
M.Sc. Riyadh Seed Agid

Salahaddin University – Erbil

riyadh.agid@su.edu.krd

1

Basic Math

Python is a basic calculator out of the box. Here we consider the most basic mathematical operations: addition,

subtraction, multiplication, division and exponentiation. We use the function: print to get the output. For now

we consider integers and float numbers. An integer is a plain number like 0, 10, or -2345. A float number has a

decimal in it. The following are all floats: 1.0, -9., and 3.56.

Note the trailing zero is not required, although it is good style.

>>> print 2 + 4
6 #result

>>> print 8.1 -5
3.0999999999999996 # result

Example
Addition & subtraction :

2

Multiplication is equally straightforward
>>> print 5 * 4
20

>>> print 3.1 * 2
6.2

Basic Math

Division is almost as straightforward, but we have to remember that integer division is not the
same as float division. Let us consider float division first.

>>> print 4.0/2.0
2.0

>>> print 1.0/3.1
0.322580645161

3

#Now, consider the integer versions:
>>> print 4/2
2
>>> print 1/3
0
The first result is probably what you expected, but the second may come as a surprise. In integer division
the remainder is discarded, and the result is an integer.

Basic Math

Exponentiation is also a basic math operation that python supports
directly.
>>>print 3.**2
9.0
>>>print 3**2
9
>>>print 2**0.5
1.41421356237
Other types of mathematical operations require us to import
functionality from python libraries.

>>> x = 3.
>>> y = 2
>>> Print(x**y) #same as 3.*3
9.0

4

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

Python Arithmetic Operators

5

Modulus %

>>> x = 5
>>> y = 2

>>> print(x % y)
1 #reminder

floor division //
x = 15
y = 2

print(x // y)
7
#the floor division // rounds the result down to the nearest whole
number

6

Python Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

7

>>> x = 6
>>> y = 3
>>> print(x == y) #?
False # returns False because 6 is not equal to 3

>>> x = 5
>>> y = 3

>>> print(x >= y)

True # returns True because five is greater, or equal, to 3

>>> x = 5
>>> y = 3

>>> print(x > y)

True = # returns True because 5 is greater than 3

8

Advanced Mathematical Operators

>>> import numpy as np
>>> print np.sqrt(2)
1.41421356237

The primary library we will consider is module: numpy, which provides many mathematical functions,
statistics as well as support for linear algebra. We begin with the simplest functions.

#Here is the exponential function.
>>> import numpy as np
>>> print np.exp(1)
2.71828182846

9

Advanced Mathematical Operators

>>> import numpy as np

>>> np.log(10)

2.302585092994046

There are two logarithmic functions commonly used, the natural log function: numpy.log

and the base10 logarithm function:numpy.log10.

>>> print np.log10(10)
1.0

10

Truth Testing

You can test if one value is equal to another by typing
>>> 4==5 #Equal ??
This will return "False" as the numbers are not equal.
You can also use inequalities to test a value:

>>> 4<5 #Less than
True
>>> 4<=5 #Less than or equal to
True
>>> 4>4 #Greater than
False
>>> 4>=4 #Greater than or equal to
True

Notice that the "=" sign in greater than or equal to and less than or equal to always comes second, "=<" will
not work.

Advanced Mathematical Operators

11

#There are two methods to raise a number x to the power n, use ** or the function pow(x,n)

>>> 3**2

Advanced Mathematical Operators

You can use fractional powers in exactly the same way, for example
>>> 9**(1./2)
>>> np.pow(9, 1./2)
>>> 9**0.5
These should both give an answer of 3.0.

>>> np.pow(3, 2)
These should both give the same answer of 9.

np.pow(Base, power)

12

However,

>>> 9**1./2

will not. In this case you are calculating half of 9.

Very large or very small numbers are often written in scientific notation, ie. 2.5 x 106. In

Python you can do this in two ways. Either using normal powers:

>>> 2.5*10**6

Or using e, which represents the "times ten to the power of" part:

>>> 2.5e6

Advanced Mathematical Operators

13

Python can handle trigonometry in much the same way as your calculator.

Note that by default, it works in radians! So

>>> np.sin(30)

does not give 0.5 as you might expect. Looking at the variable explorer, you see that pi is
already defined so you can do

>>> np.sin(pi/6)

Note that this doesn't give exactly 0.5 but, as with the exponential calculation before, the
difference is tiny and will generally not affect the results of any calculation you are doing.

Advanced Mathematical Operators

14

15

