Electrochemistry

References

- 1- Fundamental physical chemistry , by Maron and Lando .
- 2- physical chemistry , 5th Edition by Iran . Levin .
- 3-Physical Chemistry ,6th Edition , By Atkins .
- 4- Modern Electrochemistry ,By John Bockris & Amulya Reddy .
- 5- physical chemistry, By
 - Gorden M. & Barrow .
- 6- Physical chemistry , By Robert A. Alberty

Syllabus of Electrochemistry

1.Introduction about electrochemistry science.

2.Faraday's Laws.

3.Applications of Faraday's Laws.

4.Electrical conductance, Resistance, specific resistance, specific conductance, molar and equivalent conductance, cell constant, and solvent correction.

5. Conductivity Measurement.

6.Applications of conductance (Debye-Huckel-Onsagar equation, Kohlrausch Law, Ostwald dilution Law, Determine the hydrolysis constant for salt, and Conductometric titration.

7.Debye- Huckel theory.

8. Migration of ions towards the electrodes.

9. Hittorf's method, and transport number of ions.

10.Electrochemical cell and electrolytic cell.

11.Electromotive force (EMF).

12.Type of electrodes.

13- Thermodynamics and EMF .

14-Electrochemical cells .

15-Electrolysis and polarization .

16- Type of

17- Corrosion.

International system

Physical Quantity	Name of Unit	Unit Symbol	Unit Expressed In terms of Base Units
Force	Newton	Ν	m.Kg.s ⁻²
Energy	Joule	J	N.m or m ² .Kg.s ⁻²
Power	Watt	w	J.s ⁻¹
Quantity of electricity	Coulomb	с	A.s
Electromotive force	Volt	v	J.A ⁻¹ .s ⁻¹
Electro resistance	Ohm	Ω	V.A ⁻¹ or m².Kg.s ⁻³ .A ⁻²
Electric conductance	Siemens	s	Ω ⁻¹
Electrical capacitor	Farad	F	A.v ⁻¹ .s or
			m ⁻² .Kg ⁻¹ .s ⁴ .A ²
Current density	Current	i	A.cm ⁻²
Current	Amper	1	A

Why Study Electrochemistry?

- Batteries
- Corrosion
- Industrial production of chemicals such as Cl₂, NaOH, F₂ and 1
- Biological redox reactions

electrochemistry

Electrochemistry : is the branch of physical chemistry that concerns itself with the interrelation of chemical phenomena and electricity . It deals not only with the study of electrical properties of solutions of electrolytes, but also with the elucidation of the relation between chemical action and electricity in such systems . **Conductors** are the substances which allow the passage of electric current.

Non-conductors or **insulators** are the substances which don't allow the passage of electrical current through them. Examples are rubber, wax, wood.

Types of conductors

1. Metallic conductors.

There are metallic substances which allow the electricity to pass trough them without undergoing any chemical /physical change.

Eg: all metals, graphite, etc.

2. Electrolytes.

There are substances which allow the electricity to pass through them in their molten states or in the form of their aqueous solutions and undergo chemical decomposition.

- Electrolyte solutions and molten salts conduct electricity through the migration of ions.
- When the current is passed through an electrolyte solution decomposition and changes occur in the composition of electrolytes

Metallic conduction	Electrolytic conduction	
Metallic conduction is carried by the movement of electrons	Electrolytic conduction is carried by the movement of ions	
No change in the chemical properties of the conductor	It involves the decomposition of the electrolyte as a result of the chemical reaction	
It does not involve the transfer of any matter	It involves the transfer of matter as ions	
Metallic conduction decreases with increase in temperature	Electrolytic conduction increases with increase in temperature	

According to the Degree of dissociation (α) electrolytes can be classified into the following:

- strong electrolytes are compounds that dissociate to a large extent (α> 30%) into ions when dissolved in water. For example, HCl, H₂SO₄, HNO₃, HI, NaOH, KOH, KCl.
- *medium strong electrolytes* $\alpha = 2 30\%$. H₃PO₄, H₃PO₃.
- weak electrolytes are compounds that dissociate to only a small extent $\alpha < 2\%$. For example, NH₄OH, H₂S, HCN, H₂CO₃.
- *nonelectrolytes* $\alpha = 0$ are compounds that don't dissociate when dissolved in water.