Q1: Calculate LU decomposition to solve the following system of equations:

$$x_1 + x_2 + x_3 = 1 \tag{1}$$

$$4x_1 + 3x_2 - x_3 = 6 (2)$$

$$3x_1 + 5x_2 + 3x_3 = 4 \tag{3}$$

Q2: if B is orthogonal matrix, show that $[B] = \pm 1$

Q3: use the data linearization method to find the exponential fit y=C e^{Ax} for the given data:

X	0	1	2	3	4
у	1.5	2.5	3.5	5	7

Q4: define four (4) of the following: 1- Jacobi iterative method 2- unitary matrix 3- relational expressions 4- Newton backward interpolation 5- null matrix

Q5: given the following table of values.

X	10	20	30	40	50
У	22	30	41	55	68

Find the difference table using Newton forward interpolation, then evaluate f(25)

Q6: Find the inverse of matrix A by elementary row operation. $A = \begin{bmatrix} 4 & 1 & 2 \\ 5 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$

Q7: write three ways for initializing vectors in Matlab.

Q8: write the flowchat of the statement (if elseif else end)

Q9: show that: 1- every eigenvalue of an Hermitian matrix is real 2- different eigenvectors of an Hermitian matrix corresponding to two distinct eigenvalues are orthogonal to each other.

Q10: Find the inverse of matrix **A** by adjoint matrix. $\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 0 & 6 \\ 0 & 1 & -1 \end{bmatrix}$

Q11: for Dirac matrix prove σ_l $\sigma_m = i \sigma_n$

Q12: Find the Lagrange interpolation polynomial that takes the values prescribed below

X	0	1	2	4
f(x)	1	1	2	5

Q13: Given the following data

X	3	4	5
У	3	8	7

Find the least square fitting.

Q14: put true (T) or false (F) in front of the following sentences:

- 1- A diagonal matrix is a square matrix where all its elements zeros, except for those in the reverse main diagonal.
- 2- The least square method is restricted to a linear polynomial.
- 3- Eigenvectors of different eigenvalues are orthogonal to one another.
- 4- An Inner product is a Bra multiplied by a Ket.
- 5- The complex equivalent of an orthogonal matrix is the normal matrix.
- 6- The cofactors of a square matrix A is the transpose of the Adjoint matrix.
- 7- If and only if $det(A) \neq 0$, then the square matrix A is singular.

Q15: Find the solution of the following system of linear equations, using Gauss-elimination method.

$$3x_1 + x_2 = 2 (1)$$

$$x_2 + 3x_3 = 3 (2)$$

$$x_2 + 3x_3 = 3$$
 (2)
 $x_1 - x_2 + 4x_3 = 5$ (3)

Q16: if
$$A = \begin{bmatrix} 0 & 1 & 2 \\ a & 0 & 3 \\ b & c & 0 \end{bmatrix}$$
 is a skew-symmetric matrix, find a, b and c.

Q17: For the Pauli matrices, show that $\sigma_m \sigma_n + \sigma_n \sigma_m = 2 I \delta_{mn}$, where δ_{mn} is kronecker delta

Q18: Given the data:

X	1	2	2.5	3
У	3.7	4.1	4.3	5

Find the least square fitting to these data

Q19: write the work of the following functions and commands:

1- eye
$$(m,n)$$
 2- abs (x) 3- prod (x) 4- tril (y) 5- format bank

Q20: Find the inverse of matrix A by adjoint matrix. $A = \begin{bmatrix} 4 & 1 & 2 \\ 5 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ **Q21:** write three ways for drawing multiple plots on the same set of axes. Q22: write the flowchat of the statement (switch..... case) **Q23**: show which of the following matrices singular or non-singular. $1 - A = \begin{bmatrix} 4 & 0 & 3 \\ 5 & 1 & 2 \\ 1 & 6 & 2 \end{bmatrix} \qquad 2 - A = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 2 & 2 & 1 \end{bmatrix}$ **Q24:** what are the ways of drawing multiple plots on the same set of axes. **Q25:** what are the main difference between functions (display and fprintf) Q26: what are the work of the following: 1- nthroot (z,n) 2- rem (y,x) 3- triu (f) 4- grid 5- fplot **Q27:** fill the blanks with correct answer: 1- The function ----- is use to rounding the result toward zero. b- fix c- floor d- ceil round 2- The max. length of variable name in matlab is ----- character. b- 31 a- 32 c- 30 d- 33 3- title('text') :writes the text as a title on ----- of the graph. a- Right b- Left c- Top d- down 4- If you need to set the same scale for both axes, we use command ------. c- axis equal d- axis ($[x_{min} x_{max}]$) axis tight a- axis square 5- If we are plotting two graphs on the same axes, we may find ----- useful. It allows to have independent y-axis labels on the left and right.

b- plotyy(x,y) c- plot(x1,y1,x2,y2) d- plot(y)

Q28: write the flowchart of (if ---- elseif ----- else -----end)

 $\mathbf{Q29:}$ what are the ways to entering variables to Matlab .

Ploty (x,y)

Q30: what are the work of the following: 1- A(:,S:R) 2- conj(t)

3 - rot 90(B,3)

5- csch(h)

Q31: Define the following: 1-Upper triangular matrix 2- orthogonal matrices 3- orthogonally diagonalizable 4- isempty(x) logical function 5- histogram

Q32: prove that the interchange of any two rows will alter the sign but not the numerical value of a determinant

Q33: find the solution of the following system of equations by matrix inversion.

$$x_1 + x_2 + x_3 = 1 \tag{1}$$

$$4x_1 + 3x_2 - x_3 = 6 (2)$$

$$3x_1 + 5x_2 + 3x_3 = 4 \tag{3}$$

Q34: show that the following matrix is Hermitian matrix:

$$A = \begin{bmatrix} 3 & 1-i & -i \\ 1+i & -2 & 2+i \\ i & 2-i & 5 \end{bmatrix}$$

Q35: describe this plot:

plot(z,p,':sk','LineWidth',6,'markersize',10,'MarkerEdgeColor', 'c','markerfacecolor','b')

Q36: Find the inverse of matrix x by elementary row operation. $A = \begin{bmatrix} 4 & 1 & 2 \\ 5 & 2 & 1 \end{bmatrix}$

Q37: show that : 1- every eigenvalue of an Hermitian matrix is real 2-different eigenvectors of an Hermitian matrix corresponding to two distinct eigenvalues are orthogonal to each other.

Q38: write the flowchat of the statement (if...elseif...else...end)

Q39: for Dirac matrix prove σ_l $\sigma_m = i \sigma_n$

Q40: If **B** is orthogonal matrix, show that $[B] = \pm 1$

O41: Choose the correct answer:

1- The complex equivalent of an orthogonal matrix is the ----- matrix.

a- Symmetric

b- Hermition

c- unitary

d- normal

2- In determinant rules: the addition of a multiple of any row to another row will -----

a- alter the sign but not its numerical value

b- leave it unaltered

c- make determinant zero

d- changed its value

3- Any square matrix may be written as the sum of :

- a- symmetric & orthogonal matrices c- symmetric & skew-symmetric matrices b- unitary & normal matrices d- orthogonal & normal matrices

- 4- A square matrix where all its elements zeros, except for those in the main diagonal is called -----
 - a- Identity
- b- null
- c- diagonal
- d- symmetric
- 5- The simplest method to find inverse of the matrix is by:
 - a- Adjoint method prog.
- b- Crammer method
- c- elementary row operation d- matlab
- **Q42:** Find the inverse of matrix A by elementary row operation. $A = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$
- **Q43:** For Dirac matrices, prove that $\sigma_l \ \sigma_m = i \ \sigma_n$.
- Q44: write the flowchat of the statement (switchcase)

Q45: for the given data:

X	1	2	3
f(x)	8	4	7

Find the Lagrange interpolation polynomial $p_n(x)$ of these data points, then estimate f(x) for x=2.5

Q46: Define the following:

- 1- Orthogonally diagonalizable
- 2- normal matrix
- 3- skew-symmetric matrix

- 4- outer product
- 5- relational expressions

Q46: for the given data, find the f(25), of these data points using Newton forward interpolation polynomial.

X	10	20	30	40	50
y = f(x)	46	66	81	93	101