

University of Salahaddin-Hawler

College of Education-Chemistry Department

Practical Inorganic Chemistry, Experiment 3

Prepared by: Dr. Rezan Ali Saleh

Phone number: 0750

College of Education-Chemistry Department

(rezan.saleh@su.edu.krd) 2024-2025

Experiment 3:

Preparation of Barium peroxide

Outline

- -Introduction
- -Steps for the preparation of Barium peroxide
- -Procedure
- -Calculation

Introduction

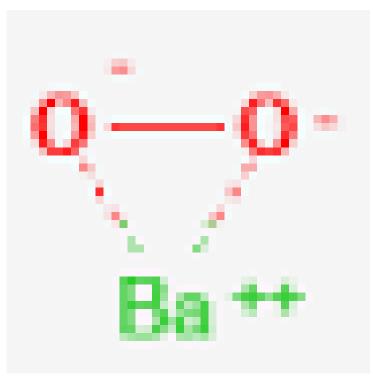
Barium peroxide is the inorganic compound with the formula BaO₂.

BaO₂ is white solid (grey when impure) is one of the most common inorganic peroxides.

Barium peroxide is an oxidizing agent which is used for **bleaching**. It is used in **firework** as an oxidizer and **pyrotechnic mixture**.

Introduction

The **stability** of peroxides MO₂ **increases** from **CaO₂ to BaO₂** because the 1. The centers of the charge can approach more closed.

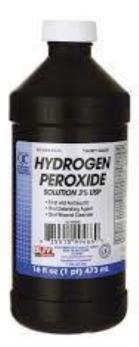

2. lattice energy increase from top to bottom because the size of the metal increase.

Be =
$$[He] 2S^2$$

$$Mg = [Ne] 3S^2$$

$$Ca = [Ar] 4S^2$$

$$Sr = [Kr] 5S^2$$


Why we must keep H₂O₂ in dark bottle????

Hydrogen peroxide must be kept in dark bottle and in the fridge, because when it exposed to light or heat it decomposes to water and oxygen gas.

$$2H_2O_2 \xrightarrow{\text{light}} 2H_2O + O_2$$

Steps for preparation of BaO₂

$$BaCO_{3} + 2HCI \longrightarrow BaCl_{2} + H_{2}CO_{3}$$

$$H_{2}CO_{3} \longrightarrow CO_{2} + H_{2}O$$

$$BaCl_{2} + 2NH_{4}OH \longrightarrow Ba(OH)_{2} + 2NH_{4}CI$$

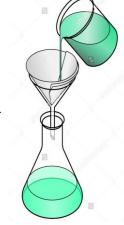
$$Ba(OH)_{2} + H_{2}O_{2} \longrightarrow BaO_{2} + 2H_{2}O$$

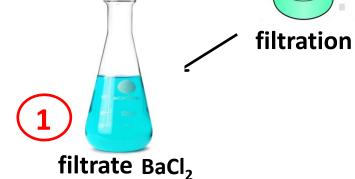
$$BaCO_3 + 2HCl + 2NH_4OH + H_2O_2 \longrightarrow CO_2 + BaO_2 + 2NH_4Cl + 3H_2O$$

Main reactions:

$$BaCO_3 + 2HCl \longrightarrow BaCl_2 + CO_2 + H_2O$$

 $2NH_4OH + H_2O_2 + BaCl_2 \longrightarrow BaO_2 + 2NH_4Cl + 2H_2O$


-Procedure



1.8 g BaCO₃

8 ml HCl (1:1)

Cool in ice bath(20 min.)

BaO₂ With stirring

 $7.5 \text{ ml H}_2\text{O}_2$ 3.7 ml NH₄OH (1:2)

- Calculation

Wt. theory:

BaCO ₃	BaCl ₂
M.Wt	M.Wt
1.8 g	X
V_	

X=

X=

 $\begin{array}{c|c} BaCl_2 & BaO_2 \\ \hline M.Wt & M.Wt \\ \dots & X \\ \end{array}$

% Error=

Pr. Wt. - Theo. Wt
Theo. Wt.

- Questions

- What is the application or usage of BaO2?
- -Why the stability of peroxides increase from top to bottom?
- -Why we must store hydrogen peroxide in dark bottle?
- -What is the role of using ammonium hydroxide solution in

the prep. Of BaO2?

Next Week

Experiment 7:

Preparation of Alum

- Questions

- Define Solubility Curve?

-What are the types of solubility curve?

