Ministry of Higher Education and Scientific research

- Department of ... Physics.....
- College ofEducation.....
- University ofSalahaddin.....
- SubjectSolid State Physics
- **Course Book For Fourth Years Students**
- Lecturer's name -Asst.Prof.Dr.saeed O. Ibrahim
- **Academic Year: 2022/2023**

Course Book

1. Course name	Solid State Physics		
2. Lecturer in charge	Asst.Prof.Dr. Saeed O. Ibrahim		
3. Department/ College	Physics Dept./ College of Education		
4. Contact	e-mail: Saeed.Ibrahin@su.edu.krd		
	Mobil No. +9647504671843		
5. Time (in hours) per week	Theory: 3 Hours		
	Practical: 0		
6. Office hours	2 Hours/Week		
7. Course code			
8. Teacher's academic	1-B. Sc. – Complete	My research area is in	
profile	B.Sc.Physics,	Theoretical Physics,	
	Department of Physics	Specially in High	
	Collegeof	Temperature	
	Coince University of	Superconducting	
	Science, University Of	Materials and	
	Sulaimanyan,Iraq,	recently in	
	26/6/1977.	Nanomaterials	
		Nanomateriais	
	2- Master – Complete		
	M.Sc. In Nuclear		
	Physics, Department of		
	Physics		
	Collogo of Science		
	College of Science,		
	Sulaimanyah University,		
	Iraq 1980.		
	3- PhD - PhD Awarded		
	Ph.D. In Theoretical		
	physics, Univ. of Al-		
	Mustansirvia		
	1003 $10/2000$		
	11aq 18/10/2000.		
9. Keywords	Solid State Physics, Crystallogr	aphy. Crystal Structures	
	Braggs Diffraction		
10. Course overview:			
- The course gives an introduction to solid state physics, and will enable			

the student to employ classical and quantum mechanical theories needed to

Ministry of Higher Education and Scientific research

understand the physical properties of solids. Emphasis is put on building models able to explain several different phenomena in the solid state.

- The Principle objectives for this course are for you to learn the fundamental concepts, and theories of **Solid State Physics** and to develop the ability to solve problems. Compared with your previous physics course, you may find that concepts have a greater emphasis.

Here. Lectures are structured to help you understand the conceptual

Basis of Solid State Physics and examples are designed to re-enforce

- Principles of Solid State Physics presents a unified treatment of the basic models used to describe the solid state phenomena.

-A goal of Solid State Physics is to try to **understand how the macroscopic properties of solids result from their microscopic, atomic scale properties**. So, Solid State Physics forms the theorectical basis of Materials Science. ... "Solid State Physics" is a very large, very broad physics sub-field!

Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy.

This should not be less than 200 words

11. Course objective:

____The course **gives an introduction to solid state physics**, and wil enable the student to employ classical and quantum mechanical theories needed to understand the physical properties of solids. ... The course gives an introduction to the physics of the solid state.

12. Student's obligation

Event beyond your control may cause you to miss a class, homework due to date, or an exam. Examples of such events include a documented illness and a family crisis. In such case, its best to inform the **Heat of Dept.** will then inform all your instructors that you face a situation that requires you to miss class, and you are granted an excused absence. Its then your responsibility to contact each of your instructors after you recover from your illness or return

to campus. In the event of a missed exam. Due to an excused absence, you are required to take a make-up exam. If a homework due date is missed as a result of an excused absence, the due date will be extended.

13. Forms of teaching

The course gives an introduction to **Solid State Physics**, and will enable the student to employ classical and quantum mechanical theories needed to understand the physical properties of solids. Emphasis is put on building models able to explain several different phenomena in the solid state.

The course conveys an understanding of how **solid state physics** has contributed to the existence of a number of important technological d In order for the students to understand the content of the interview.

The presentation must be presented using different means such as the use of PowerPoint, blackboard and other means of illustration developments of importance in our lives now and in the future.

14. Assessment scheme

Your grade for the course will be based on your performance on graded **homework**, **surprise quiz**, and on the **midterm** and **final** examination.

The weight attributed to each of the course has the following;

Graded homework 5%

Quiz 5%

Midterm Examination 30%

Final Examination 60%

15. Student learning outcome:

The Principle objectives for this course are for you to learn the fundamental concepts, and theories of **Solid State Physics** and to develop the

ability to solve problems. Compared with your previous physics course, you may find that concepts have a greater emphasis

Here. Lectures are structured to help you understand the conceptual

Basis of **Solid State Physics** and examples are designed to re-enforce

those concepts.

16. Course Reading List and References:

- 1 Introduction to Solid State Physics, By C. Kittel (sixth Edition)
- 2- Solid State Physics, By Blackmore
- 3- Elementary Solid State Physics, By M. Ali Omer

17. The Topics:	Lecturer's name
Lecture One:	Lecturer's name
Introduction:	Solid State Physics
Solids	(3 hrs)/ week
Amorphous and Crystalline Materials	
Crystal Structure	ex: 23/8/2022
Periodic Array of Atoms	
Lattice Translation Vectors	
Bass and the Crystal Structure	
The Crystal Lattice	
Fundamental Types of Lattice	
Two-Dimensional Lattice Types	
Three- Dimensional Lattice Types	
Lattice with a Basis	
Unit cells	
Primitive and Non-Primitive Unit Cells	
Symmetry and Symmetry Elements	
Crystal Plane and Miller Indices	
Lecture Two:	
Wave Diffraction And The Reciprocal Lattice	
Reciprocal Lattice	
Brillouin Zones	
Diffraction Of X-Rays by Crystals	
Single crystal and Powder Method	
Braggs Law	
Reciprocal Lattice vectors	
Diffraction Conditions, Laue Condition, Ewald Construction	
Atomic and Geometrical Factor	

Simple Numerical Problem on SC. BCC, FCC.			
Lecture Three;			
Elementary Lattice Dynamics:			
Lattice Vibration and Phonons			
Linear Monatomic and Diatomic Chains			
Acoustical and Optical Phonons			
Qualitative Description of the Phonon Spectrum in Solids			
Group Velocity			
Long wave length Limit			
Quantization of Elastic Waves			
Phonon Momentum			
Inelastic Scattering by Phonon			
Lecture Four:			
18. Practical Topics (If there is any)			
No Practices Topics			
19. Examinations:			
1. Compositional: In this type of exam the questions usually starts with Explain how,			

What are the reasons for...?, Why...?, How....? With their typical answers Examples should be provided

2. True or false type of exams:

In this type of exam a short sentence about a specific subject will be provided, and then students will comment on the trueness or falseness of this particular sentence. Examples should be provided

3. Multiple choices:

In this type of exam there will be a number of phrases next or below a statement, students will match the correct phrase. Examples should be provided.

20. Extra notes:

There are some notes that must be given to students and alert them to follow daily lessons and the use of scientific references in addition to interest in daily duties

21. Peer review Asst. Prof. Dr. Saeed Omer Ibrahim The Lecturer