Francis turbines

- Examples
- Losses in Francis turbines
- NPSH
- Main dimensions

Traditional runner

X blade runner

SVARTISEN

P $=350 \mathrm{MW}$
$\mathrm{H}=543 \mathrm{~m}$
$\mathrm{Q}^{*}=71,5 \mathrm{~m}^{3} / \mathrm{S}$
$\mathrm{D}_{0}=4,86 \mathrm{~m}$
$\mathrm{D}_{1}=4,31 \mathrm{~m}$
$\mathrm{D}_{2}=2,35 \mathrm{~m}$
$\mathrm{B}_{0}=0,28 \mathrm{~m}$
$\mathrm{n}=333 \mathrm{rpm}$

La Grande, Canada

$$
\begin{aligned}
& \mathrm{P}=169 \mathrm{MW} \\
& \mathrm{H}=72 \mathrm{~m} \\
& \mathrm{Q}=265 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{D}_{0}=6,68 \mathrm{~m} \\
& \mathrm{D}_{\mathrm{le}}=5,71 \mathrm{~m} \\
& \mathrm{D}_{1 \mathrm{i}}=2,35 \mathrm{~m} \\
& \mathrm{~B}_{0}=1,4 \mathrm{~m} \\
& \mathrm{n}=112,5 \mathrm{rpm}
\end{aligned}
$$

Hydraulic efficiency

$$
\eta_{h}=\frac{c_{1 u} \cdot u_{1}-c_{2 u} \cdot u_{2}}{g \cdot H_{n}}=\frac{\left(\mathrm{g} \cdot \mathrm{~h}_{1}+\frac{\mathrm{c}_{1}^{2}}{2}+\mathrm{z}_{1}\right)-\left(\mathrm{g} \cdot \mathrm{~h}_{3}+\frac{\mathrm{c}_{3}^{2}}{2}+\mathrm{z}_{3}\right)-\text { losses }}{\left(\mathrm{g} \cdot \mathrm{~h}_{1}+\frac{\mathrm{c}_{1}^{2}}{2}+\mathrm{z}_{1}\right)-\left(\mathrm{g} \cdot \mathrm{~h}_{3}+\frac{\mathrm{c}_{3}^{2}}{2}+\mathrm{z}_{3}\right)}
$$

Losses in Francis Turbines

Losses in Francis Turbines

Friction losses between runner and covers

Gap losses

Absolute path with the runner installed

Velocity triangles

Net Positive Suction Head, NPSH

$$
\begin{aligned}
& h_{2}+\frac{c_{2}^{2}}{2 \cdot g}+z_{2}=h_{b}+h_{3}+\frac{c_{3}^{2}}{2 \cdot g}+z_{3}+\zeta \cdot \frac{c_{3}^{2}}{2 \cdot g} \quad h_{2}=h_{b}+h_{2}^{\prime} \\
& -H_{s}=h_{3}+\frac{c_{3}^{2}}{2 \cdot g}+z_{3}-z_{2} \\
& \mathrm{~h}_{2}+\frac{\mathrm{c}_{2}^{2}}{2 \cdot \mathrm{~g}}+\mathrm{z}_{2}=\mathrm{h}_{\mathrm{b}}-\mathrm{H}_{\mathrm{s}}+\mathrm{z}_{2}+\underbrace{\zeta \cdot \frac{\mathrm{c}_{3}^{2}}{2 \cdot \mathrm{~g}}}_{J} \\
& \mathrm{~h}_{2}+\frac{\mathrm{c}_{2}^{2}}{2 \cdot \mathrm{~g}}=\mathrm{h}_{\mathrm{b}}-\mathrm{H}_{\mathrm{s}}+\mathrm{J}
\end{aligned}
$$

NPSH

$$
h_{2}=h_{b}-H_{s}-\left(\frac{c_{2}^{2}}{2 \cdot g}-J\right)>h_{v a}
$$

$$
\mathrm{NPSH}=\mathrm{h}_{\mathrm{b}}-\mathrm{h}_{2}-\mathrm{H}_{\mathrm{s}}
$$

NPSH required

$\mathrm{NPSH}_{\mathrm{R}}<\mathrm{h}_{\mathrm{b}}-\mathrm{h}_{\mathrm{Va}}-\mathrm{H}_{\mathrm{s}}=\mathrm{NPSH}_{\mathrm{A}}$
$N P S H_{R}=a \cdot \frac{c_{m 2}^{2}}{2 \cdot g}+b \cdot \frac{u_{2}^{2}}{2 \cdot g}$

Turbines Pumps
a $\quad 1.05<a<1.15 \quad 1.6<a<2.0$
b $\quad 0.05<$ b $<0.15 \quad 0.2<$ b <0.25

Main dimensions

- Dimensions of the outlet
- Speed
- Dimensions of the inlet

Dimensions of the outlet

We assume $c_{u 2}=0$ and choose β_{2} and u_{2} from $\mathrm{NPSH}_{\mathrm{R}}$:

$$
N P S H_{R}=a \cdot \frac{c_{m 2}^{2}}{2 \cdot g}+b \cdot \frac{u_{2}^{2}}{2 \cdot g}=\frac{a \cdot\left(u_{2} \cdot \tan \beta_{2}\right)^{2}+b \cdot u_{2}^{2}}{2 \cdot g}
$$

$$
\begin{aligned}
& 13^{\circ}<\beta_{2}<22^{\circ} \quad \text { (Lowest value for highest head) } \\
& 35<\mathrm{u}_{2}<43 \mathrm{~m} / \mathrm{s} \quad \text { (Highest value for highest head) } \\
& 1,05<\mathrm{a}<1,15 \\
& 0,05<\mathrm{b}<0,15
\end{aligned}
$$

Diameter at the outlet

$$
\mathrm{c}_{\mathrm{m} 2}=\mathrm{u}_{2} \tan \beta_{2}
$$

Connection between $\mathrm{c}_{\mathrm{m} 2}$ and choose D_{2} :

$$
\begin{aligned}
\mathrm{Q}= & \pi \cdot \frac{\mathrm{D}_{2}^{2}}{4} \cdot \mathrm{c}_{\mathrm{m} 2} \Rightarrow \mathrm{c}_{\mathrm{m} 2}=\frac{\mathrm{Q} \cdot 4}{\pi \cdot \mathrm{D}_{2}^{2}} \\
& \Rightarrow D_{2}=\sqrt{\frac{4 \cdot Q}{\pi \cdot c_{m 2}}}
\end{aligned}
$$

Speed

Connection between n and choose u_{2} :

$$
\mathrm{u}_{2}=\frac{\pi \cdot \mathrm{D}_{2} \cdot \mathrm{n}}{60} \Rightarrow \mathrm{n}=\frac{\mathrm{u}_{2} \cdot 60}{\pi \cdot D_{2}}
$$

Correction of the speed

The speed of the generator is given from the number of poles and the net frequency

$$
\mathrm{n}=\frac{3000}{\mathrm{z}_{\mathrm{p}}} \quad \text { for } \quad \mathrm{f}=50 \mathrm{~Hz}
$$

Example

Given data:

Flow rate
Head

$$
\begin{aligned}
& \mathrm{Q}=71.5 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{H}=543 \mathrm{~m}
\end{aligned}
$$

We choose:

$$
\begin{aligned}
& \mathrm{a}=1,10 \\
& \mathrm{~b}=0,10 \\
& \beta_{2}=22^{\circ} \\
& \mathrm{u}_{2}=40 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\mathrm{NPSH}_{\mathrm{R}}=\frac{1,1 \cdot\left(40 \cdot \tan 22^{\circ}\right)^{2}+0,1 \cdot 40^{2}}{2 \cdot \mathrm{~g}}=22,8 \mathrm{~m}$

Find D_{2} from:

$$
\begin{aligned}
& D_{2}=\sqrt{\frac{4 \cdot Q}{\pi \cdot c_{m 2}}}=\sqrt{\frac{4 \cdot Q}{\pi \cdot u_{2} \cdot \tan \beta_{2}}} \\
& \mathrm{D}_{2}=\sqrt{\frac{4 \cdot 71,5}{\pi \cdot 40 \cdot \tan 22^{\circ}}}=2.37 \mathrm{~m}
\end{aligned}
$$

Find speed from:

$$
n=\frac{u_{2} \cdot 60}{\pi \cdot D_{2}}=\frac{40 \cdot 60}{\pi \cdot 2.37}=322 \mathrm{rpm}
$$

Correct the speed with synchronic speed:

$$
z_{p}=\frac{3000}{n}=9.3
$$

choose $\mathrm{z}_{\mathrm{p}}=9 \Rightarrow \mathrm{n}_{\mathrm{K}}=\frac{3000}{9}=333 \mathrm{rpm}$

We keep the velocity triangle at the outlet:

\Downarrow
$n_{K} \cdot D_{2 K}^{3}=n \cdot D_{2}^{3}$
\Downarrow

$$
D_{2 K}=\sqrt[3]{\frac{n \cdot D_{2}^{3}}{n_{K}}}=2.373 \cdot \sqrt[3]{\frac{322}{333}}=\underline{\underline{2.35 m}}
$$

Dimensions of the inlet

$$
\eta_{\mathrm{h}}=\frac{\mathrm{u}_{1} \cdot \mathrm{c}_{\mathrm{u} 1}-\mathrm{u}_{2} \cdot \mathrm{c}_{\mathrm{u} 2}}{\mathrm{~g} \cdot \mathrm{H}}=2 \cdot\left(\underline{\mathrm{u}}_{1} \cdot \underline{\mathrm{c}}_{\mathrm{u} 1}-\underline{\mathrm{u}}_{2} \cdot \underline{\mathrm{c}}_{\mathrm{u} 2}\right)
$$

At best efficiency point, $\underline{\mathrm{c}}_{\mathrm{u} 2}=0$

$$
\begin{aligned}
& \eta_{\mathrm{h}} \approx 0,96=\frac{\mathrm{u}_{1} \cdot \mathrm{c}_{\mathrm{u} 1}}{\mathrm{~g} \cdot \mathrm{H}}=2 \cdot \underline{\mathrm{u}}_{1} \cdot \underline{\mathrm{c}}_{\mathrm{u} 1} \\
& \underline{\mathrm{c}}_{\mathrm{u} 1}=\frac{\eta_{\mathrm{h}}}{2 \cdot \underline{\mathrm{u}}_{1}}=\frac{0,96}{2 \cdot \underline{\mathrm{u}}_{1}}
\end{aligned}
$$

Diameter at the inlet

$$
\text { We choose: } \quad 0,7<\underline{\mathrm{u}}_{1}<0,75
$$

Height of the inlet

Continuity gives:

$$
\mathrm{c}_{\mathrm{m} 1} \cdot \mathrm{~A}_{1}=\mathrm{c}_{\mathrm{m} 2} \cdot \mathrm{~A}_{2}
$$

We choose:

$$
\mathrm{c}_{\mathrm{m} 2}=1,1 \cdot \mathrm{c}_{\mathrm{m} 1}
$$

$$
\mathrm{B}_{1} \cdot \mathrm{D}_{1} \cdot \pi=\frac{1.1 \cdot \pi \cdot \mathrm{D}_{2}^{2}}{4}
$$

$$
\mathrm{B}_{1}=\mathrm{B}_{0}
$$

Inlet angle

$\tan \beta_{1}=\frac{c_{m 1}}{u_{1}-c_{u 1}}$

Example continues

Given data:

Flow rate
Head

$$
\begin{aligned}
& \mathrm{Q}=71.5 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{H}=543 \mathrm{~m}
\end{aligned}
$$

We choose:

$$
\begin{aligned}
& \eta_{\mathrm{h}}=0,96 \\
& \underline{\mathrm{u}}_{1}=0,728 \\
& \underline{\mathrm{c}}_{\mathrm{u} 2}=0
\end{aligned}
$$

$$
\eta_{h}=2 \cdot \underline{u}_{1} \cdot \underline{c}_{u 1} \quad \Rightarrow \quad \underline{c}_{u 1}=\frac{\eta_{h}}{2 \cdot \underline{u}_{1}}=\frac{0.96}{2 \cdot 0,728}=0,66
$$

Diameter at the inlet

$$
\begin{gathered}
u_{1}=\underline{u}_{1} \cdot \sqrt{2 \cdot g \cdot h}=0,728 \cdot \sqrt{2 \cdot 9,81 \cdot 543}=75,15 \mathrm{~m} / \mathrm{s} \\
D_{1}=\frac{u_{1} \cdot 60}{n \cdot \pi}=\frac{75,15 \cdot 60}{333 \cdot \pi}=4,31 \mathrm{~m} \\
\end{gathered}
$$

Height of the inlet

$$
B_{1}=\frac{1,1 \cdot \pi \cdot D_{2}^{2}}{4 \cdot D_{1} \cdot \pi}=\frac{1,1 \cdot 2.35^{2}}{4 \cdot 4,31}=0,35 \mathrm{~m}
$$

Inlet angle

$$
\begin{aligned}
& c_{m 1}=\frac{c_{m 2}}{1,1}=\frac{\sin \beta_{2} \cdot u_{2}}{1,1}=\frac{\sin 22^{\circ} \cdot 40,9 \mathrm{~m} / \mathrm{s}}{1,1}=13,9 \mathrm{~m} / \mathrm{s} \\
& \underline{\mathbf{c}}_{\mathrm{m} 1}=\frac{\mathrm{c}_{\mathrm{m} 1}}{\sqrt{2 \cdot \mathrm{~g} \cdot \mathrm{~h}}}=\frac{13,9}{\sqrt{2 \cdot 9,81 \cdot 543}}=0,135
\end{aligned}
$$

$$
\beta_{1}=\arctan \left(\frac{\underline{c}_{m 1}}{\underline{u}_{1}-\underline{c}_{u 1}}\right)=\arctan \left(\frac{0,135}{0,728-0,659}\right)=62.9^{\circ}
$$

SVARTISEN

P $=350 \mathrm{MW}$
$\mathrm{H}=543 \mathrm{~m}$
$\mathrm{Q}^{*}=71,5 \mathrm{~m}^{3} / \mathrm{S}$
$\mathrm{D}_{0}=4,86 \mathrm{~m}$
$\mathrm{D}_{1}=4,31 \mathrm{~m}$
$\mathrm{D}_{2}=2,35 \mathrm{~m}$
$\mathrm{B}_{0}=0,28 \mathrm{~m}$
$\mathrm{n}=333 \mathrm{rpm}$

