University of Salahaddin - Erbil College of Science Physics Department

Laboratory Manual

Electricity and Magnetism

2nd Course

Assist. Lecturer. Safa Gh. Hameed
Safa.hameed@su.edu.krd
1 Year-Physics 2022-2023

Impedance \mathbf{Z}

 is how much the circuit impedes the flow of charge. It is like resistance, but it also takes into account the effects of capacitance and inductance. Impedance is measured in ohms (ohm).Impedance can be split into two parts:
$>$ Resistance R (the part which is constant regardless of frequency)
$>$ Reactance X (the part which varies with frequency due to capacitance and

Impedance, $Z=\sqrt{\mathbf{R}^{2}+\mathrm{X}^{2}}$ inductance).

The opposition to current flow through a passive component in an AC circuit is called: resistance, R for a resistor, capacitive reactance, $X C$ for a capacitor and inductive reactance, XL for an inductor. The combination of resistance and reactance is called Impedance.

The capacitance reactance of the AC circuit can be represented as :

$$
\text { Capacitive Reactance, } \mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}
$$

$$
\begin{aligned}
& X_{c}=\frac{1}{\omega C} \quad X_{C}=\frac{1}{\omega_{d} C} \\
& X_{c}=\frac{1}{2 \pi f C} \quad(\text { As } \omega C=2 \pi f C)
\end{aligned}
$$

(capacitive reactance).

$$
V_{C}=I_{C} X_{C}
$$

(capacitor).

Where, $\omega=$ Angular Frequency

$$
f=\text { Frequency }
$$

$$
C=\text { Capacitance Value of Capacitor }
$$

X_{C} is called the capacitive reactance of a capacitor. The SI unit of X_{C} is the ohm, just as for resistance \boldsymbol{R}.

AC Circuit

RL
RC
CL

Impedance Z

Series AC Circuits

Passive components in AC circuits can be connected together in series combinations to form RC, RL and LC circuits as shown.

Series RL Circuit

Parallel AC Circuits

Passive components in AC circuits can be connected together in Parallel combinations to form RC, RL and LC circuits as shown.

Parallel RC Circuit

Parallel RL Circuit

RLC Circuits

All three passive component in AC circuits can also be connected together in series combinations as shown below .

KVL: $V_{S}-V_{R}-V_{L}-V_{C}=0$
Series RLC Circuit

$$
\begin{aligned}
& V_{S}-I R-L \frac{d i}{d t}-\frac{Q}{C}=0 \\
& \therefore V_{S}=I R+L \frac{d i}{d t}+\frac{Q}{C}
\end{aligned}
$$

$$
\begin{aligned}
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& V_{S}=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}} \\
& I_{S}=\frac{V_{S}}{Z}=\frac{V_{S}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}} \\
& I_{S}=I_{R}=I_{L}=I_{C}
\end{aligned}
$$

The impedance Z of a series RLC circuit depends

 upon the angular frequency, ω as do $X L$ and $X C$* If the capacitive reactance is greater than the inductive reactance, $X_{C}>X_{L}$ then the overall circuit reactance is capacitive .
* if the inductive reactance is greater than the capacitive reactance, $X_{L}>X_{C}$ then the overall
 circuit reactance is inductive .
* If the two reactance's are the same and $X_{L}=X_{C}$

$$
Z=\sqrt{R^{2}+\left(X_{C}-X_{l}\right)^{2}}
$$

then the angular frequency at which this occurs is called the resonant frequency and produces the effect of resonance .

Series RLC Circuit

Firstly, let us define what we already know about series RLC circuits.

- Inductive reactance: $\quad X_{L}=2 \pi f \mathrm{~L}=\omega \mathrm{L}$
- Capacitive reactance : $\quad X_{C}=\frac{1}{2 \pi f C}=\frac{1}{\omega C}$
- When $X_{L}>X_{C}$ the circuit is Inductive
- When $X_{C}>X_{L}$ the circuit is Capacitive
- Total circuit reactance $=X_{T}=X_{L}-X_{C}$ or $X_{C}-X_{L}$
- Total circuit impedance $=Z=\sqrt{R^{2}+X_{T}^{2}}=R+j X$

Series Resonance Frequency

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}} \quad \Rightarrow \quad 2 \pi f \mathrm{~L}=\frac{1}{2 \pi f \mathrm{C}} \\
& f^{2}=\frac{1}{2 \pi \mathrm{~L} \times 2 \pi \mathrm{C}}=\frac{1}{4 \pi^{2} \mathrm{LC}} \\
& f=\sqrt{\frac{1}{4 \pi^{2} \mathrm{LC}}} \\
& \therefore f_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}(\mathrm{~Hz}) \quad \text { or } \quad \omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{LC}}}(\text { rads })
\end{aligned}
$$

Series Circuit Current at Resonance

Bandwidth of a Series Resonance Circuit

$E=m c^{2}$

 -
 Series RLC resonance firequency

1). Resonant Frequency, (f_{r})

$$
\begin{gathered}
x_{L}=x_{C} \quad \Rightarrow \quad \omega_{r} L-\frac{1}{\omega_{r} C}=0 \\
\omega_{r}^{2}=\frac{1}{L C} \quad \therefore \quad \omega_{r}=\frac{1}{\sqrt{L C}}
\end{gathered}
$$

2). Current, (I)

$$
\begin{aligned}
& \text { at } \omega_{r} Z_{T}=\min , I_{S}=\max \\
& I_{\max }=\frac{V_{\max }}{Z}=\frac{V_{\max }}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=\frac{V_{\max }}{\sqrt{R^{2}+\left(\omega_{r} L-\frac{1}{\omega_{r} C}\right)^{2}}}
\end{aligned}
$$

3). Bandwidth, (BW)

$$
\mathrm{BW}=\frac{f_{r}}{Q}, \quad f_{H}-f_{\mathrm{L}}, \quad \frac{\mathrm{R}}{\mathrm{~L}} \text { (rads) or } \frac{\mathrm{R}}{2 \pi \mathrm{~L}}(\mathrm{~Hz})
$$

4). Quality Factor, (Q)

$$
Q=\frac{\omega_{r} L}{R}=\frac{X_{L}}{R}=\frac{1}{\omega_{r} C R}=\frac{X_{C}}{R}=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

the number of lines of force passing through a unit area of material, B. The unit of magnetic induction is the tesla (T).

$$
B_{E 1} \tan \theta=\frac{\mu_{\circ} \mathrm{I}}{2 \pi D}
$$

$$
\boldsymbol{D}=\frac{\mu_{\circ} \mathrm{I}}{2 \pi B_{E 2}} \cot \theta
$$

B_{E}

Circuit Element	Symbol	Current-Voltage Relationship in Time	Impedance
Resistor	${\underset{+}{1 \rightarrow}}_{W_{-}}^{-}$	$V=I R$	R
Capacitor	${ }_{+}^{+\rightarrow H_{-}}$	$I=c \frac{d V}{d t}$	$\frac{1}{j \omega \mathrm{C}}$
Inductor	$\xrightarrow{\rightarrow}$	$V=L \frac{d I}{d t}$	$j \omega \mathrm{~L}$

Page (2)

Introduction

Introduction

1 Marks

$>$ Definition one of the main device in the Exp. or the principle .
for example Exp. 1 (inductance)
$>$ Write Apparatus of the Exp. (exist on the sheet)
$>$ Plot the Circuit of EXP., for example Exp. (1)

Thanks

