Lecture on
 Francis Turbine

by

Dr. Shibayan Sarkar

Department of Mechanical Engg
Indian Institute of Technology (ISM), Dhanbad

Turbines: Francis (1849)

Draft Tube:

Static pressure (P/ $/+Z$) gradually decreases when water glides over the runner blades. Water coming out of the runner posses large amount of Kinetic energy and pressure at runner outlet, which is less than atmospheric pressure.
(1) It makes possible to install the turbine above tail race without loss of head
(2) The pressure at the exit of the draft tube is atmospheric.
(3) Avoid cavitation, arrest separation of water.

Apply Bernouli's theory at runner exit (2) and exit of draft tube (4)

$$
\frac{P_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+Z_{2}=\frac{P_{4}}{\gamma}+\frac{v_{4}^{2}}{2 g}+Z_{4}+h f \quad \begin{aligned}
& \mathrm{hf}=\text { head loss } \\
& \text { through draft tube }
\end{aligned}
$$

Replacing the above value to eq (1)
Same, as $\begin{aligned} & \text { difference }\end{aligned}$.......eq (2)
$\frac{P_{2}}{\gamma}=\frac{P_{3}}{\gamma}-\left(Z_{2}-Z_{3}\right)-\left[\frac{v_{2}^{2}}{2 g}-\frac{v_{4}^{2}}{2 g}-h f\right]$
$\frac{P_{2}}{\gamma}=\frac{P_{3}}{\gamma}-\left[h s+\left(\frac{v_{2}^{2}}{2 g}-\frac{v_{4}^{2}}{2 g}-h f\right.\right.$

$$
\begin{align*}
& \frac{P_{3}}{\gamma}+\frac{v_{3}^{2}}{2 g}-Z_{3}=\frac{P_{4}}{\gamma}+\frac{v_{4}^{2}}{2 g}+Z_{4} \quad \begin{array}{l}
\text { Same, as } \\
\text { difference } \\
\text { is negligible }
\end{array} \\
& \frac{P_{4}}{\gamma}=\frac{P_{3}}{\gamma}+\left(Z_{3}-Z_{4}\right) \quad \ldots \ldots . . \text { eq (3) } \tag{3}
\end{align*}
$$

-

Apply Bernouli's theory at free surface (3) and exit of draft tube (4)

Draft Tube:

(4) Static pressure $(\mathrm{P} / \gamma+\mathrm{Z})$ at runner outlet (at the level of 2) is less than atmospheric pressure by an amount equal to the static and dynamic suction head. $\mathrm{V}_{2}{ }^{2} / 2 \mathrm{~g}$
(5) Velocity of water at outlet of runner is very high ($3-15 \%$ of net working head, for high specific speed it is 45% in case of kaplan turbine), by employing draft tube recovers this wasted KE is utilized which increases efficiency of the turbine.
(6) Prevent splashes of water coming out of the runner .

Efficiency of the draft tube is expressed as

(b) Moody spreading

(c) Simple elbow Length minimum
and less
excavation, head
loss at bend,
$\eta_{\mathrm{dt}}=60 \%$

$$
\eta_{d t}=\frac{\frac{\left(V_{2}^{2}-V_{4}^{2}\right)}{2 g}-h_{f}}{\frac{V_{2}^{2}}{2 g}}
$$

actual conversion of Kinetic Head $=\frac{\text { into Pressure Head }}{\text { Kinetic }}$

Kinetic Head at inlet
of the draft tube
Sometimes friction loss is expressed as

$$
h_{f}=k \frac{\left(V_{2}^{2}-V_{4}^{2}\right)}{2 g}, \mathrm{k}=\mathrm{const}
$$

less excavation,
or hydraucone

Increase area of water exit, increase whirling action, suit for helical flow, $\eta_{d t}=85 \%$ head loss at bend, $\eta_{\mathrm{dt}}=85 \%$
(d) Elbow with cross-section changing from circle to rectangle

Governing Mechanism

Runners are classified according to the speed, as per their shape and velocity triangle

Medium runner

Slow runner

Degree of Reaction (R)
change in pressure energy $=\frac{\text { inside the runner }(\mathrm{Hpr})}{\text { change in total energy }}$ inside the runner (He) inside the runner $\left(\mathrm{U}_{1}\right.$
$\xrightarrow{u_{1}} \operatorname{Hpr}=\left(\frac{V_{r 2}{ }^{2}}{2}-\frac{V_{r 1}{ }^{2}}{2}\right)+\left(\frac{u_{1}^{2}-u_{2}^{2}}{2}\right)$

u_{2}
Fast runner
$H e=\left(\frac{V_{1}^{2}}{2}-\frac{V_{2}{ }^{2}}{2}\right)+\left(\frac{V_{r 2}{ }^{2}}{2}-\frac{V_{r 1}{ }^{2}}{2}\right)+\left(\frac{u_{1}^{2}-u_{2}^{2}}{2}\right)$

Relationship:

$\frac{V_{r 2}{ }^{2}}{2}=\frac{V_{r 1}{ }^{2}}{2}+\left(\frac{u_{2}^{2}-u_{1}^{2}}{2}\right) \begin{aligned} & \text { Centrifugal } \\ & \text { head (CFH) }\end{aligned}$
Outward flow: $\mathrm{u}_{2}>\mathrm{u}_{1}, \mathrm{CFH}+\mathrm{ve}, \mathrm{V}_{\mathrm{r} 2}$ increases at outlet Inward flow: $u_{1}>u_{2}$, CFH -ve , $\mathrm{V}_{\mathrm{r} 2}$ decreases at outlet

Francis Turbine Equations

Working Proportions:

(1) Ratio to width to diameter (n')= b1/D1 = 0.1 to 0.45 , for slow runner flow is predominantly radial and exit is axial
(2) Speed ratio $(\mathrm{Ku})=u_{1} / \sqrt{2 g H}=0.6$ to 0.9
(3) Flow ratio (kf) $=V_{f 1} / \sqrt{2 g H}=0.15$ to 0.30
(4) Coeff of velocity (kv) $=V_{1} / \sqrt{2 g H}=0.97$ to 0.99

Design Parameters: Head (H), running speed (N), Power output (P) is required size of the runner and its vane angle is to be find out.
(1) Assume probable value of η_{h}, η_{0}, n ' and ratios (Ku, kf, kv)
(2) Workout the mass or volumetric flow rate, where shaft

Key Term:
Without whirl $\rightarrow \mathrm{V}_{\mathrm{w}}=0$
Negligible blade thickness $\rightarrow \mathrm{K}_{1}=\mathrm{K}_{2}=1$ Radial inlet $\rightarrow \theta=90$ 응
Radial exit $\rightarrow \beta=90^{\circ}$; V2=Vf2 No blade friction $\rightarrow \mathrm{Vr} 1=\mathrm{Vr} 2$
(3) Flow opening area $A_{1}=\pi D_{1} b_{1}-Z t_{1} b_{1},=\pi D_{1} b_{1} K_{1}$ where Z is number of blades, t_{1} is thickness of runner at inlet, $\mathrm{b}_{1}=$ width of the runner at inlet, and K_{1} is vane thickness coeff = approx 0.95
(4) Flow velocity $\mathrm{V}_{\mathrm{f} 1}=\mathrm{Q} / \pi \mathrm{D}_{1} \mathrm{~b}_{1} \mathrm{~K}_{1}$, by continuity equation $\mathrm{Q}=\pi \mathrm{D}_{1} \mathrm{~b}_{1} \mathrm{~K}_{1} \mathrm{~V}_{\mathrm{f} 1}=\pi \mathrm{D}_{2} \mathrm{~b}_{2} \mathrm{~K}_{2} \mathrm{~V}_{\mathrm{f} 2}$
(5) u1 $=\pi \mathrm{DN} / 60$
(6) Work done by turbomachine $=\rho Q\left(V w_{1} u_{1} \pm V w_{2} u_{2}\right)$,
(7) Hydraulic Efficiency $\left(\eta_{\mathrm{h}}\right)$ assuming radial exit $=\mathrm{V}_{\mathrm{w} 1} \mathrm{u}_{1} / \mathrm{gH} \quad\left[\mathrm{V}_{\mathrm{w} 2}\right.$ is zero]
(8) Head supplied to turbine $=$ Work Done or head utilized at runner + Kinetic head at exit

$$
H_{t}=\frac{\rho Q\left(V w_{1} u_{1} \pm V w_{2} u_{2}\right)}{\rho g Q}+\frac{V_{2}^{2}}{2 g} \bigcap_{\text {again gross head } H_{g}=H_{t}+\sum h_{l}}^{\mathrm{H}_{1}=\mathrm{p}_{1} / \rho \mathrm{V}+\mathrm{V}_{1}^{2} / 2 \mathrm{~g}} \text { whereas for pump } H_{p}=H_{g}-\sum h_{l}
$$

