

Department of Physics College of Science University of Salahaddin

Subject: Practical Physics (Nuclear Physics Lab)

Academic Year: 2022/2023

Subject: Nuclar Lab.

Course Book – (Year 3 - Medical)

1.Lecturer's name:Dr. Mohammed Issa Hussein

Email: Mohmmed.lssa@su.edu.krd

2. Instructor: assit.Lecturer: Rozhan Dilshad Haider

Email: rozhan.haider@su.edu.krd

Course Book

1. Course name	Nuclar Lab.	
2. Lecturer in charge	Rozhan Dilshad Haider	
3. Department/ College	Physics-General / Science	
4. Contact	e-mail:Rozhan.haider@su.edu.krd	
	Tel:07504729809	
5. Time (in hours) per week	Laboratory: Monday 8:30 – 4:30 am,	

6. Office hours	4			
7. Course code				
8. Teacher's academic profile		with the acceptance in the B.Sc. rgraduate student in Physics I finished the following		
	Education:			
	B.Sc, 2007 Physics- College of Science			
	M.Sc.2009 Nuclear reaction			
	As I awards my first Academ Academic titles attained:	nic title in 1993 and later on		
	Academic title	Date of attainment		
	Assistant Lecturer	2013		
	Lecturer	-		
	in my specialization through	a staff member giving lectures theoretical and practical ifferent undergraduate stages		
	Main Teaching Areas:			
	o Nuclear lab			
	 General physics 			
	 Mechanics and Properties of 	f matter		
	o Academic skill			
	o Environmental Radiation			
	 General physics lab. 			
	o Atomic lab.			
9. Keywords	nuclear Physics. These include nu	ntroduction to some basic concepts in clear properties; Energy calibration of e; nuclear models; detector; nuclear		

11. Course objective:

To introduce the principle of nuclear instrumentation and electronics that helps the student to understand the theoretical ideas given within the theoretical lectures. Throughout the experiments several fundamental applications of nuclear science becomes familiar to the students, the

applications extends from the detection of nuclear radiations, types of nuclear detectors, nuclear electronics, gamma ray spectrometry, toward industrial applications of nuclear science. Within the first week of Lab. study the student will become aware about the safe usage and treatment with the available radioactive sources and know how to use shielding and precautions during doing the experiments inside the lab.

12. Student's obligation

The class attendance on time is the first obligation of the student. The lab. as a whole accommodates seven experiments per a week, since each group consists of at least 14 students, then every two student make one experiment altogether in one week. In this manner the student will complete the experiments cyclically in the course. For each performed experiment the student should prepare a scientific report given to the staff in the next week. The student will asks to make at least one seminar relevant to the nuclear laboratory experiments in which all the students will participate in the discussions and evaluations.

13. Forms of teaching

In Nuclear laboratory, the staff members of within the first week will explain the outlines of the lab. and all experiments as well as the regulation and policies to be followed by the student inside the lab. to perform the experiment safely. The lab. as a whole accommodates seven experiments per a week, since each group consists of at least 14 students, then every two student make one experiment altogether in one week. In this manner the student will complete the experiments cyclically in the course. For each performed experiment the student should prepare a scientific report given to the staff in the next week. The student will asks to make at least one seminar relevant to the nuclear laboratory experiments in which all the students will participate in the discussions and evaluations.

14. Assessment scheme

Grade

- 1- 10 % (reports and quizzes)
- 2- 10 % examination
- 3- Final examination 30 %

15. Student learning outcome:

Nuclear physics or what well know condensed matter plays a very important role in the Physics field, during the years I teaching nuclear physics, I have notices that students generally find it easier to learn its underlying ideas than to handle the practical aspects of the formalism. On completion successful students will be able to:

- 1. Identify the properties of the nuclear radiation and how can deal with it.
- 2. measure nuclear radiation by different type of detectors.

The direct application of nuclear physics have a major overlap with the priorities of the nation: improvement in human health, the environment, the efficiency of industrial process, energy production, the exploration of space, and national security. Beyond these direct application is the general benefit that rises from pressing forward the frontiers of high technology development.

Some of the most pervasive application of nuclear radiation in medicine .medical imaging techniques now widely used, such as positron emission tomography(PET) and nuclear magnetic resonance imaging (MRI), provide information in three dimensions about the structure and biochemical activity of the human interior. Radioactivity isotopes produced by accelerators and reactors are routinely used in medical diagnostic procedures, in treatment, and medical research. Cancer radiation therapy mainly uses electron accelerators and radioactive sources.

پر کردنه وهی ئهم خانه یه زور گرنگه، ماموّستا دهرئه نجامه کانی فیّربوون دهنووسیّت. بّو نموونه: پُروونی ئامانجه سهره کیه کانی کوّرسه که رابه ته که بور خویندکار کوّرسه که (بابه ته که) بور خویندکار

رو د مرجه د مرجه کورسهکه به پێويستی دهرهوه و باز اړی کار گونجاندنی ناوه پ وکی کورسهکه به پێويستی دهرهوه و باز اړی کار قوتابی چی نوێ فێردهبێت له ړێگهی پێدانی ئهم کورسهوه؟

16. Readings:

- 1. K. Mahesh and S.M. Mustafa, "Nuclear Radiation, Detectors and Experiments", Mosul-Iraq (1976).
- 2. E.B. Podgorsak (Technical editor), Radiation Oncology Physics,

IAEA, Austria, (2005).

3. 1. G. F. Knoll, Radiation Detection and Measurement, John Wiley and Sons, New York (1979).

17. The Topics:	Lecturer's name
Exp.No.1	Mohammed issa
	Rozhan Dilshad weeks (1)
Activity measurement of gamma –source	weeks (1)
(relative method)	
Exp. No. (2)	Mohammed issa
	Rozhan Dilshad
Verification of inverse square law for gamma-	weeks (2)
Ray	weeks (2)
Nay	
Exp.No. (3)	Mohammed issa
- (-)	Rozhan Dilshad
Absorption coefficient for γ-rays	
	weeks (3)
Exp.No. (4)	Mohammed issa
	Rozhan Dilshad
Determination of operating voltage for	wooks (4)
scintillation detector	weeks (4)
	Malana
Exp .No. (5)	Mohammed issa Rozhan Dilshad
Foundation of material height in a closed	
container.	weeks (5)

Exp.No.6	Mohammed issa Rozhan Dilshad
Counting statistics	
	weeks (6)
Exp.No. (7)	Mohammed issa Rozhan Dilshad
Determination of dead time (receiving time)	ROZIIdii Diisiidu
Determination of dead time (resolving time)	
of G.M counters by two –source method.	weeks (7)
Exp.No. (8)	Mohammed issa Rozhan Dilshad
Deflection of Beta-ray in Magnetic Fields	week (8)
18. Practical Topics (If there is any)	
In this section The lecturer shall write titles of all practical	
topics he/she is going to give during the term. This also	
includes a brief description of the objectives of each topic,	
date and time of the lecture	
19 Evaminations	

19. Examinations

20. Extra notes:

Here the lecturer shall write any note or comment that is not covered in this template and he/she wishes to enrich the course book with his/her valuable remarks.

21. Peer review

پيداچوونهوهي هاوهل

This course book has to be reviewed and signed by a peer. The peer approves the contents of your course book by writing few sentences in this section.

(A peer is person who has enough knowledge about the subject you are teaching, he/she has to be a professor, assistant professor, a lecturer or an expert in the field of your subject).

ئهم كۆرسبووكه دەبنىت لەلايەن ھاوەلنىكى ئەكادىمىيەو سەيىر بكرنىت و ناوەرۆكى بابەتەكانى كۆرسەكە پەسەند بكات و جەند ووشەيەك بنووسنىت لەسەر شياوى ناوەرۆكى كۆرسەكە و واژووى لەسەر بكات. ھاوەل ئەو كەسەيەكە زانيارى ھەبنىت لەسەر كۆرسەكە و دەبيت پلەى زانستى لە مامۆستا كەمتر نەبنىت.

