Nuclear Physics $/ 3^{\text {rd }}$ Communication $/ 2^{\text {nd }}$ course

Q1/Determine the atomic mass and the mass excess of $\left({ }_{13}^{27} A l\right)$.
Q2/Calculate the mass defect for ${ }_{3}{ }^{7} \mathrm{Li}$. The mass of ${ }_{3}{ }^{7} \mathrm{Li}$ is 7.016003 amu .
Q3/ Determine the radii of a ${ }^{16} \mathrm{O}$ and a ${ }^{208} \mathrm{~Pb}$ nucleus.
Q4/ If the radius of a nucleus is given by $R=R o A^{1 / 3}$ with $R o=1.2 \mathrm{~F}$, what is the density of the nuclear matter (a) in $\mathrm{g} / \mathrm{cm} 3$, (b) in nucleons $/ \mathrm{F}^{3}$.
Q5/ Determine the approximate density of a nucleus, if the nucleus is treated as a uniform from sphere.
Q6/The actual atomic mass of ${ }_{20}^{40} \mathrm{Ca}$ is 39.96259 . find the binding energy of this nuclide, using 1.008665 amu for the mass of a neutron and 1.007825 amu for the mass of atomic hydrogen. also calculate the binding energy per nucleon.
Q7/Determine the total binding energy and the average binding energy of the element ${ }_{3}^{7} \mathrm{Li}$, if you know that each of quantities are in the amu, where $\mathrm{M}\left({ }_{3}^{7} \mathrm{Li}\right)=7.016004$ $\mathrm{amu}, \mathrm{Mn}=1.008665 \mathrm{amu} \mathrm{MH}=1.007825$.

Q8/Two isotopes of oxygen ${ }_{8}^{16} \mathrm{O}$ and ${ }_{8}^{18} \mathrm{O}$ having the atomic masses (15.990523 u) and (17.994768 u) respectively. What do you expect the relative abundance of two isotopes.
Q9/ According to single particle model (shell model),what is the spin and parity of the ground state of $19{ }^{39} \mathrm{~K}$ nucleus.
Q10/The atomic mass of Zinc isotope $\left.{ }_{30}^{64} \mathrm{Zn}\right)$ is (63.929 u). Compare binding energy between classical and liquid empirical mass formula.
$(\mathrm{mp}=1.007825 \mathrm{u}, \mathrm{mn}=1.007825 \mathrm{u}, \mathrm{av}=14.1, \mathrm{as}=13, \mathrm{ac}=0.595, \mathrm{aa}=19, \mathrm{ap}=33.5)$
Q11/ Determine the ground state angular momentum of

$$
{ }_{8}^{16} \mathrm{O},{ }_{8}^{15} \mathrm{O},{ }_{10}^{20} \mathrm{~N},{ }_{7}^{14} \mathrm{~N}
$$

Q12/ what will be the mass of a(10 curi) sample of (Co-60) given that its half life is (5.26 year).
Q13/A certain radioactive substance has a decay constant ($1.44 \times 10^{-3} \mathrm{yr}$), in what time will (75%) of the initial number of atoms disintegration.
Q14/ What is activity of one gram (Ra-226) whose half live is 1622 year.
Q15/ What is the mass sample of C-14 ($\mathrm{t} 1 / 2=5570 \mathrm{yr}$) that has on activity of 5 Ci ?

Q16/ What is the activity of $5 \times 10^{-7} \mathrm{Kg}$ of (U-230) whose half life is (0.18 $\times 10^{4} \mathrm{Sec}$)?

Q17/ How much time required for amount of $\operatorname{Sr}-19(t=28 y r)$ to be reduced by 75% ?

