Ministry of Higher Education and Scientific research

Course Book of

Mechanics and Properties of Matter for

1st year Physics Students

Physics Department

College of Education

Salahaddin University-Erbil

Lecturer: Dr Rashad Hassan Mahmud

Academic Year: 2023/2024

Course Book

1. Course name	General Physics	
2. Lecturer in	Dr Rashad Hassan Mahmud	
charge		
3. Department/	Physics/ College of Education	
College		
4. Contact	e-mail: Rashad_862009@yahoo.com	
5. Time (in hours)	Practical: 3 = (3 Hours per week)	
per week		
6. Office hours	I will be available weekly from Sunday to	
	Wednesday during 8:30 am to 1:00 pm.	
7. Course code	N/A	
8. Teacher's	I was born in Erbil-Kurdistan, in 1986. I received	
academic profile	the B.Sc. degree (First Class) in Physics from	
1	Salahaddin University-Erbil, in 2007, the MSc.	
	degree (first class) in Electromagnetics from	
	Salahaddin University-Erbil, in 2010, and the Ph.D.	
	degree in microwave engineering from the	
	University of Birmingham, Edgbaston,	
	Birmingham, U.K., in 2016. My doctoral research	
	concerned Micromachined terahertz waveguide	
	circuits Such as antennas and filters. Also, part of	
	components integration. In 2007 L became an	
	components integration. In 2007, I became an	
	where I worked in the Electronic advanced	
	electricity and magnetism and Mechanics Labs	
	Shortly after I joined the physics department I	
	Started my master and then became the decider	
	of the department. Now, I am a lecturer in physics	
	department and have been teaching Nuclear lab.	
	and Mechanics and Properties of Matter.	

9. Keywords

10. Course overview:

The importance of general physics or (Mechanics and Properties of Matter) is to let students have comprehensive view on mechanics of objects in the real word, and the nature of material when acted by external forces. Also, This module demonstrates the mechanics of the objects and implantation of Newton's laws in a way that is relevant to our daily life. Students, after passing this module, will be able to talk about the quantities physically, and will have physical explanation to the phenomena relevant to this module.

11. Course objective:

The aim of this module is to provide students with

- Good understanding on Mechanics and its role in our daily life.
- Good Understanding on Properties of Matter.
- Discussing the fundamental laws in Mechanics.

To understand the natural and artificial behaviour of materials once acted by an external force, and explain, how do they react?

12. Student's obligation

Students are required to attend the class on time weekly as scheduled. If a student has a legitimate reason for being excused early from class, then he/she should discuss this with me before the class. Cell phones may not be used during class (no texting) and should be silent. Laptops may not be used for anything other than taking notes. It is important that you refrain from excessive talking during lecture as a courtesy to your fellow students. Students will be divided to three groups and each group will have a leader. At the end of any lecturer, home works will be given to them and they should solve it in a group. Homework solutions will be collected one week before the monthly exams. That will take 5 marks. Also, quiz will be undertaken in the class without the students being informed. This is to encourage students to review the lectures we will have in the class.

13. Forms of teaching:

Different forms of teaching will be used to come across with objectives of the course. Power point presentations for the head titles, definitions, graphs and many useful illustrations with summary at the end of each chapter will be presented and discussed. The power point will contain information about new topics and unsolved examples, and then whiteboard will be used to solve them and to let students to see the solutions. There will be also classroom discussions and the lecture will cover enough information about the

Ministry of Higher Education and Scientific research

description of the subjects, solution of many examples, analysis and derivation for all necessary equations and proving theorems and many problems are presented as a home work for improving student abilities.

14. Assessment scheme

The maximum mark of this module is (100%). The grading system is based on the summation of two categories of evaluations: the evaluation depends on four ways. Firstly, students have to take four exams; each exam will be on 30 marks. Secondly, solving home works will take 7 marks. Thirdly, quizzes taken in the class will be on 3 marks. Finally, (60%) of the mark is based on final examination that is comprehensive for the whole of the study material reviewed during the academic year and it will be on June.

15. Student learning outcome:

After successful completion of the module, the students should have:

- Understanding the fundamentals Mechanics and Properties of Matter.
- Understanding the Essential Units system.
- Understanding Motions in one and two-dimensions.
- Understanding Newton's Laws and their applications.
- Learning the concepts of work, energy, momentum, power, gravity.
- Learning the foundation of materials and understanding their properties.

After successful completion of the module, the students should also be able to:

- Know the units of essential physical quantities.
- Know the physical meaning of motion in different coordinates.
- Understand the Newton's laws for motion.
- Realise the basic properties of materials

Students are prepared to become school teachers at secondary or preparatory.

16. Course Reading List and References:			
Textbook: "Fundamentals of physics", 2008, by Jearl Walker, 8th edition, The			
John Wiley & Sons, Inc.			
Other References:			
1- D.S MATHUR- ELEMENTS OF PROPERTIES	OF MATTER : S.CHAND AND CO.		
(2006)			
2- BRIJ LAL AND N. SUBRAHMANYAM- PROPERTIES OF MATTER: - S.CHAND			
AND CO. (2003)			
3- Any other Physics textbook published in 21st century.			
Note: The core materials of the course consist of the above book, articles			
from media and internet, and lecture's notes.			
	· ·		
17. The Topics:	Lecturer's name		
18. Practical Topics (If there is any)	Lecturer's name		
MECHANICS:	Dr Rashad H. Mahmud		
1- Units, Measurements, Vectors			
1. Basic Units	Weeks:		
2. Coordinate Systems	♦ Chapter 1 requires 3		
3. Vectors	weeks.		
4. Dimensional analysis	Chapter 2		
2- Motion in One Dimension	requires 2 weeks.		
1. Kinematics Description of Motion	Chapter 3 requires 2		
2. Velocity	weeks.		
3. Uniform Acceleration	 Chapter 4 requires 3 		
4. Measuring g	weeks		
3- Motion in Two Dimensions	Chapter 5 requires 3		
1. Displacement in Two Dimensions	Chapter 6 requires 3		
2. Velocity, Position, and Acceleration	* Chapter o requires 5		
3. Motion of the Centre of Mass	Chapter 7 requires 2		
4. Central Forces	weeks		
5. Deformation by Central Forces	 Chapter 8 requires 2 		
6. Centrifugal Escape	weeks		
7. Projectile Motion	Exams requires 4		
- Newton's First Law	weeks		
- Newton's Second Law			
- Newlon's Innu Law			
- Applications of Newton's Laws			

Ministry of Higher Education and Scientific research

2. Friction		
4- Work and Energy		
1. Work		
2. Simple Machines		
3. Non-Conservative Forces		
4. Conservation of Energy		
5. Mechanical Power		
5- Linear Momentum and Collisions		
1. Impulse and Thrust		
2. Conservation of Linear Momentum		
3. Mass and Momentum Transfer		
4. Rockets		
5. Collisions in One Dimension		
6. Collisions in Two Dimensions		
6- Rotational Dynamics		
1. Moment of Inertia		
2. Rotational Energy		
3. Transfer of Angular Momentum		
4. Conservation of Angular Momentum		
5. Rotational Stability		
7- Gravity		
1. Universal Gravitational Constant		
2. Orbits		
19. Examinations:		
20. Extra notes:		

پيداچوونموهى هاوهڵ