Q1: fill the blanks with correct answer:
1- The gradient field valid only for
a- Vector field
b- Scalar field
c- scalar \& vector field
d- none of them

2- The gradient of a scalar field is a \qquad
a) scalar
b) vector
c) zero
d) vanish

3- When the magnitude of the arrows of the field is the same everywhere around a point, the diverge is :
a) positive
b) negative
c) zero
d) none of them

4- When curl $\mathrm{A}=0$ but div $\mathrm{A} \neq 0$, then the field is :
a) Irrotational as well as solenoidal
b) irrotational but not solenoidal
c) rotational d)none of them

Q2: Find the directional derivative of $\varnothing=\mathrm{x}^{3} \mathrm{z}+3 \mathrm{xyz}$ at $(\mathrm{x}=2, \mathrm{y}=-2, \mathrm{z}=1$) in the direction

$$
\vec{s}=3 \mathrm{i}-2 \mathrm{j}+\mathrm{k} .
$$

Q3: if $V=i\left(x^{2} z\right)-j\left(y^{2} x\right)+k(y z)$, which of the following points is closer to the sink of the field. $\mathrm{p}_{1}=(1,1,2), \mathrm{p}_{2}=(-1,1,1)$

Q4: compute the integral :

$$
\iint_{R} x^{2} y^{2}+\cos (\pi x)+\sin (\pi y) d A, \quad R=[-2,-1] \times[0,1]
$$

Q5: Define the following: 1- Divergence 2-gradient of a scalar field 3- conservative field

$$
\text { 4- curl of a vector } \quad 5 \text { - non-conformist }
$$

Q6: (a) find the unit normal to the surface $\sin (\mathrm{x}) \mathrm{y} \mathrm{z}$, at point $(\pi, 1,1)$
(b) show that the divergence of the sum of two vector functions is equal to the sum of their divergence.

Q7: (a) convert the point $\left(\sqrt{6}, \frac{\pi}{4}, \sqrt{2}\right)$ from cylindrical to spherical coordinates.
(b) calculate the following integral :

$$
\iint_{R} \frac{1}{(2 x+3 y)^{2}} d A, \quad R=[0,1] \times[1,2]
$$

Q8: Show that $\nabla \cdot(U+V)=\nabla \cdot U+\nabla \cdot V$, where

$$
U=i U_{1}+j U_{2}+k U_{3}
$$

$$
V=i V_{1}+j V_{2}+k V_{3}
$$

Q9: for what values of a the following field is a gradient field?

$$
\vec{F}=\hat{\imath}\left(4 x^{2}+a x y\right)+\hat{\jmath}\left(3 y^{2}+4 x^{2}\right)
$$

Q10: compute the integral :

$$
\begin{equation*}
\iint_{R} x \mathbf{e}^{x y} d A, \quad R=[-1,2] \times[0,1] \tag{7marks}
\end{equation*}
$$

Q11: Suppose the function that describes the temperature at any point in the room is given by:

$$
T=x^{2}-y^{2}+x y z+273
$$

1. Determine the rate of change of temperature from origin towards the point $(-1,2,3)$.
2. In which direction does the temperature increase at fastest rate and how much is the change?

Q12: If $V=i\left(x^{2} z\right)-j\left(2 y^{2} z^{2}\right)+k\left(x y^{2} z\right)$, which of the following points is closer to the source of the field. $P 1=(1,-1,1), P 2=(2,-1,5)$

Q13: Which of the following vectors is solenoidal;
A) $V=3 y^{4} z^{2} i+4 x^{3} z^{2} j+3 x^{2} y^{2}$
B) $U=\left(2 x^{2}+8 x y^{2} z\right) i+\left(3 x^{3} y-3 x y\right) k-\left(4 y^{2} z^{2}+2 x^{3} z\right) k$

Q14: prove that : $\Gamma\left(\frac{1}{2}\right) \sqrt{ } \pi$

Q15: for what values of a the following field is a gradient field?

$$
\vec{F}=\hat{\imath}\left(4 x^{2}+a x y\right)+\hat{\jmath}\left(3 y^{2}+4 x^{2}\right)
$$

