University of Salahaddin – Erbil College of Science Physics Department

Laboratory Manual Electricity and Magnetism 1st Course

Assist. Lecturer. Safa Gh. Hameed

Safa.hameed@su.edu.krd

1Year - Physics 2023-2024

Experiment No. (1) Ohm's law

A// Ohm's law

$$slop = R = \frac{\Delta V}{\Delta I} = \frac{V_2 - V_1}{I_2 - I_1}$$

I/Amp

- 1. color bands from nearest edge from the left to right and record them .
- 2. band 1// only number the color from first columns
- 3. band 2 // only number the color from second columns
- 4. band 3// ten power number the color from third columns (multiplier by the first & second number)
- 5. band 4// only the tolerance value color from last columns

 $\underline{\hspace{1cm}}$ X $10^n \mp n\%$

n= mean the color

2nd 3rd 4th
1st band band band

Brown	Black	Black	Gold		
1	0	10 ⁰	∓5%		

R tolerance =
$$10 \times 10^0 \mp 5\% \Omega$$

R Tolerance value=
$$\frac{10*5}{100} = \mp 0.5 \Omega$$

R tolerance =
$$10 \pm 0.5 \Omega$$

R tolerance(-) = 10 -0.5 = 9.5
$$\Omega$$

R tolerance(
$$+$$
) = 10+0.5 = 10.5 Ω

R tolerance (9.5 , 10.5) Ω

C// Using Digital Multimeter

✓ by code

R tolerance (9.5, 10.5) Ω

✓ by multi meter

$$R = ?? \Omega$$

Error ratio (-) =
$$\left| \frac{\text{Rmulti-R tolerance}}{\text{Rmulti}} \right| \times 100\%$$

Error ratio (+) =
$$\left| \frac{\text{Rmulti-R tolerance}}{\text{Rmulti}} \right| \times 100\%$$

Experiment No. (2) Kirchhoff's law

Kirchhoff's law // (A) Parallel

- To build up a circuit with several resistors in **Parallel**.
- To measure the total current and the current through each resistor to verity Kirchhoff first law, the law of current: $(I = I_1 + I_2 + I_3)$ or (ΣI = 0)
- ightharpoonup To measure the total voltage are equal ($V_{m1} = V_{m2} = V_{m3}$)
- ightharpoonup The total $(\frac{1}{R_T} = 1/R_1 + 1/R_2 + 1/R_3)$

 $V_T = I_T R_T$ $V_1 = I_1 R_1$ $V_2 = I_2 R_2$

 $V_3 = I_3 R_3$

Kirchhoff's law // (A) Parallel

 $\Sigma I = 0$

$$I_{T} = I_{1} = I_{1} = I_{1} = I_{2} = I_{3} = I_{123} = I_{123$$

Error ratio =
$$\left| \frac{I_T - I_{123}}{I_T} \right| \times 100\%$$

Error ratio = $\left| \frac{V_1 - V_{m1}}{V_1} \right| \times 100\%$
Error ratio = $\left| \frac{V_2 - V_{m2}}{V_2} \right| \times 100\%$
Error ratio = $\left| \frac{V_3 - V_{m3}}{V_2} \right| \times 100\%$

Error ratio =
$$\left| \frac{V_T - V_{m123}}{V_T} \right| \times 100\%$$

Kirchhoff's law // (B) Series .

- To build up a circuit with several resistors in Series.
- To measure the total voltage and the voltage across each resistor so as to verity Kirchhoff second law, the law of current: $(V = V_1 + V_2 + V_3)$ or $(\Sigma V = 0)$
- \triangleright To measure the total current are equal ($I_T = I_1 = I_2 = I_3$)
- ightharpoonup The total ($R_T = R_1 + R_2 + R_3$)

E_{\circ} E_{L} V_{\circ}		***	**	.,	17		Calculated value		
	V _{ab}	$V_{ab} \mid V_{bc} \mid V_{c}$	V _{cd}	V _{de}	V _{bd}	V _{ce}	V _{be}	$V_{bc} + V_{cd} + V_{de}$	

Compare (Error ratio):-

- (\mathbf{E}_{\circ}) and with $(\mathbf{V_{ab}})$,
- (\mathbf{E}_L) with the sum of $(\mathbf{V}_{bc} + \mathbf{V}_{cd} + \mathbf{V}_{de})$.
- $\mathbf{V_{be}}$ with the sum ($\mathbf{V_{bc}} + \mathbf{V_{ce}}$) .
- \mathbf{V}_{ce} with $(\mathbf{V}_{cd} + \mathbf{V}_{de})$.

1. Error ratio =
$$\left| \frac{E_{\circ} - V_{ab}}{E_{\circ}} \right| \times 100\%$$

2. Error ratio =
$$\left| \frac{E_L - (V_{bc} + V_{cd} + V_{de})}{E_L} \right| \times 100\%$$

3. Error ratio =
$$\left| \frac{V_{be} - (V_{bc} + V_{ce})}{V_{be}} \right| \times 100\%$$

4. Error ratio =
$$\left| \frac{V_{ce} - (V_{cd} + V_{de})}{V_{ce}} \right| \times 100\%$$

Experiment No. (3) The resistivity of the material of a wire using Wheatstone's bridge

Kirchhoff's law (KVL)

- 1. Junction rule: at any junction, sum of the currents entering junction is equal to the sum of the current leaving the junction
- 2.Loop rule: the algebraic sum of changes in the potential around any closed loop involving resistors or cells in the loop is zero.

Applying Kirchhoff's law Wheatstone's bridge :- (Proof)

$$V_a = V_b$$

$$R = \frac{\rho \cdot L}{A}$$

$$\frac{R}{S} = \frac{L_1}{L_2}$$

Experiment No. (3)

ς Ω	L ₁ cm	L_2 cm	$\frac{L2}{L1}$
100			
200			
300			
400			
500			
600			V
700			
800			
900			

Experiment No. (3)

calculate R: -

$$R = \frac{L_1}{L_2} \times S$$

$$Slop = R = \frac{\Delta S}{\Delta(\frac{L_2}{L_1})}$$

$$R = \frac{S_2 - S_1}{(\frac{L_2}{L_1})_2 - (\frac{L_2}{L_1})_1} = ?? \Omega$$

Error ratio (R) =
$$\left| \frac{\text{Rmeasured-Rcalculate}}{\text{Rmeasured}} \right| \times 100\%$$

Experiment No. (4) A simple graphical method for determine both the e.m.f and the internal resistance of a cell

What is Emf in electric circuits?

All voltage sources create a <u>potential difference</u>, providing current when connected to a circuit with resistance. This potential difference produces an electric field that acts on charges as a <u>force</u>, causing current to flow.

<u>E.m.f</u> is the potential difference of the source when there is no current flowing through it, and internal resistance is the resistance within the power source that resists current flow.

<u>internal resistance</u> is the resistance within the power source that resists current flow. It usually causes the power source to generate heat.

emf = terminal p.d. + lost volts

Experiment No. (4)

R Ω	$I/A \times 10^{-3}$	$\frac{1}{I}/A^{-1}$
10		
20		
30		
40		
50		
60		
70		
80		
90		

Experiment No. (4)

$$R = E(e.m.f) \times \frac{1}{I}$$

Slop =
$$E(e.m.f) = \frac{\Delta R}{\Delta(\frac{1}{I})}$$

$$E(e.m.f) = \frac{R_2 - R_1}{(\frac{1}{I})_2 - (\frac{1}{I})_1} = ??$$
 volt

$$R_c + R_A$$
= ?? (from graph)

 $R_A = ?$ (by millimeter)

Find
$$R_c(r) = ??$$

$$difference_{calculation} = \left| \frac{E.measured - E.calculated}{E.measured} \right| \times 100\%$$

The End