

زانكوّى سهلاحهددين - هـهوليّر
Salahaddin University-Erbil

# The Average Distance Of Carpet Graph 

Research Project
Submitted to the department of Mathematics in partial fulfillment of the requirements for the degree of BSc. in Mathematics

## Prepared By:

Eman Latif Ahmad

Supervised by:
Assist. Prof. Dr. Rashad Rashid Haji

April - 2023

## Certification of the Supervisor

I certify that this work was prepared under my supervision at the Department of Mathematics / College of Education / Salahaddin University- Erbil in partial fulfillment of the requirements for the degree of Bachelor of philosophy of Science in Mathematics.

Signature:


Supervisor: Dr. Rashad Rashid Haji
Scientific grade: Assistant Professor
Date: 4/4 /2023

In view of available recommendations, I forward this word for debate by the examining committee.

Signature:


Name: Dr. Rashad Rashid Haji
Scientific grade: Assistant Professor
Chairman of the Mathematics Department
Date:5/4/2023

## Acknowledgment

First of all, I would like to thanks God for helping me to complete this project with success.

Secondly, I would like to express my special thanks to my supervisor Assist. Prof. Dr. Rashad Rashid Haji, it has been great honor to be his student.

It is great pleasure for me to undertake this project I have taken efforts however it would not have been possible without the support and help of many individuals.

Also, I would like to express my gratitude towards my parents and my friends.

My thanks appreciations go to Mathematical Department and all my valuable teachers.

## Abstract

In this work we define the new special graph named Carpet graph $C p(n)$ of order $2 n$ as given in Figure 1 and we find the mean (average) distance $C p(n)$ which is $\mu(C p(n))=\frac{2 n^{2}+3 n-2}{3(2 n-1)}$ with two Remarks in which we find the mean distance of $C p(2)$ and $C p(3)$ which are $\frac{4}{3}$ and $\frac{5}{3}$ respectively Moreorer, we give same interesting examples.


Figure (1) carpet graph $C p(n)$

## Contents

Certification of the Supervisor ..... 1
Acknowledgment ..... 2
Abstract ..... 3
CHAPTER ONE ..... 5
Introduction ..... 5
CHAPTER TWO ..... 7
Literature Review ..... 7
CHAPTER THREE ..... 9
3.1.The Average Distance Of The Carpet Special Graph $\boldsymbol{C p}(\boldsymbol{n})$ ..... 9
3.2. Some Graphical properties of the special graph ..... 16
Bibliography ..... 17

## CHAPTER ONE

## Introduction

Graph theory, is a branch of Mathematics concerned with networks of points connected by lines. The subject of graph theory had its beginnings in recreational math problems (see number game), but it has grown into a significant area of mathematical research, with applications in chemistry, operations research, social sciences, and computer science.

The history of graph theory may be specifically traced to 1735 , when the Swiss mathematician Leonhard Euler solved the Königsberg bridge problem. The Königsberg bridge problem was an old puzzle concerning the possibility of finding a path over every one of seven bridges that span a forked river flowing past an island-but without crossing any bridge twice. Euler argued that no such path exists. His proof involved only references to the physical arrangement of the bridges, but essentially he proved the first theorem in graph theory.

As used in graph theory, the term graph does not refer to data charts, such as line graphs or bar graphs. Instead, it refers to a set of vertices (that is, points or nodes) and of edges (or lines) that connect the vertices. When any two vertices are joined by more than one edge, the graph is called a multi graph. A graph without loops and with at most one edge between any two vertices is called a simple graph. Unless stated otherwise, graph is assumed to refer to a simple graph. When each vertex is connected by an edge to every other vertex, the graph is called a complete graph. When appropriate, a direction may be assigned to each edge to produce what is known as a directed graph, or digraph. ( (Carlson 2022).

We think of a graph as a set of Points in a Plane or in 3-space and a set of line segments (possibly curved), each of which either joins two points or joins a point to itself.

Graphs are highly Versatile models for analyzing a wide range of Practical Problems in which Points and connections between them have some Physical or conceptual interpretation.

Placing such analysis on solid footing requires Precise definitions, terminology and notation (Behzad and Hartrand 1977).

## CHAPTER TWO

## Literature Review

Definition 2.1: A graphs is a finite non empty set of objects called vertices (the singular word is vertex) together with a (Possibly empty) set of un order pairs of distinct vertices of called edges. (Behzad and Hartrand 1977).

Definition 2.2: The cardinality or the number of the vertex set of a graph $G$ is called the order of $G$, denoted by $p(G)$ or simply $p$. (Behzad and Hartrand 1977).

Definition 2.3: The cardinality or the number of the edge set of a graph $G$ is called the size of $G$, is denoted by $q(G)$ or simply $q$. (Madhumangal 2021).

Definition 2.4: In graph theory, the distance between two vertices of a graph G is defined as the length of the shortest path between those vertices. The length of a path is the number of edges in the path, so the distance between two vertices is the minimum number of edges that must be traversed to get from one vertex to the other ( $\operatorname{Lin} 2009)$.

Definition 2.5: (P. Dankelmann, 1997) Let $G$ be a connected graph, and $v \in V(G)$, the transmission of $v$ is denoted by $\sigma(v)$ and defined by $\sigma(v)=\sum_{u \in V(G)} d(u, v)$. (Chen 1976)

Definition 2.6: Let $G$ be a connected graph, then the average distance (mean distance) of $G$ is denoted by $\mu(G)$ and defined by $\quad \mu(G)=\frac{\sigma(G)}{p(p-1)}$, where $p$ is the order of $G$.That is, the average distance of a graph $G$ is the average value of the distance between all pairs of vertices in $G$. (Emmert-Streib 2014)

Definition 2.7: A path is walk that does not include any vertex twice, except that its first vertex might be the same as its least a cycle or circuit is a path. (June 1991).

Definition 2.8: Eccentricity of vertex $v$ denoted by $\varepsilon(v)$ is the greatest geodesic distance between $v$ and any other vertex it can be through of as far a vertex is from the vertex most. (Wallis 2007).

Definition 2.9: The Radius of graph $G$ denoted by $\operatorname{rad}(G)$ is the minimum eccentricity of any vertex in the graph that is $\operatorname{rad}(G)=\min _{\mathrm{v} \in \mathrm{v}(\mathrm{G})} \varepsilon(v)$ (Wallis 2007).
Definition 2.10: The diameter of a graph $G$ denoted by $\operatorname{diam}(G)$ is maximum eccentricity of any vertex in the graph that is $\operatorname{diam}(G)=\max _{\mathrm{v} \in \mathrm{V}(\mathrm{G})} \varepsilon(v)$ (Wallis 2007).

Definition 2.12: A Eulerian cycle or Eulerian circuit or Euler tour in undirected graph is a cycle that use edge exactly once if such an Euler cycle exists in the graph is called an Eulerian graph. (Michael A.Henning 2022)

Definition 2.13: A Hamiltonian cycle or Hamiltonian circuit or vertex tour a graph cycle is a cycle that visits each vertex exactly once (except for the vertex that is both the start and end witch is visited twice). A graph that contains a Hamiltonian cycle is called Hamiltonians graphs. (Ashay Dharwadker 2011).

## CHAPTER THREE

### 3.1.The Average Distance Of The Carpet Special Graph $\operatorname{Cp}$ ( $\boldsymbol{n}$ )

Definition 3.1.1: carpet graph $\boldsymbol{C} \boldsymbol{p}(\boldsymbol{n})$ is the connected graph of order $2 n$ Consists of two path $\boldsymbol{P}_{\boldsymbol{n}}$ in witch the symmetric vertices in places are adjacent as given in Figure (2)


Figure (2) The graph of $C p(n)$

## Theorem 3.1.2.

The average distance (mean) distance of the carpet graph $C p(n)$ is
$\mu(C p(n))=\frac{2 n^{2}+3 n-2}{3(2 n-1)} \quad$ for $n, m>1$
Let $G$ be a connected graph, then the average distance (mean distance) of $G$ is denoted by $\mu(G)$ and defined by $\mu(G)=\frac{\sigma(G)}{p(p-1)}$,where $p$ is the order of $G$.That is ,The average distance of a graph $G$ is the average value of the distance between all pairs of vertices in $G$.


Figure (3) The graph of $C p(n)$

Proof: The transmission of vertices of $C p(n)$ are

$$
\begin{aligned}
& \sigma\left(v_{1}\right)=\frac{n(n-1)}{2}+\frac{n(n+1)}{2}+\frac{(1)(2)}{2}+(-1) \\
& \sigma\left(v_{2}\right)=\frac{(1)(2)}{2}+\frac{(n-2)(n-1)}{2}+\frac{(2)(3)}{2}+\frac{n(n-1)}{2}+(-1) \\
& \sigma\left(v_{3}\right)=\frac{(2)(3)}{2}+\frac{(n-3)(n-2)}{2}+\frac{(3)(4)}{2}+\frac{(n-2)(n-1)}{2}+(-1)
\end{aligned}
$$

$$
\sigma\left(v_{n-1}\right)=\frac{(n-2)(n-1)}{2}+\frac{(1)(2)}{2}+\frac{(n-1)(n)}{2}+\frac{(2)(3)}{2}+(-1)
$$

$$
\sigma\left(v_{n}\right)=\frac{(n)(n-1)}{2}+\frac{(n+1)(n)}{2}+\frac{(1)(2)}{2}+(-1)
$$

$$
\sigma(C p(n))=\sum_{i=1}^{n} \sigma\left(v_{i}\right)+\sum_{i=1}^{n} \sigma\left(u_{i}\right)
$$

$$
\sigma(C p(n))=\sum_{i=1}^{n-1} \frac{i(i+1)}{2}+\sum_{i=1}^{n-1} \frac{i(i+1)}{2}+\sum_{i=1}^{n} \frac{i(i+1)}{2}+\sum_{i=1}^{n} \frac{i(i+1)}{2}+n(-1)
$$

$$
\sigma(C p(n))=2\left[2 \sum_{i=1}^{n-1} \frac{i(i+1)}{2}+2 \sum_{i=1}^{n} \frac{i(i+1)}{2}+n(-1)\right]
$$

$$
\sigma(C p(n))=2\left[\sum_{i=1}^{n} i(i+1)+\sum_{i=1}^{n-1} i(i+1)-n\right]
$$

Since $\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}$ and $\sum_{i=1}^{n-1} i(i+1)=\frac{n(n-1)(n+1)}{3}$

So transmission of the carpet $C p(n)$ is
$\sigma(C p(n))=2\left[\left(\frac{n(n+1)(n+2)}{3}\right)+\left(\frac{n(n-1)(n+1)}{3}\right)-n\right]$
$=\frac{2(n)(n+1)[n+2+(n-1)]-6 n}{3}$
$=\frac{2(n)(n+1)[2 n+1]-6 n}{3}$
$=\frac{4 n^{3}+6 n^{2}-4 n}{3}$
$\sigma(C p(n))=\frac{2 n\left(2 n^{2}+3 n-2\right)}{3}$
Now the mean distance of the section carpet graph $C p(n)$ is
$\mu(C p(n))=\frac{\sigma(C p(n))}{2 n(2 n-1)}$
$\mu(C p(n))=\frac{2 n\left(2 n^{2}+3 n-2\right)}{(3) 2 n(2 n-1)}$
$\mu(C p(n))=\frac{\left(2 n^{2}+3 n-2\right)}{(3)(2 n-1)}$
$\mu(C p(n))=\frac{(2 \mathrm{n}-1)(n+2)}{(3)(2 n-1)}=\frac{n+2}{3}$

## Remark 3.1.3

The average distance of the carpet graph $C p(2)$ is $\mu(C p(2))=\frac{4}{3}$
Proof. By Theorem 3.1.2, the average distance of the carpet graph $C p(n)$ is $\mu(C p(n))=\frac{n+2}{3}$.
If $n=2$,then we get the carpet graph $C p(2)$ as given in Figure (4), $\mu(C p(2))=\frac{2+2}{3}=\frac{4}{3}$.


Figure (4) the graph of $C p(2)$

## Remark 3.1.4

The average distance of the carpet graph $C p(3)$ is $\mu(C p(3))=\frac{5}{3}$.
Proof. By Theorem 3.1.2 the average distance of $C p(n)$ is $\mu(C p(n))=\frac{n+2}{3}$, if $n=3$, then we get the carpet graph $C p(3)$ as given in Figure (5), $\mu(C p(3))=\frac{3+2}{3}=\frac{5}{3}$.


Figure (5) The graph of $C p(3)$

Example 3.1.5 : In this example we find the average distance of $C p(5)$ by using definitions ,transmission of a vertex, transmission of a graph ,and the average distance of a graph as follows :


Figure (6) The graph of $C p(5)$

$$
\begin{aligned}
& \sigma\left(v_{1}\right)=1+2+3+4+1+2+3+4+5=25 \\
& \sigma\left(v_{2}\right)=1+1+2+3+1+2+2+3+4=19 \\
& \sigma\left(v_{3}\right)=1+2+1+2+1+2+3+2+3=17 \\
& \sigma\left(v_{4}\right)=1+1+2+3+1+2+2+3+4=19 \\
& \sigma\left(v_{5}\right)=1+2+3+4+1+2+3+4+5=25 \\
& \sigma\left(u_{1}\right)=1+2+3+4+1+2+3+4+5=25 \\
& \sigma\left(u_{2}\right)=1+1+2+3+1+2+2+3+4=19 \\
& \sigma\left(u_{3}\right)=1+2+1+2+1+2+3+2+3=17 \\
& \sigma\left(u_{4}\right)=1+1+2+3+1+2+2+3+4=19 \\
& \sigma\left(u_{5}\right)=1+2+3+4+1+2+3+4+5=25
\end{aligned}
$$

The transmission of the carpet $C p(5)$ is

$$
\begin{aligned}
& \sigma(C p(n))=\sum_{i=1}^{5} \sigma\left(v_{i}\right)+\sum_{i=1}^{5} \sigma\left(u_{i}\right) \\
& =\sigma\left(v_{1}\right)+\sigma\left(v_{2}\right)+\sigma\left(v_{3}\right)+\sigma\left(v_{4}\right)+\sigma\left(v_{5}\right)+\sigma\left(u_{1}\right)+\sigma\left(u_{2}\right)+\sigma\left(u_{3}\right) \\
& \quad+\sigma\left(u_{4}\right)+\sigma\left(u_{5}\right)
\end{aligned} \quad \begin{aligned}
& =25+19+17+19+25+25+19+17+19+25 \\
& =210
\end{aligned}
$$

Now the mean distance of the section carpet graph $C p(5)$ is
$\mu(C p(5))=\frac{\sigma(C p(5))}{2(5)[(2(5)-1)]}=\frac{210}{90}=\frac{3}{7}$.

And by using the theorem 3.1.2 directly we can find average distance easily

$$
\mu(C p(n))=\frac{n+2}{3} ; n=5
$$

$$
\mu(C p(n))=\frac{5+2}{3}=\frac{7}{3}
$$

### 3.2. Some Graphical properties of the special graph

3.2.1 Eulerian: The special graph is a not Eulerian graph, since the degree of vertices of $C p(n)$ are odd.
3.2.2 Hamiltonian: The special graph is a Hamiltonian graph, since the cycle $C_{n}$ passing through all vertices $C p(n)$.
3.2.3 Eccentricity: The Eccentricity of the special graph is $\mathcal{E}(C p(n))=n$.
3.2.4 Diameter: The Diameter of the special graph is $\operatorname{diam}(C p(n))=\max \mathcal{E}(C p(n))=n$.
3.2.5 Radius: The Radius of the special graph is
$\operatorname{rad}(C p(n))=\min \mathcal{E}(C p(n))$, if the number of vertices is odd so $\operatorname{rad}(C p(n))=\frac{n+1}{2}$, if the number of vertices is even so $\operatorname{rad}(C p(n))=\frac{n}{2}+1$.

## Bibliography

Ashay Dharwadker, Sariefuddin pirzada. 2011. Graph theory. USA: Createspace indepoendent publshing platform.

Behzad, and behzad Hartrand. 1977. Alavi, Yousef, M. Behzad, Linda M. Lesniak-Foster, and E. A. Nordhaus. "introduction about graph theory" Journal of Graph Theory 1, no. 2 (1977): 135140. Wiley Online Library.

Carlson, C. 2022. an introduction about average distanc of carpet graph. IEEE.
Chen, Wai-Kai. 1976. Applied graph theory. New york: North holland puplshing company Amesterdam .

Emmert-Streib, Frank. 2014. Quantitative Graph Theory: Mathematical Foundations. New York: CRC PRESS.

June, Held. 1991. contemporary Mathmatics. USA: Rohed island.
Lin, William E.Ryan and Shu. 2009. Channel cods classical and modern. Cambridge: Cambridge Univercity press.

Madhumangal, pal. 2021. Modern trends in fuzzy graph theory. ISBN.
Michael A.Henning, jan H.van vuuren. 2022. Graph and network theory . south aferica : springer international publshing .

Wallis, W.D. 2007. A beginner's Guide to graph theory. Berlin: Birkhauser Boston .

## چوخته:

لهم كارهدا تيَكِّای دوورى كرافيّكى تايبهات بـه ناوى (narpet graph) دهدوّزينهوه كه بهـ Cp $\mu(C p(n))=\frac{2 n^{2}+3 n-2}{3(2 n-1)} \quad$ for $n, m>1$

لـهگهل ديراسـهكردنى هـهنديّك تايبهتمـهندى ئهم گرافه تايبهتهامـان وهك دوّزينهوهى (نيوه تيره ،تيره ،نا ئويلهرى،هـاميلّتونىى).

