Q1: Calculate LU decomposition to solve the following system of equations:

$$
\begin{gather*}
x_{1}+x_{2}+x_{3}=1 \tag{1}\\
4 x_{1}+3 x_{2}-x_{3}=6 \tag{2}\\
3 x_{1}+5 x_{2}+3 x_{3}=4 \tag{3}
\end{gather*}
$$

Q2: if B is orthogonal matrix, show that $[B]= \pm 1$
Q3: use the data linearization method to find the exponential fit $\mathrm{y}=\mathrm{C}^{\mathrm{Ax}}$ for the given data:

x	0	1	2	3	4
y	1.5	2.5	3.5	5	7

Q4: define four (4) of the following : 1- Jacobi iterative method 2- unitary matrix 3- relational expressions 4- Newton backward interpolation 5- null matrix

Q5: given the following table of values.

x	10	20	30	40	50
y	22	30	41	55	68

Find the difference table using Newton forward interpolation, then evaluate $f(25)$
Q6: Find the inverse of matrix A by elementary row operation. $A=\left[\begin{array}{ccc}4 & 1 & 2 \\ 5 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
Q7: write three ways for initializing vectors in Matlab.
Q8: write the flowchat of the statement (if elseif else \qquad
Q9: show that: 1- every eigenvalue of an Hermitian matrix is real 2-different eigenvectors of an Hermitian matrix corresponding to two distinct eigenvalues are orthogonal to each other.

Q10: Find the inverse of matrix \mathbf{A} by adjoint matrix. $\boldsymbol{A}=\left[\begin{array}{ccc}1 & -1 & 2 \\ 4 & 0 & 6 \\ 0 & 1 & -1\end{array}\right]$
Q11: for Dirac matrix prove $\sigma_{l} \sigma_{m}=i \sigma_{n}$
Q12: Find the Lagrange interpolation polynomial that takes the values prescribed below

X	0	1	2	4
$\mathrm{f}(\mathrm{x})$	1	1	2	5

Q13: Given the following data

x	3	4	5
y	3	8	7

Find the least square fitting.

Q14: put true (T) or false (F) in front of the following sentences:
1- A diagonal matrix is a square matrix where all its elements zeros, except for those in the reverse main diagonal.

2- The least square method is restricted to a linear polynomial.

3- Eigenvectors of different eigenvalues are orthogonal to one another.
4- An Inner product is a Bra multiplied by a Ket.

5- The complex equivalent of an orthogonal matrix is the normal matrix.
6- The cofactors of a square matrix A is the transpose of the Adjoint matrix.

7- If and only if $\operatorname{det}(A) \neq 0$, then the square matrix A is singular.

Q15: Find the solution of the following system of linear equations, using Gauss-elimination method.

$$
\begin{gather*}
3 x_{1}+x_{2}=2 \tag{1}\\
x_{2}+3 x_{3}=3 \tag{2}\\
x_{1}-x_{2}+4 x_{3}=5 \tag{3}
\end{gather*}
$$

Q16: if $A=\left[\begin{array}{lll}0 & 1 & 2 \\ a & 0 & 3 \\ b & c & 0\end{array}\right]$ is a skew-symmetric matrix, find a, b and c .
Q17: For the Pauli matrices, show that $\sigma_{\mathrm{m}} \sigma_{\mathrm{n}}+\sigma_{\mathrm{n}} \sigma_{\mathrm{m}}=2 \mathrm{I} \delta_{\mathrm{mn}}$, where δ_{mn} is kronecker delta

Q18: Given the data :

x	1	2	2.5	3
y	3.7	4.1	4.3	5

Find the least square fitting to these data
Q19: write the work of the following functions and commands:
1- eye (m,n) 2-abs(x) 3- prod(x) 4- tril (y) 5-format bank

Q20: Find the inverse of matrix A by adjoint matrix. $A=\left[\begin{array}{lll}4 & 1 & 2 \\ 5 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
Q21:write three ways for drawing multiple plots on the same set of axes.
Q22: write the flowchat of the statement (switch...... case)
Q23: show which of the following matrices singular or non-singular.

$$
1-A=\left[\begin{array}{ccc}
4 & 0 & 3 \\
5 & 1 & 2 \\
-1 & 6 & 2
\end{array}\right] \quad 2-A=\left[\begin{array}{ccc}
0 & 2 & -1 \\
3 & -2 & 1 \\
3 & 2 & -1
\end{array}\right]
$$

Q24: what are the ways of drawing multiple plots on the same set of axes.
Q25: what are the main difference between functions (display and fprintf)

Q26: what are the work of the following: 1- nthroot (z,n) 2- rem (y,x) 3- triu (f) 4- grid 5- fplot

Q27: fill the blanks with correct answer:
1- The function \qquad is use to rounding the result toward zero.
round b-fix c- floor d-ceil
2- The max. length of variable name in matlab is \qquad character .
a- 32
b- 31
c- 30
d- 33

3- title('text') :writes the text as a title on -------- of the graph.
a- Right
b- Left
c- Top
d- down

4- If you need to set the same scale for both axes, we use command \qquad a- axis square axis tight c- axis equal d- axis ([$\left.\mathrm{x}_{\min } \mathrm{X}_{\max }\right]$)
5- If we are plotting two graphs on the same axes, we may find \qquad independent y -axis labels on the left and right.
Ploty (x, y)
b- plotyy (x,y)
c- $\operatorname{plot}(\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2)$
d- $\operatorname{plot}(\mathrm{y})$

Q28: write the flowchart of (if ---- elseif ----- else -----end)
Q29: what are the ways to entering variables to Matlab .

Q30: what are the work of the following: 1- $\mathrm{A}(:, \mathrm{S}: \mathrm{R}) \quad$ 2- $\operatorname{conj}(\mathrm{t}) \quad$ 3- $\operatorname{rot} 90(\mathrm{~B}, 3)$

$$
\text { 4- } \operatorname{hist}(\mathrm{F}, 4) \quad 5-\operatorname{csch}(\mathrm{h})
$$

Q31: Define the following: 1-Upper triangular matrix 2-orthogonal matrices 3- orthogonally diagonalizable 4-isempty (x) logical function 5 -histogram

Q32: prove that the interchange of any two rows will alter the sign but not the numerical value of a determinant

Q33: find the solution of the following system of equations by matrix inversion.

$$
\begin{gather*}
x_{1}+x_{2}+x_{3}=1 \tag{1}\\
4 x_{1}+3 x_{2}-x_{3}=6 \tag{2}\\
3 x_{1}+5 x_{2}+3 x_{3}=4 \tag{3}
\end{gather*}
$$

Q34: show that the following matrix is Hermitian matrix:

$$
A=\left[\begin{array}{ccc}
3 & 1-i & -i \\
1+i & -2 & 2+i \\
i & 2-i & 5
\end{array}\right]
$$

Q35: describe this plot:
plot(z,p,':sk','LineWidth',6,'markersize',10,'MarkerEdgeColor', 'c','markerfacecolor','b')

Q36: Find the inverse of matrix x by elementary row operation. $A=\left[\begin{array}{lll}4 & 1 & 2 \\ 5 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
Q37: show that : 1- every eigenvalue of an Hermitian matrix is real 2-different eigenvectors of an
Hermitian matrix corresponding to two distinct eigenvalues are orthogonal to each other.
Q38: write the flowchat of the statement (if...elseif...else...end)

Q39: for Dirac matrix prove $\sigma_{l} \sigma_{m}=i \sigma_{n}$
Q40: If \mathbf{B} is orthogonal matrix, show that $[\mathbf{B}]= \pm 1$
Q41: Choose the correct answer:
1- The complex equivalent of an orthogonal matrix is the ------------ matrix.
a- Symmetric b-Hermition c- unitary d- normal
2- In determinant rules: the addition of a multiple of any row to another row will \qquad

$$
\begin{aligned}
& \text { a- alter the sign but not its numerical value } \quad \text { b- leave it unaltered } \\
& \text { c- make determinant zero } \quad \text { d- changed its value }
\end{aligned}
$$

3- Any square matrix may be written as the sum of :
a- symmetric \& orthogonal matrices
b- unitary \& normal matrices
c- symmetric \& skew-symmetric matrices
d- orthogonal \& normal matrices

4- A square matrix where all its elements zeros, except for those in the main diagonal is called \qquad
a- Identity
b- null
c- diagonal
d- symmetric

5- The simplest method to find inverse of the matrix is by:
a-
Adjoint method
prog.
Q42: Find the inverse of matrix A by elementary row operation. $A=\left[\begin{array}{ccc}0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1\end{array}\right]$
Q43: For Dirac matrices, prove that $\sigma_{l} \sigma_{m}=i \sigma_{n}$.
Q44: write the flowchat of the statement (switchcase)

Q45: for the given data:

X	1	2	3
$\mathrm{f}(\mathrm{x})$	8	4	7

Find the Lagrange interpolation polynomial $p_{n}(x)$ of these data points, then estimate $f(x)$ for $x=2.5$

Q46: Define the following :
1- Orthogonally diagonalizable 2-normal matrix 3-skew-symmetric matrix
4- outer product 5-relational expressions
Q46: for the given data, find the $f(25)$, of these data points using Newton forward interpolation polynomial.

x	10	20	30	40	50
$y=f(x)$	46	66	81	93	101

