
Arrays

• M.Sc. Riyadh Seed Agid

• Salahaddin University – Erbil

• riyadh.agid@su.edu.krd

1

In many algorithms, data can be represented mathematically as a vector or a matrix.

Arrays in python

The basic object in NumPy is the array

An array is a systematic arrangement of objects (usually numbers) in rows and columns or it
is a list that contain mixed datatypes. An empty list can be utilized by [] and append
command can be used to merge data to the end of the list.

>>> import numpy as np

Create a 1-D array by passing a list into NumPy's array() function.
>>> np.array([8, 4, 6, 0, 2])
array([8, 4, 6, 0, 2])

The string representation has no commas or an array() label.
>>> x = np.array([1, 3, 5, 7, 9])
>>>print(x)
[1 3 5 7 9]

Example

1-D Arrays

2-D Arrays
These are often used to represent matrix or 2nd order tensors.
import numpy as np

>>> x = np.array([[1, 2, 3], [4, 5, 6]])

>>> print(x)
[[1 2 3]
[4 5 6]]

3-D arrays

import numpy as np

>>> x = np.array([[[1, 2, 3], [4, 5, 6]],[[1, 2, 3], [4, 5, 6]]])

>>> print(x)
[[[1 2 3]

[4 5 6]]

[[1 2 3]
[4 5 6]]]

Create a 3-D array with two 2-D arrays, both containing two arrays with the
values 1,2,3 and 4,5,6:

import numpy as np

a = np.array(42)
b = np.array([1, 2, 3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])

print(a.ndim)
print(b.ndim)
print(c.ndim)
print(d.ndim)

Result
0
1
2
3

Example

Check how many dimensions the arrays have:

>>>x = [‘‘python”,” programming”]
>>>x.append (“physics”)
>>>print x
[‘python’, ‘programming’,’physics’]

Example

Append a single element that will extend the list:

If you want to extend more than one element you should use
extend, because you can only append one element or one list of
element:

Example

>>> x = [1,2]
>>>x.extend ([3,4 5 ,6,7])
>>>print x
[1,2,3,4,5,6,7]

list

An array can be defined by one of the four procedures

1) arange

2) ones

3) zeros

4) linspace

The arguments of NumPy arange() that define the values
contained in the array correspond to the numeric parameters
start, stop, and step.

This is an array where each and every element is one.

This array contains nothing but zeros.

Numpy linspace function returns an evenly spaced sequence of
numbers for a given interval.

1) Arange works exactly the same as range, but produces an array instead of a list

Example
>>> import numpy as np

>>>np.arange(10,0,-2)
>>>print x
[10 8 6 4 2]

Start = 10

Stop = 0

Step = -2

In this example, start is 10. Therefore, the first element of the obtained array is 10.
step is -2, which is why your second value is 10-2, that is 8, while the third value in
the array is 8-2, which equals 6.

>>> import numpy as np

>>> np.arange(start=1, stop=10, step=3)
array([1, 4, 7])

NOTE: The value of stop is not included in an array.

2) Ones similarly creates an array of a certain size containing all ones.

Example

>>>x = ones(7)
>>>print x
[1. 1. 1. 1. 1. 1. 1.]

>>> x = zeros(4)
>>>print x
[0. 0. 0. 0. 0.]

3) The zeros() function is used to get a new array of given shape and type,
filled with zeros .

>>> import numpy as np

>>> a = (3,2)
>>> np.zeros(a)
array([[0., 0.],
 [0., 0.],
 [0., 0.]])

Example: numpy.zeros() function

Rows Columns

4) linspace: linspace(start, stop, n=50)
Producing an array of n points evenly spaced between starting
point and the stop.

Example 1:

>>>np.linspace(2,3,5)

array([2, 2.25, 2.5, 2.75, 3.])

Start
Stop

Step

Example 2:

>>> np.linspace(2,3,5, endpoint=False)
array([2, 2.2, 2.4, 2.6, 2.8])

Example 3:

>>> np.linspace(2,3, 5, retstep=True)
(array([2,2.25,2.5,2.75,3],0.25)

NOTE: The value of stop is included in an array.

Note: In general, we will select start point < stop so we can get an array where

the entries are increasing in value. On the other hand, you can choose start =

stop (to obtain an array with every value equal) or start > stop (to display an

array with values decrease).

Example :
>>> np.linspace(2, 2, 5)
>>>array([2, 2, 2, 2, 2])

Example :
>>> np.linspace (3, 2, 5)
>>> array([3. 2.75 2.5 2.25 2])

Example :

>>> np.linspace(2,10,4)
array([2. , 4.66666667, 7.33333333, 10.])

An arrays in general are the main structure used in NumPy. Therefore all of the
array manipulations and creations techniques that are available here are contained in
the NumPy package.

I= [a, b, c, d, ….] defines list, I, of numbers.
x= array([a, b, c, d,….]) defines an array, x

To produce an array of float numbers just we need to add float to the end.
x= array([a, b, c, d, ….], dtype=float)

Example 1:
>>> x=array([1,2,3,4,5])
>>> print x
[1 2 3 4 5]

Example 2:
>>> x= array ([1, 2, 3, 4, 5], dtype = float)
>>> print x
[1. 2. 3. 4. 5.]

Operations with array
The calculation technique that we introduced in the last week can be applied on
array as well. Every week we will be understanding an extra methods of
manipulating and calculating with arrays so it is important to be compatible with
the basic ideas. For now, we will just regard an array as a list of
numbers. Afterward, we will see how the methods we introduce here can be
applied to vector calculations, making graphs, and analysing our experimental
data.

Lets start with these two arrays

>>> x= array([2, 1, 3, 5, 4], dtype= float)
>>> y= array([3, 1, 6, 2, 7], dtype= float)

1-Addition and subtraction of a constant.
>>> z =x+5

>>>print z
[7. 6. 8. 10. 9.]
>>> z= y-2
>>>print z
[1. -1. 4. 0. 5.]

2- Addition and subtraction of arrays

>>> z= x+y
>>> print (z)
[5. 2. 9. 7. 11.]
>>> z=x-y
>>>print (z)
[-1. 0. -3. 3. -3.]

*Important note: In case of arrays operation of different shapes or sizes, you will see
the error message ValueError: shape mismatch: objects cannot be broadcast to a
single shape.

Example

>>>x= array([1,3,5,6])
>>>y= array([0,1, 2])
>>> z= x+y This will not work

3-Multiplication and division by a constant
It is also possible to multiply or divide an array by a constant. This multiplies or
divides each element in the array by the specified value.

Example
>>> x= array([2, 1, 3, 5, 4], dtype= float)
>>> y= array([3, 1, 6, 2, 7], dtype= float)
>>> z=5*x
>>>print z
[10. 5. 15. 25. 20.]
>>> z= x/2.0

>>>print z
[1. 0.5 1.5 2.5 2.]

4- Multiplication and division of arrays

Multiplication and division between arrays is possible only if they have same lengths
Example

>>> z= x*y
>>>print z
[6. 1. 18. 10. 28]

Example

>>>z=x/y

>>>print z

[0.6666667 1. 0.5 2.5 0.57142857]

5- Power and roots
When we intend to raise an array x to the power n. Every element in the array is
raised to the same specified power.

Example
Let
>>>i= array([2,3,4])
>>>j= i**2
>>>print j
array([4,9,16])

>>>sqrt(i)
array([1.414, 1.732 2.])

Vector algebra
Some of the operations that we introduced in the previous sections are
also applicable to vectors (such as addition and subtraction).

>>> a = array([1, 3, 5], dtype =float)

>>> b = array([4, 2, 6], dtype=float)

We can introduce 3D vector for each as

a = i+3j+5k

b = 4i+2j+6k

Addition and subtraction of vectors can be done :

c = a+b

c = a-b

Also we can change or re-scale a vector if we multiply it by a constant
such as:

c = 5.3*a

Dot and cross product of vectors

There are functions in NumPy ready to find out the dot and cross products between
vectors. If a and b are two vectors, then the dot and cross products denoted in
python as dot(a,b) and cross (a,b).

Example

>>>dot (a,b)

40.0

>>> cross(a,b)

array([8., 14., -10.])

Also the value (magnitude) of a vector can be obtained (which is the square root of
the sum of the squares of each element) by:

>>>linalg.norm(a)
5.916

