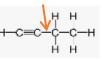


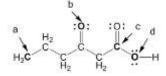
Q 1/ How many covalent bonds are predicted for each atom:

1. O 2. Al 3. Br 4. Si

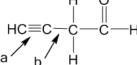
Q 2/ Draw electron-dot pictures for:


1. LiBr 2. Na₂O 3. BeF₂ 4. AlCl₃ 5. MgS **Q** 3/ Label each bond in the following compounds as ionic or covalent:

1. F₂ 2. CH₃CH₃ 3. NaNH₂ 4. NaOCH₃


Q 4/ Indicate which of the following molecules is polar because it possesses a net dipole. Show the direction of the net dipole if one exists.

1. CF_4 2. CH_3Br 3. CH_2Br_2

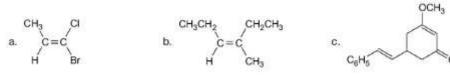

Q 5/ Compare the relative strengths for the indicated bonds:

Q 6/ Determine the type of hybridization for the 4 indicated atoms:

Q 7/ Arrange the 2 indicated bonds according to their relative strengths, then explain the reason for your answer: H O

Q 8/ Match the following compounds with their temperatures:

compounds	mp, °C
(CH ₃) ₄ C	-17
(CH ₃) ₂ CHCH ₂ CH ₃	-160


Q 9/ Draw the structures of all products expected from the monobromination of **isopentane** at room temperature, then circle the most probable one (major product).

- **Q 10**/ Starting from **ethyl chloride**, Prepare the following compounds: Isohexane
- **Q 11**/ Draw a bond-line structure for each of the following compounds:

(a) 3-Isopropyl-2,4-dimethyl-2-pentene

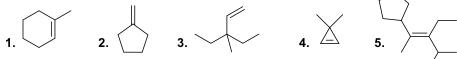
(b) 4-Ethyl-2-methyl-2-hexene

- **Q 12**/ Draw the structure corresponding to each IUPAC name. (3*Z*)-4-ethyl-3-heptene
- **Q 13**/ Label each C C double bond as *E* or *Z* For the following compounds.

Q 14/ Explain why an alkyne often has a slightly higher boiling point than an alkene of similar molecular weight.

Q 15/ Convert each compound to 1-hexyne, HC≡CCH₂CH₂CH₂CH₃.

a. $Br_2CH(CH_2)_4CH_3$ b. $CH_2 = CCI(CH_2)_3CH_3$ c. $CH_2 = CH(CH_2)_3CH_3$


Q 16/ Circle the correct answer:

As the number of electrons between two nuclei increases, bonds become

a. taller and weaker. b. shorter and stronger.

c. unchanged.

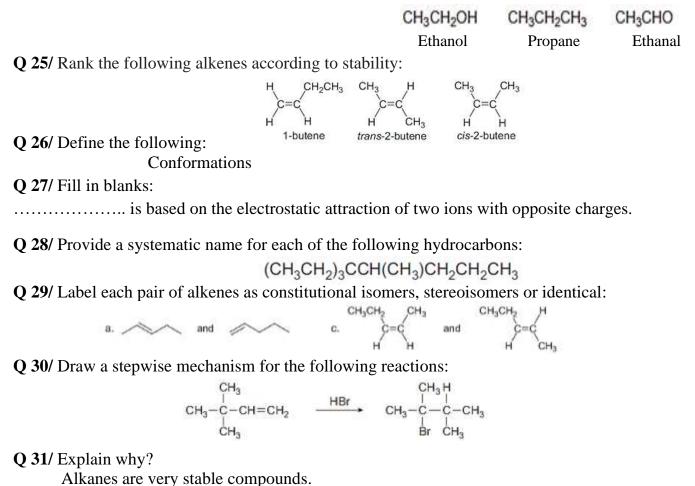
Q 17/ Classify each of the following alkenes as monosubstituted, disubstituted, trisubstituted or tetrasubstituted:

Q 18/ Draw the product formed when $CH_3CH_2C\equiv CH$ is treated with each of the following sets of reagents:

H₂O, H₂SO₄, HgSO₄.

Q 19/ Complete the following reactions (draw the structures **A**):

$$CH_3CH_3 + O_2 \longrightarrow A$$


Q 20/ How many products would be produced by monochlorination of 2,3,3-trimethylpentane.

Q 21/ Draw a Lewis structure for: (Methanol) and (NaCl).

Q 22/ Indicate which of the following molecules is polar: (CF_4) and (CH_2Br_2) .

 ${\bf Q}$ 23/ Show the hybridization of ethene molecule using energy level diagram.

Q 24/ Rank the following molecules in order of increasing boiling point:

