and r such that a = qb + r, 0 ≤ r <│b│. 

To illustrate the Division Algorithm when b < 0, let us take b = -7. Then, for the 

choices of a = 1, -2, 61, and -59, we obtain the expressions 

 

Remark: We wish to focus our attention on the applications of the Division 

Algorithm, and not so much on the algorithm itself. As a first illustration, note 

that with b = 2 the possible remainders are r = 0 and r = 1.  

When r = 0, the integer a has the form a = 2K and is called even; when r = 1, the 

integer a has the form a = 2K + 1 and is called odd, for some k.  

 Example-1:  a2 is either of the form (2q)2 = 4k or (2q + 1)2 = 4(q2+q)+1 = 4k + 

1. The point to be made is that the square of an integer leaves the remainder 0 or 

1 upon division by 4. We also can show the following: the square of any odd 

integer is of the form 8k + 1. For, by the division Algorithm, any integer is 

representable as one of the four forms: 4q, 4q + 1, 4q + 2, 4q + 3. In this 

classification, only those integers of the forms 4q + 1 and 4q + 3 are odd. When 

the latter are squared, we find that  

( 4q + 1)2 = 8(2q2 + q) + 1 = 8k + 1 and similarly  

(4q + 3)2 = 8(2q2 + 3q + 1) + 1 = 8k +1 

As examples, the square of the odd integer 7 is 72 = 49 = 8 · 6 + 1, and the 

square of 13 is 132 = 169 = 8 · 21 + 1. 

 

 



3- THE GREATEST COMMON DIVISOR 

 Definition 3.1: An integer b is said to be divisible by an integer a ≠ 0, in 

symbols a | b, if there exits some integer c such that b = ac.  

We write a ∤ b to indicate that b is not divisible by a. 

Example -2:  

(1) 3 | 12,  

(2) 3 ∤ 10.  

Theorem 3.2. For integers a, b, c, d, the following hold:  

1. a | 0, 1 | a, a | a.  

2. a | 1 if and only if a = ±1.  

3. If a | b and c | d, then ac | bd.  

4. If a | b and b | c, then a | c.  

5. a | b and b | a if and only if a = ±b.  

6. If a | b and b ̸= 0, then |a| ≤ |b|. 

 7. If a | b and a | c, then a | (bx + cy) for arbitrary integers x and y. 

Definition 3.3: If a and b are arbitrary integers, then an integer d is said to be a 

common divisor of a and b if both d | a and d | b.  

Definition 3.4: Let a and b be given integers, with at least one of them different 

form zero. The greatest common divisor of a and b, dented by gcd(a, b), is the 

positive integer d satisfying  

1. d | a and d | b,  

2. if c | a and c | b, then c ≤ d. 

 Example-3: The positive divisors of −12 are 1, 2, 3, 4, 6, 12, while those of 30 

are 1, 2, 3, 5, 6, 10, 15, 30, hence, the positive common divisors of −12 and 30 

are 1, 2, 3, 6. Since 6 is the largest of these integers, it follows that  

gcd(−12, 30) = 6.  



Example -4: gcd(−5, 5) = 5,  

              gcd(8, 15) = 1,  and gcd(−8, −36) = 4.  

Theorem 3.4: Given integers a and b, not both of which are zero, there exist 

integers x and y such that gcd(a, b) = ax + by. 

Corollary 3.5: If a and b are given integers, not both zero, then the set T = {ax 

+ by | x, y are integers} is precisely the set of all multiples of d = gcd(a, b). 

Example -5:     

gcd(−12, 30) = 6 = (−12) · 2 + (30) · 1, 

 gcd(−8, −36) = 4 = (−8) · 4 + (−36) · (−1). 

 Definition 3.5: Two integers a and b, not both of which are zero, are 

said to be relatively prime whenever gcd(a, b) = 1.  

Example -6: Since gcd(8, 15) = 1, then 8 and 15 are relatively prime.  

Definition 3.6: Two integers a and b, not both of which are zero, are 

said to be relatively prime whenever gcd(a, b) = 1. 

Theorem 3.7: Let a and b be integers, not both zero. Then a and b are 

relatively prime if and only if there exist integers x and y such that 1 = ax 

+ by.  

Corollary 3.8: If gcd(a, b) = d, then gcd(a/d, b/d) = 1. 

Example-7: gcd(−12, 30) = 6  

             and gcd(−12/6, 30/6) = gcd(−2, 5) = 1.  

Remark: It is not true, without adding an extra condition, that a | c and b | 

c together give ab | c.  

For instance, 10 | 30 and 15 | 30, but 10·15 ∤ 30.  

Corollary 3.9: If a | c and b | c, with gcd(a, b) = 1, then ab | c. 

Theorem 3.10: (Euclid’s Lemma)  

   If a | bc, with gcd(a, b) = 1, then a | c. 



Proof: We start again from Theorem 3.4, writing 1 = ax + by, where x 

and y are integers.  

Multiplication of this equation by e produces  

e = 1 · e = (ax + by )e = aex + bey  

Because a│ae and a│be, it follows that a│(aex +bey), which can be 

recast as a │ e. 

 

Remark: If a and b are not relatively prime, then the conclusion of 

Euclid’s Lemma may fail to hold.  

 Example-8: 10|5·6 but 10 ∤ 5 and 10 ∤ 6. 

    12│9 · 8, but 12│9 and 12│8. 

Theorem 3.11: Let a, b be integers, not both zero, for a positive integer 

d, d = gcd(a, b) if and only if  

1. d | a and d | b,  

2. whenever c | a and c | b, then c | d. 

The Euclidean algorithm  

The Euclidean Algorithm may be described as follows: Let a and b be 

two integers whose greatest common divisor is desired. Because 

gcd(IaI, IbI)= gcd(a, b), there is no harm in assuming that a> b > 0.  

The first step is to apply the Division Algorithm to a and b to get a = q1b 

+ r1,  0 ≤ r1 < b  

If it happens that r1 = 0, then b│a and gcd(a, b) = b. 

 When r1 ≠ 0, divide b by r1 to produce integers q2 and r2 satisfying b = 

q2r1 + r2,  

 0 ≤ r2 < rl If r2 = 0, then we stop; otherwise, proceed as before to obtain 



 

We argue that rn, the last nonzero remainder that appears in this 

manner, is equal to gcd(a, b). Our proof is based on the lemma below. 

Lemma 3.12: If a = qb + r, then gcd(a, b) = gcd(b, r). 

Using the result of this lemma, we simply work down the displayed 

system of equations,  obtaining

 

Starting with the next-to-last equation arising from the algorithm, we 

write  

 



Example: Let us see how the Euclidean Algorithm works in a concrete 

case by calculating, say, gcd(12378, 3054). The appropriate applications 

of the Division Algorithm produce the equations 

 

Our previous discussion tells us that the last nonzero remainder 

appearing in these equations, namely, the integer 6, is the greatest 

common divisor of 12378 and 3054:  

    6 = gcd(12378,3054). 

To represent 6 as a linear combination of the integers 12378 and 3054, 

we start with the next-to-last of the displayed equations and successively 

eliminate the remainders 

 

Thus we have 6 = gcd(l2378, 3054) = 12378x + 3054y 



where x = 132 and y = -535. Note that this is not the only way to express 

the integer 6 as a linear combination of 12378 and 3054; among other 

possibilities, we could add and subtract 3054 · 12378 to get  

6 = (132 + 3054)12378 + (-535 - 12378)3054 = 3186. 12378 + (-

12913)3054 

Theorem 3.13: If k > 0, then gcd(ka, kb)= k gcd(a, b). 

Proof. If each of the equations appearing in the Euclidean Algorithm for a 

and b is multiplied by k, we obtain 

                       

 

as stated in the theorem. 

Corollary 3.14: For any integer k ≠0, gcd(ka, kb)= │k│gcd(a, b). 

Proof: It suffices to consider the case in which k<0.  

    Then -k = I k I > 0 and, by Theorem 3.13 

, 



For example gcd(l2, 30) = 3 gcd(4, 10) = 3 · 2 gcd(2, 5) = 6 · 1 = 6 

Definition 3.15: The least common multiple of two nonzero integers a 

and b, denoted by lcm(a, b), is the positive integer m satisfying the 

following:  

(a) a │m and b │m.  

(b) If a │ c and b │ c, with c > 0, then m ≤ c. 

As an example, the positive common multiples of the integers -12 and 30 

are 60, 120, 1 80, ... ; hence, lcm(-12, 30) = 60. The following remark is 

clear from our discussion: given nonzero integers a and b, lcm(a, b) 

always exists and lcm(a, b) < I ab I. We lack a relationship between the 

ideas of greatest common divisor and least common multiple. This gap is 

filled by the following theorem. 

Theorem 3.16: For positive integers a and b gcd(a, b) lcm(a, b) =ab 

which is what we started out to prove. 

Corollary3.17: For any choice of positive integers a and b, lcm(a, b) = 

ab if and only if gcd(a, b) = 1. 

Perhaps the chief virtue of Theorem we found that gcd(3054, 12378) = 

6; whence,  



Remark: In the case of three integers, a, b, c, not all zero, gcd( a, b, c) is 

defined to be the positive integer d having the following properties:  

(a) d is a divisor of each of a, b, c.  

(b) If e divides the integers a, b, c, then e ≤ d. 

We cite two examples: gcd(39, 42, 54) = 3 and 31 gcd(49, 210, 350) = 7 

The reader is cautioned that it is possible for three integers to be 

relatively prime as a triple (in other words, gcd(a, b, c) = 1), yet not 

relatively prime in pairs; this is brought out by the integers 6, 10, and 15.    

  4-THE DIOPHANTINE EQUATION  ax +by = c 

Definition 4.1: Any equation in one or more unknowns which is to be 

solved in integers is called Diophantine equation.  

The linear Diophantine equation in two unknowns is of the form ax + by 

= c, where a, b, c are given integers and a, b not both zero.  

A solution of this equation is a pair of integers x0, y0 which satisfy it. 

Example -1: The equation 3x + 6y = 18 has solutions  

              3.4 + 6.1 = 18,  

              3(−6) + 6.6 = 18,  

              3.10 + 6(−2) = 18 

Theorem 4.2: The linear Diophantine equation ax + by = c has a 

solution if and only if d│c, where d = gcd(a, b ). If xo, yo is any particular 

solution of this equation, then all other solutions are given by 

 

where t is an arbitrary integer. 

Example -2: Solve the linear Diophantine equation 172x + 20y = 1000. 



for some integer t. 

Corollary 4.3: If gcd(a, b) = 1 and if xo, yo is a particular solution of the 

linear Diophantine equation ax + by = c, then all solutions are given by 

            x =x0+ bt             y =yo – at                      for integral values of t. 

 

 

 



 


