DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Course book of Building Physics 2020

• 1.0	Climate	e & Energy	1	Week
• 2.0	Princip	les of Building Physics & Heat Protection	1	Week
	•• 2.1	Heat Protection	3	Weeks
	2.2	Moisture Protection	3	Weeks
	2.3	Fire Protection		XXXX
	2.4	Sound protection		XXXX
	2.5	Lighting		XXXX
3.0	Insula	tion		XXXX
4.0	Energy	y Efficient Houses		XXXX

Building Physics Components/ C H M S F L - Protection

BUILDING MATERIALS & SCAFFOLDING

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

- 1. BUILDING MATERIALS
- ✤ NATURAL STONE
 - o Granite & Marble
 - o Limestone
 - o Sandstone
- WOOD & PLYWOOD
- ✤ TILES

2. SCAFFOLDING CONSTRUCTION

NATURAL STONE

DR. SALAHDEN GHAREB KADR

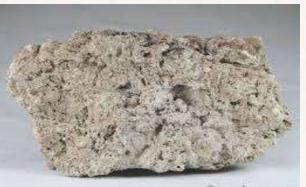
FOURTH LECTURE

Natural stone	Granite, Limestone, Marble, Sandstone etc Environment insensitive. Weather and Water resistant. Longe durability.
Thermal insulation	Thermal conductivity 2 - 3.5 W/ m . K. in winter cold in summer warm. Absorption of water 15-25%. Frost resistance 100%.
Ecology and Sustainability	Calcite or Calcium Carbonate mineral (CaCO3) Dolomit CaMg [CO3]2 Environmentally friendly, Too much heavy. Natural stone must be built upon a strong foundation, to avoid settling and cracking. It has relatively high compressive , strength, but lower tensile strength.
Healthy living	Density (g) 2500-3000 kg/m ³ Heat storage capacity 1000 J/ Kg . K. It can increase the thermal mass of a building, but needs an insulation for more interior thermal comfort.
Sound controll	Excellent stepping sound reduction by Limestone and Sandstone but bad sound protection by Granite & Marble It must be insulated for noise control.
Economy	It needs energy for quarrying & preparation, but difficult to transport
Fire protection	Optimum fire resistance Not flamable substance, It can protect the building from fire.

NATURAL STONE/ LIMESTONE

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE



www.shutterstock.com + 435223294

@ geology.com

NATURAL STONE

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

WOOD & PLYWOOD AS A BUILDING MATERIAL

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

	Comment of the second se
Thermal insulation	 Good thermal comfort: in Winter warm in Summer comfortable. Wood has lower tensile strength. It absorbs water and giving out again when the air dries and the temperature rises. It's a relatively good heat insulator. Ideal for underfloor heating. Pleasant walking sensation. It is robust and antistatic. It is carefree, durable, footwarm, hygienic and antibacterial. Thermal conductivity 0.13-0.2 W/m. K. Absorption of water 25-30%. Frost resistance 100%. The thermal expansion of plywood is small. It has high thermal resistance. Exposure to extreme heat.
Ecology and Sustainability	It is 100% natural material and environmentally friendly, Light and flexible. Completely recyclable. Biodegradable & compostable
Healthy living Sound controll	Good Heat storage capacity (c) 1600 J/ Kg . K The same temperature fluctuation Pleasant room climate. It is good vor allergy surfferer. Good sound protection and footstep sound insulation
Economy	It needs energy only for preparation and light to transport. Wood is a natural building material with a multitude of uses.
Fire protection	Heat resistance but easily flamable. Very bad direct fire resistance, and requires effective means of protection especially when used in public buildings. It can not protect the inhabitant from the fire. It must be prepared to resistant the fire.

WOOD & PLYWOOD AS A BUILDING MATERIAL

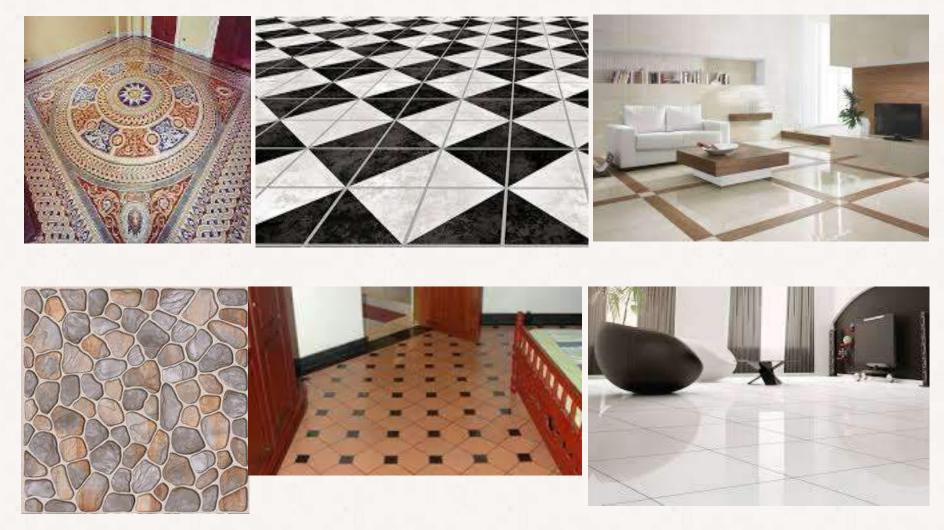
DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

TILES AS A FLOOR AND WALL COVER

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE


Area of use	For indoor and outdoor use like kitchen, Bathroom, living room, balconie, terraces, gardens, entrance, halls, and corridors.
Thermal insulation	Not a good thermal comfort: in winter cold in summer not warm. Resistance to humidity and temperature changes. Ideal for underfloor heating. The thermal energy can be collected and be used if needed. Thermal conductivity 1.2-1.5 W/m.K.
Ecological and Sustainability	Water Cement Sand and Natural stone Not always environmentally friendly and heavy to transport.
Healthy living	Heat storage capacity (c) 1000 J/ Kg . K Pleasant room climate only in summer. It can increase the thermal mass of a building and needs an insulation for more interior thermal comfort.
Sound controll	Bad sound protection It must be insulated for noise control
Economy	It is not easy to manufacturing and difficult to transport
Fire protection	Optimum fire resistance Not flamable substance, It can protect the building from the fire.

TILES AS A FLOOR AND WALL COVER

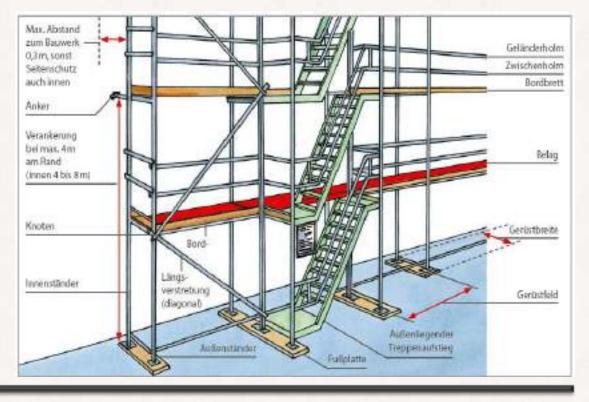
DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

SCAFFOLDING CONSTRUCTION

Definition of Scaffolding

Scaffolding is a temporary reusable construction, consisting of scaffold components made of wood or metal, steel or aluminum, which is used to prepare position of a **safe working platform** for the building construction, for repair and demolition of buildings and for other structures.


Scaffolding, also called **scaffold** or **staging**, is a structure used to support a work team and materials in the construction, maintenance and repair of buildings, bridges and all other structures.

According to bearing System, there are different Scaffolding:

- 1- Stand Scaffolding
- 2- Hanging Scaffold
- 3- Projecting or Cantilever Scaffolding
- 4- Console Scaffolding

Main scaffolding materials are:

- 1. Steel
- 2. Aluminium
- 3. Wood

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

SCAFFOLDING CONSTRUCTION

FOURTH LECTURE

Different DINS for scaffolding in Germany 812 EN 12 811 65 EN 12 EN 10 44 20 NIQ DIN DIN Protection Scaffolding **Caring Scaffolding** Working Scaffold Moving Scaffold

LOCALLY SCAFFOLDING CONSTRUCTION

FOURTH LECTURE

THERMAL BRIDGE IN THE BUILDINGS

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Thermal Bridges

Thermal bridge, Cold bridge or Heat bridge, is an area of an object which has a higher heat transfer than the surrounding materials due to absent or reduction of thermal insulation.

Thermal bridges reduces the property of energy efficiency of the building and can allow water condensation and make thermal comfort problems.

- Thermal bridges are weaknesses in a building's structure where allow more heat transfer at a higher level to the lower of the surrounding envelope area.
- Thermal bridge is an area with a higher Heat transmittance coefficient U-value. On the basis of a lower insulation takes in this place more heat loss with a lower surface temperature.
- Thermal bridges are localized areas with higher thermal conductivity than their neighbouring areas.

The rate of heat flow though a thermal bridge depends on a number of factors:

- The temperature difference between inside and outside and between heat source & surfaces
- The thermal conductivity of the materials
- The cross sectional area of the thermal bridge
- How easily heat can get into and out of the thermal bridge

WED. 06.05.2020 / SALAHADDIN UNIVERSITY / ARCHITECTURE DEPARTMENT / FIFTH STAGE / BUILDING PHYSICS

THERMAL BRIDGE IN THE BUILDINGS

Thermal bridges occur in four ways:

- Material thermal bridges;
- Geometrical thermal bridges;
- Temperature difference thermal bridge;
- Constructive thermal bridge;

with different thermal conductivity with different Heat input & Heat release with high temperature difference through leaks in the building envelope

Material thermal bridges The most obvious kind of thermal bridge occurs a different thermal conductivity of together used materials.

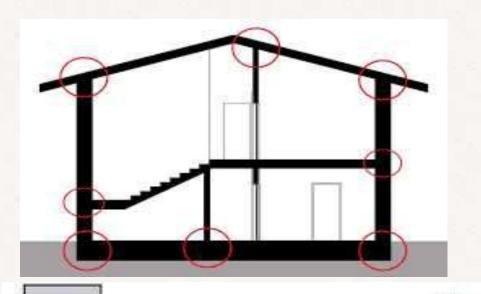
Geometrical thermal bridges can occur when the heat-emitting surface is smaller than the heat absorbing surface. Building corners without insullation are a typical example.

Constructive thermal bridges can occur through leaks and cracks in the building envelope.

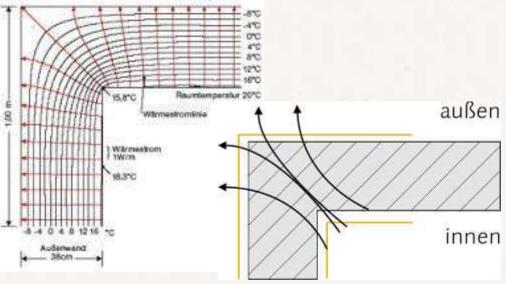
Geometric, construction and material thermal bridges can be broken down into subtypes:

 Linear thermal bridges 	like a lintel
• Point thermal bridges	masonry wall ties
 Repeating thermal bridges 	timber studs in an insulated wall
Non-repeating thermal bridges	a structural column in an insulated wall
The effect of thermal bridges:	
 Higher energy consumption 	due to more heat flow (Φ)
 Mold formation 	due to high moisture formation
 Uncomfortable living space 	due to more heat loss in the space

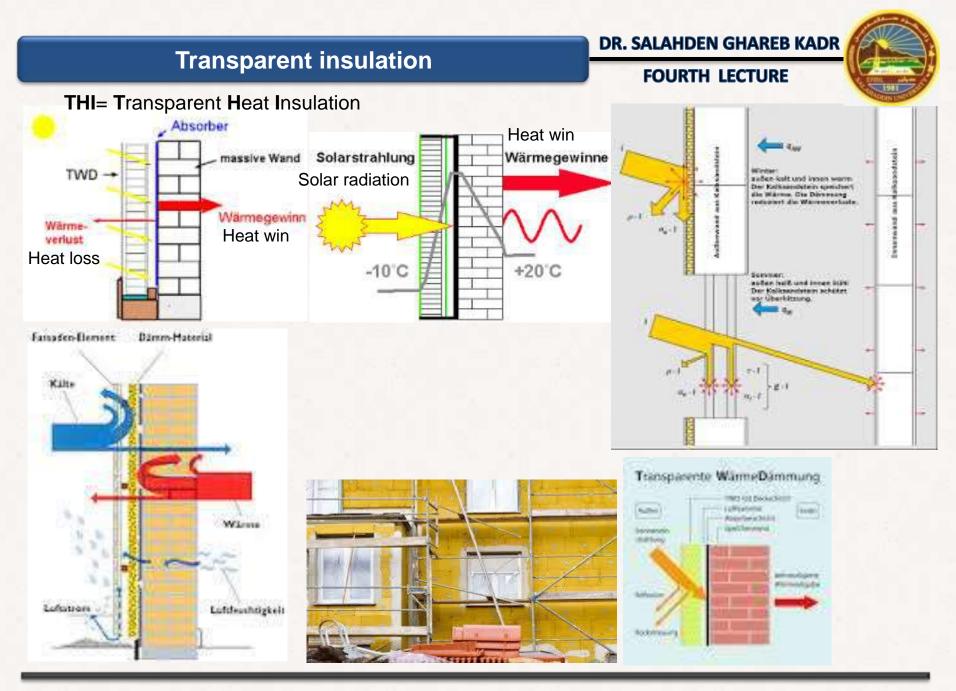
DR. SALAHDEN GHAREB KADR


FOURTH LECTURE

THERMAL BRIDGE IN THE BUILDINGS


FOURTH LECTURE

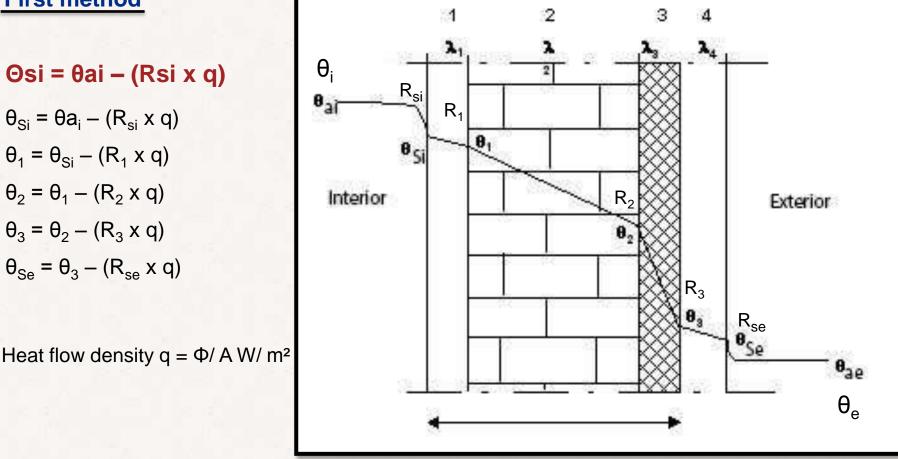
Ungestörtes Bauteil;
 Jeder Innenfläche steht eine gleich große
 Außenfläche gegenüber.


In einer Ecke oder Kante: Eine kleine Innenfläche gibt einen Wärmestrom an eine viel größere Außenfläche ab

Außentemperatur -10°C

Thermal mass or Heat storage capacity FOURTH LECTURE The heat storage capacity is dependent on: Outside the room Inside the room Material density kg/ m³ °C °C Amplitud Mass per unit area kg/m² of a component ٠ 2 • Specific heat storage capacity c TAR 14 h • Temperature difference $\Delta \theta$ TAR: TEMPERATURE AMPLITUDE RATIO LEGEN THERWAL MASS 24 h 24 h Θ Time lag Time lag BRICK VENEER WALL WEATHERBOARD WALL Wall without insulation DOUBLE BRICK MIHOLIT N IN N h 14 USU ATON BRICK OUT 0UT OUT CAVITY OUT OUT BRICK CANTY WEATHER-CAMITY EFICX **NSULATION** BRICK release/ release. absorption/ absorption/ NEULATION observice reletee NO THERMAL MASS THERMAL MASS TO THE THERMAL MASS IS NOT ERMAL MASS TO THE THERMAL MASS TO THE SEPARATED FROM THE EXTERIOR INTERIOR AND THERMALLY INTERIOR AND THERMALLY **EXTERIOR** SEPARATED SEPARATED

DR. SALAHDEN GHAREB KADR



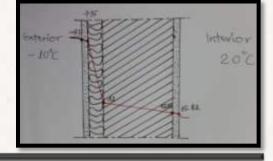
DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

It is required for a comfortable indoor climate that the temperature difference between inside air temperature and surface temperature not more than 3 °C in winter is. But in the summer must be not more than 4 - 6 °C.

Secound method

Determine through calculation of the **temperature profile** for an **exterior wall** of normal weight concrete (20 cm thick, $\lambda = 2.1$ W/m. K) with an outer **insulation** from wood wool light plate (5 cm thick, $\lambda = 0.081$ W/m. K) and 2 cm **external plaster** ($\lambda = 0.87$ W/m. K) and 2 cm thick **interior plaster** ($\lambda = 0.87$ W/m. K). The outside temperature (-10 ° C), and the internal temperature of 20 °


	- 10°C	Exterior plaster	Insulation	Wall	Interior plaster	20°C
<mark>S</mark> (m)		0.02	0.05	0.20	0.02	
<mark>λ</mark> (W/ m . K		0.87	0.081	2.10	0.87	
<mark>S/ λ</mark> (m¾/W)	0.04	R₁ = 0.023	R₂ = 0.617	R₃ = 0.095	R₄ = 0.023	0.13
R = 0.758 m ² . K/ W			= Rsi + (R1 +	R2 + R3 + R4.	Rx) + Rse m	² . K/ W

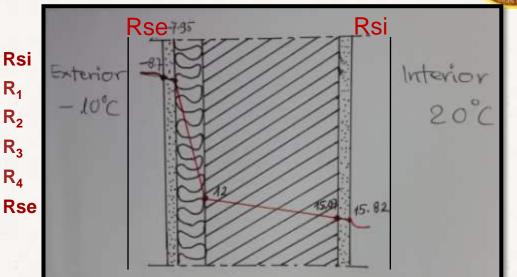
 $R_T = 0.04 + 0.758 + 0.13 = 0.928 \text{ m}^2$. K/W

Temperature deference ($\Delta \theta$)/ Temperature difference ($\theta i \& \theta e$) = Single resistance/ Total resistance Temperature deference $\Delta \theta$ = Temperature difference ($\theta i \& \theta e$) x Single resistance/ Total resistance

 $\Delta \theta = (\theta i - \theta e) \times R/R_{T}$

- **Δθ** Temperature deference in building components
- $\Theta i \theta e$ Deffirence between internal & external air temperature
- **Δθi** Deffirence between room temperature and wall temperature
- **Δθe** Deffirence between outside temperature and wall temperature

DR. SALAHDEN GHAREB KADR


FOURTH LECTURE

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

$\Delta \theta = (\theta i - \theta e) \times R/R_T$

 $\Delta \theta = 20 - (-10) \times 0.04 / 0.928 = 1.30$ $\Delta \theta = 20 - (-10) \times 0.023 / 0.928 = 0.75$ $\Delta \theta = 20 - (-10) \times 0.617 / 0.928 = 19.95$ $\Delta \theta = 20 - (-10) \times 0.095 / 0.928 = 3.07$ $\Delta \theta = 20 - (-10) \times 0.023 / 0.928 = 0.75$ $\Delta \theta = 20 - (-10) \times 0.13 / 0.928 = 4.20$ R

	-10 °C	External plaster	Insulation	Wall	Internal plaster	20 °C
R	0.04	0.023	0.617	0.095	0.023	0.13
Δθ °C	1.30	0.75	19.95	3.07	0.75	4.20
	,					`↓
Ο° θ	-8.7	-7.95	12.00	15.07	15.82	20

The temperature on the outside of the concrete wall 15.07 °C and on the inside of the concrete wall 12.0 °C. The internal insulation has a good protection for the wall. The wall is quite warm and not to be cold in winter.

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

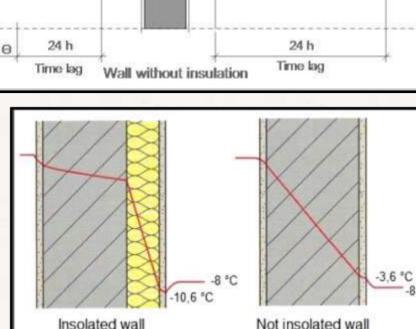

Example -1-

Calculate the temperature profile for the wall from the last task if the insulation is placed on the inside of the wall.

R_T = 0.04 + 0.758 + 0.13 = 0.928 m² . K/ W

	-10 °C	External plaster	Wall	Insulation	Internal plaster	20 °C
S (m)		0.02	0.20	0.05	0.02	
<mark>λ</mark> (W/ m . K		0.87	2.10	0.081	0.87	
<mark>S/ λ</mark> (mᠯK/ W)		0.023	0.095	0.617	0.023	
R (m ² K/ W)	0.04	0.023	0.095	0.617	0.023	0.13
Δθ °C	1.30	→ 0.75 →	3.07	19.95	0.75	7 4.20
0.00	0.7			45.07		
θ°C	-8.7	-7.95	-4.88	15.07	15.82	20

We see the temperature on the outside of the concrete wall (-7.95) ° C and on the inside of the concrete wall (-4.88) ° C. The Internal insulation has not so good protection for the wall as the exterior insulation from the last wall.


TEMPERATURE AMPLITUDE RATIO (TAR)

The temperature profile of the outside air is not constant during a day and night phase. Naturally this outdoor temperature fluctuation affects the temperature profile in the building component and in the interior of the building during a day and night phase.

The TAR of a building component is described as good, when the room temperature fluctuation is less than the ambient temperature fluctuation of the outside air, as you see in the adjacent figure.

possible when the space-enclosing This is components have a good Heat storage capacity. It means lying outside insulation of the building components has better TAR as inside laying thermal insulation.

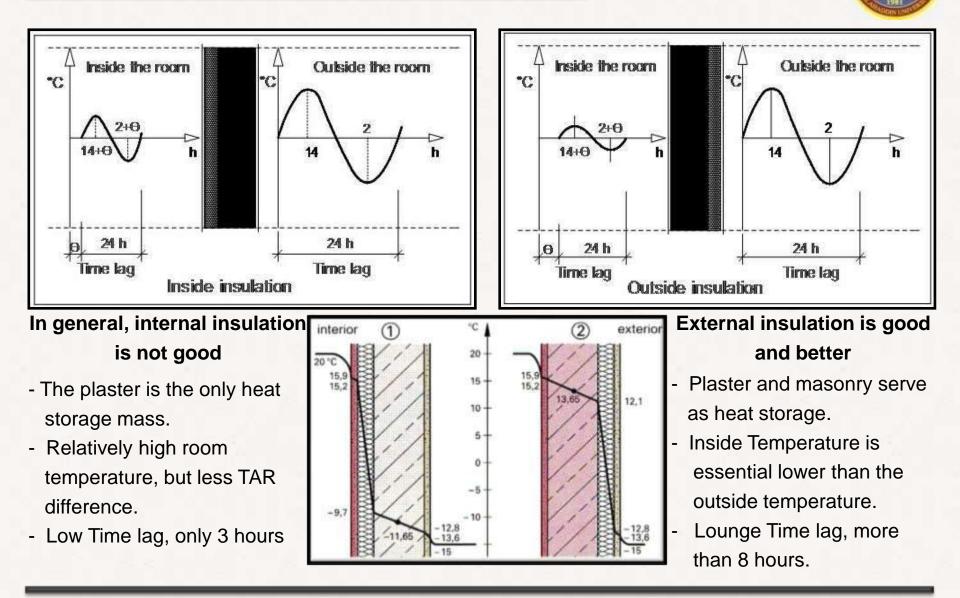
Inside the room "C

FOURTH LECTURE

14

°C

Outside the room


Amplitu

2

TEMPERATURE AMPLITUDE RATIO (TAR)

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

PRACTICAL EXERCISES TO TEMPERATURE FACTORS

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Temperature factor (f_{Rsi})

The inside surface temperature in the room can be calculated with the **Temperature factor** f_{Rsi} as in the following equation:

$\mathbf{f}_{Rsi} = \mathbf{\theta}\mathbf{si} - \mathbf{\theta}\mathbf{e}/\mathbf{\theta}\mathbf{i} - \mathbf{\theta}\mathbf{e}$

This factor has not unit

Θsi :	Inside surface temperature	(Theta-Surface temperature)
Θe :	Outside air temperature	(Theta-External temperature)
Θi :	Inside air temperature	(Theta-Internal temperature)

Temperature factor \mathbf{f}_{Rsi} may not be less than the following value:

$f_{Rsi} \ge 0.7$

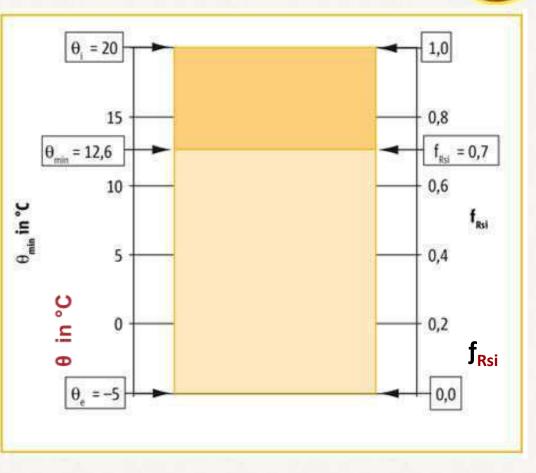
This corresponds to the boundary conditions given below of a room-side surface temperature of Osi 12.6 °C.

FUNDAMENTALS OF HEAT PROTECTION

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

If this factor less than 0.7, drops the temperature on the inside surface of the room. This leads to water condensation on the surface and damage the building components.


The minimum requirement of the unfavorable agency must be met in this way:

Osi ≥ 12.6 °C

With due regard to the following conditions, the limit of the room-side surface temperature is maintained:

$f_{Rsi} \ge 0.70$

Temperature factor characterize the room-side surface temperature in the buildings. It is very important for the prevention of mold formation.

The larger the temperature factor as 0.7, the better the thermal insulation in the room

WED. 06.05.2020 / SALAHADDIN UNIVERSITY / ARCHITECTURE DEPARTMENT / FIFTH STAGE / BUILDING PHYSICS

PRACTICAL EXERCISES TO TEMPERATURE FACTORS

Example -8-

Please calculate the temperature factor of this room:

Θsi = 12.5 °C	Internal surface temperature
$\Theta e = -5.0 \ ^{\circ}C$	outside air temperature
Θi = 20.0 °C	Inside air temperature

```
f_{Rsi} = \theta si - \theta e / \theta i - \theta e = 12.5 - (-5) / 20 - (-5)
```

= 0.68 < 0.70 (It is unfavorable)

Example -9-

Reinforced concrete cantilever slab with thermal separation in the area of external wall insulation. Please calculate the **temperature factor** \mathbf{f}_{Rsi} of this building components:

- Θsi = 18.5 °C Internal surface temperature
- $\Theta e = -5.0 \degree C$ outside air temperature
- $\Theta i = 20.0 \degree C$ Inside air temperature

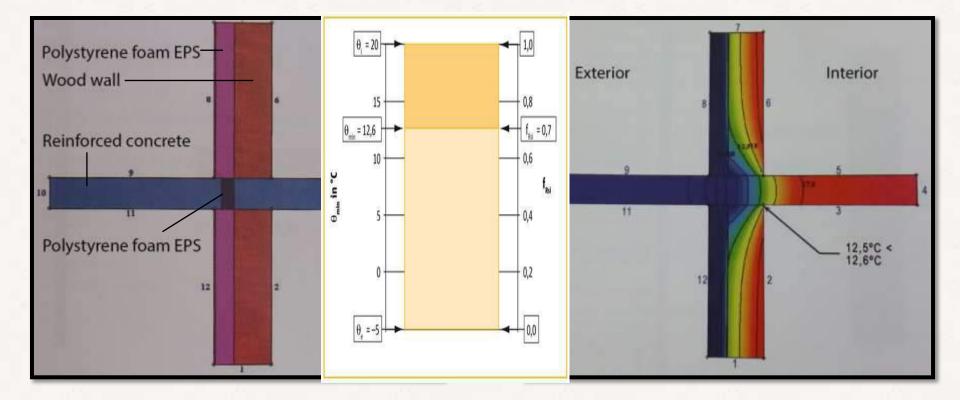
$$f_{Rsi} = \theta si - \theta e / \theta i - \theta e = 18.5 - (-5) / 20 - (-5)$$

= 0.94 > 0.70 (It is favorable)

The calculation of the room-side surface temperature in °C performance by switching the Temperature factor equation:

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE


$$\Theta si = \mathbf{f}_{Rsi} \times (\theta i - \theta e) + \theta e$$

°C

FUNDAMENTALS OF HEAT PROTECTION/ THERMAL BRIDGE

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Fundamentals of Heat protection

Thermal diffusivity (a) m²/ s

Thermal diffusivity measures the ability of a material to conduct thermal energy relative to its ability to store it. It means this factor describes the relation between **Heat conduction** and **Heat storage**. This means it shows the ability of a substance to conduct the heat, to insulate or to absorb. This relationship is with this equation clarified:

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Heat conduct λ (Thermal insulation) to Heat absorption (Heat storage) c. ρ

 $a = \lambda / c \cdot \rho$ m²/s or mm²/s

λ : Thermal conductivity	W/ m . K
c : Specific heat or thermal capacity	J/ kg . K
ρ : specific density	kg/ m³

The smaller the value of the **thermal diffusivity a**, the better reacts the building material in the summer heat protection in the building.

Heat storage property of building materials is very important for the buildings not only in the hot and dry zone of the Region, but also for moderate climate

Fundamentals of Heat protection

Heat penetrating coefficient (b)

The Heat penetration coefficient (b) tells how much heat in Ws per m². K can penetrate in to a material.

We can get this factor during the following formula:

 $b = \sqrt{\lambda . c \, . \, \rho}$

 $\begin{array}{lll} \lambda: & \mbox{Thermal conductivity} & \mbox{W/m.K} \\ \mbox{\bf c}: & \mbox{Specific heat capacity} & \mbox{J/kg.K} \\ \mbox{\bf \rho}: & \mbox{specific Density} & \mbox{kg/m}^3 \\ \end{array}$

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Large heat penetrating coefficient (b):

To much heat penetrates in a unit of time in to the fabric and little is available to heat the room air. Like Steel, Aluminium and Concrete. Etc...

Small heat penetrating coefficient (b):

Little heat penetrates in a given unit of time in the material. In addition, more heat energy is available for heating the ambient air. For the foot warm with heating floors and walls, this factor is very importance. Like Wood, Cork and Linoleum.

Bulk density and **mass**, essentially determines the storage capacity of a substance. The more heavy the building components are, the longer it takes time to heat up a room and it cools slower.

Heat storage capacity is to consider especially by heating processes in the summer

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

Thermal diffusivity (a)	ی m²/ s	نرخی یا فاکتهری گهیاندنی پلهی گهرم	
Building materials	Heat penetrating coefficient (b) J/ m ² Ks ^{0.5}	Thermal diffusivity (a) 10 ⁶ . m²/ s	
Concrete	2245	1.00	
Light concrete	930	0.54	
Cement screed stone	1670	0.70	
Gypsum	1250	0.20	
Lime	1017	7.67	
Wood	300	0.15	
Glas	1500	0.90	
Steel	13000	14.00	
Calcareous sand stone CSS	1100	0.60	
Mineral wool	35	0.80	
Solid brick	1100	0.40	
Extruded polystyrene foam XPS	35	0.20	

Material density & Heat penetrating coefficient

DR. SALAHDEN GHAREB KADR

FOURTH LECTURE

	ensity <mark>ρ</mark>	Specific heat capacity C kJ/Kg. K	Thermal conductivity λ W/m. K	Thermal diffusivity a 106 ⁶ . m²/ s	Heat penetraition coefficient b J/ m² Ks ^{0.5}
	Kg/ m³				
Glass	2500	750	1.00	0.90	1500
Wood	700	1600	0.18	0.15	400
Wood fibre board	150-250	1400	0.035-0.065	0.16	92
Polystyrene Foam XP	S 20-65	1450	0.025-0.040	0.34	27
Steel & other metals	7800	400	50.00	16.00	13735
Gypsum	1300	1000	0.58	0.20	1250
Linoleum	1200	1400	0.17	0.12	534
Brick Masonry	1400	1000	0.58	0.40	900
Calcareous sandstone	e 1600	1000	0.79	0.60	990
Cement block	2000	1000	2.10	1.05	2049
Cement screed stone	400	1000	1.40	0.70	1670
Concrete	2000	1000	1.35	1.00	2245
Reinforced concrete	2300	1000	2.30	1.07	2300
Thermo stone	600	1000	0.24	0.40	340
Air	1.23	1000	0.025	20.00	14.00
Cork	90-140	1700	0.041-0.056	0.11	160
Water	1000	4200	0.60	1.6	1630
Marble	2800	1000	3.50	1.35	2504

FINISH

FOURTH LECTURE

Thank you for your attention