
ANTENNA LECTURES                                                             BY  Abdulmuttalib A. H. Aldouri  & Mohammed Kamil 

 

22 
 

LINEAR WIRE ANTENNAS 

Linear wire antennas are some of the oldest, simplest, cheapest, and in many cases the 

most versatile for many applications. 

1. Infinitesimal Dipole        (L ≤ λ /50) 

2. Small Dipole                    (λ /50 < L ≤ λ /10) 

3. Finite Length Dipole       (L > λ /10) 

4. Half-Wave Dipole           (L= λ /2) 

 

1. Infinitesimal Dipole 

      An infinitesimal linear dipole is positioned symmetrically at the origin along the z-axis, as 

shown in figure below. In addition to being very small ( l << λ), is very thin (a << λ). The 

current distribution is assumed to be constant:  

 

  𝐼(𝑧) = 𝐼0𝒂𝒛 

𝐴 =
𝜇

4𝜋
∫𝐼(𝑧)

𝑒−𝑗𝛽𝑟

𝑟

𝑙

2

−
𝑙

2

𝑑𝑙    ,   𝑑𝑙 = 𝑑𝑧 

𝐴 =
𝜇𝐼0
4𝜋𝑟

𝑒−𝑗𝛽𝑟𝒂𝒛 ∫ 𝑑𝑧 =
𝜇𝐼0𝑙

4𝜋𝑟
𝑒−𝑗𝛽𝑟𝒂𝒛

𝑙/2

−𝑙/2

 

𝐴𝑧 =
𝜇𝐼0𝑙

4𝜋𝑟
𝑒−𝑗𝛽𝑟      𝐴𝑥 = 𝐴𝑦 = 0  

The transformation between rectangular and spherical coordinates is given in matrix form:  

 [

𝐴𝑟

𝐴𝜃

𝐴𝜙

] = [

sin 𝜃 cos𝜙 sin 𝜃 sin 𝜙 cos 𝜃
cos 𝜃 cos 𝜙 cos 𝜃 sin 𝜙 −sin 𝜃

−sin 𝜙 cos 𝜙 0
] [

𝐴𝑥

𝐴𝑦

𝐴𝑧

] 

𝐴𝑟  =  𝐴𝑧 cos 𝜃 =
𝜇𝐼0𝑙

4𝜋𝑟
cos 𝜃𝑒−𝑗𝛽𝑟 

𝐴𝜃  =  −𝐴𝑧 sin 𝜃 = −
𝜇𝐼0𝑙

4𝜋𝑟
sin 𝜃𝑒−𝑗𝛽𝑟 

𝐴𝜙 = 0 

Since no variation in 𝜙 direction is assumed, so that  
𝜕

𝜕𝜙
= 0 

The magnetic field "H" can be obtained by:   

curl A = ∇ x 𝐴 = 𝐵 = 𝜇𝐻 → 𝐻 =
1

𝜇
(∇ x 𝐴) =

1

𝜇

[
 
 
 
 

𝑎𝑟

𝑟2𝑠𝑖𝑛𝜃

𝑎𝜃

𝑟𝑠𝑖𝑛𝜃

𝑎𝜙

𝑟
𝜕

𝜕𝑟

𝜕

𝜕𝜃

𝜕

𝜕𝜙
𝐴𝑟 𝐴𝜃 𝐴𝜙]

 
 
 
 

 

𝐻𝜙 =
1

𝜇𝑟
[
𝜕

𝜕𝑟
(𝑟𝐴𝜃) −

𝜕

𝜕𝜃
(𝐴𝑟)] 
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𝐻𝜙 =
1

𝜇𝑟
[
𝜕

𝜕𝑟
(−𝑟

𝜇𝐼0𝑙

4𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟) −

𝜕

𝜕𝜃
(
𝜇𝐼0𝑙

4𝜋𝑟
cos𝜃 𝑒−𝑗𝛽𝑟)] 

𝐻𝜙 =
1

𝜇𝑟
[𝑗𝛽

𝜇𝐼0𝑙

4𝜋
sin𝜃 𝑒−𝑗𝛽𝑟 +

𝜇𝐼0𝑙

4𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟] = 𝑗𝛽

𝐼0𝑙

4𝜋𝑟
sin𝜃 (1 +

1

𝑗𝛽𝑟
)  𝑒−𝑗𝛽𝑟 

 

𝐻𝜙 = 𝑗𝛽
𝐼0𝑙

4𝜋𝑟
sin𝜃 (1 +

1

𝑗𝛽𝑟
)  𝑒−𝑗𝛽𝑟  

𝐻𝑟 = 𝐻𝜃 = 0 

The electric field E can be found using:  

𝐸 =
1

𝑗𝜔𝜖
(∇ x 𝐻) 

𝐸𝑟 = 𝜂
𝐼0𝑙

2𝜋𝑟2
cos𝜃 (1 +

1

𝑗𝛽𝑟
)  𝑒−𝑗𝛽𝑟 

𝐸𝜃 = 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
sin𝜃 (1 +

1

𝑗𝛽𝑟
−

1

(𝛽𝑟)2
)  𝑒−𝑗𝛽𝑟 

𝐸𝜙 = 0 

In far-field region βr >>1, the electric and magnetic fields are approximated as: 

𝐸𝜃 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟 

𝐻𝜙 ≅ 𝑗
𝛽𝐼0𝑙

4𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟 

𝐸𝑟 = 𝐸𝜙 = 𝐻𝑟 = 𝐻𝜃 = 0 

The average power density can be found using: 

𝑊𝑎𝑣 = 𝑊𝑟𝒂𝒓 =
1

2
𝑅𝑒[𝐸𝜃 x 𝐻𝜙

∗ ] =
1

2
(𝑗𝜂

𝛽𝐼0𝑙

4𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟) ∗ (−𝑗

𝛽𝐼0𝑙

4𝜋𝑟
sin𝜃 𝑒𝑗𝛽𝑟)𝒂𝒓 

𝑊𝑎𝑣 = 𝑊𝑟𝒂𝒓 = 𝜂
𝛽𝟐𝐼0

2𝑙2

32𝜋𝟐𝑟2
𝑠𝑖𝑛2𝜃 𝒂𝒓 = 𝜂

(
2𝜋

𝜆
)
2

𝐼0
2𝑙2

32𝜋𝟐𝑟2
𝑠𝑖𝑛2𝜃 𝒂𝒓 

𝑊𝑎𝑣 =
𝜂
8
𝐼0
2
(
𝑙
𝜆
)

2
𝑠𝑖𝑛2𝜃

𝑟2
 𝒂𝒓 

The radiation power is:  

𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑊𝑟𝒂𝒓 . 𝑟
2𝑠𝑖𝑛𝜃𝑑𝜃𝑑ϕ 𝒂𝒓

𝜋

0

2𝜋

0

= ∫ ∫
𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2 𝑠𝑖𝑛2𝜃

𝑟2
 . 𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑ϕ 

𝜋

0

2𝜋

0

 

𝑃𝑟𝑎𝑑 =
𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2

2𝜋 ∫ 𝑠𝑖𝑛3𝜃𝑑θ =
𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2

2𝜋
4

3
=

𝐼0
2

2
𝜂
2𝜋

3
(
𝑙

𝜆
)
2

 
𝜋

0

 

The following formula can be used to find 𝐸𝜃 in the 

far field:  

𝐸𝜃 = 𝑗𝜂
𝛽

4𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟 ∫ 𝐼(𝑥, 𝑦, 𝑧) 𝑒−𝑗𝛽𝑧𝑐𝑜𝑠𝜃𝑑𝑧

𝑙/2

−𝑙/2
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𝑃𝑟𝑎𝑑 = 𝜂
𝜋𝐼0

2

3
(
𝑙

𝜆
)
2

= 120𝜋
𝜋𝐼0

2

3
(
𝑙

𝜆
)
2

= 40𝜋2 (
𝑙

𝜆
)
2

𝐼0
2 

𝑃𝑟𝑎𝑑 =
𝐼0
2

2
𝑅𝑟𝑎𝑑  → 𝑅𝑟𝑎𝑑 =

2𝑃𝑟𝑎𝑑

𝐼0
2  

And the radiation resistance is:  

𝑅𝑟𝑎𝑑 =
2 ∗ 40𝜋2 (

𝑙

𝜆
)
2

𝐼0
2

𝐼0
2

  

𝑅𝑟𝑎𝑑 = 80𝜋2 (
𝑙

𝜆
)
2

   (Ω) 

𝑅𝑖𝑛 =
𝑅𝑟𝑎𝑑

sin2 (
𝛽𝑙

2
)
   (Ω)   

For infinitesimal dipole 
𝑙

𝜆
=

1

50
   then  𝑅𝑟𝑎𝑑 = 80𝜋2 (

1

50
)
2

= 0.316 Ω  

The radiation resistance of an infinitesimal dipole is very small, so a very large 

mismatch occurs when connected to practical transmission lines have characteristic 

impedances of 50 or 75 Ω, and the radiation efficiency will be very small. 

The radiation intensity which is given by: 

𝑈 = 𝑟2𝑊𝑎𝑣 = 𝑟2 ∗
𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2 𝑠𝑖𝑛2𝜃

𝑟2
 

𝑈 =
𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2

𝑠𝑖𝑛2𝜃       𝑈𝑛(𝜃) = 𝑠𝑖𝑛2𝜃        𝑈𝑚𝑎𝑥 =
𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2

 

The maximum directivity and maximum effective aperture are: 

𝐷𝑚𝑎𝑥 =
4𝜋𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑
= 4𝜋

𝜂

8
𝐼0
2 (

𝑙

𝜆
)
2

𝐼0
2

2
𝜂

2𝜋

3
(

𝑙

𝜆
)
2 

𝐷𝑚𝑎𝑥 =
3

2
  

𝐴𝑒𝑚 =
𝜆2

4𝜋
𝐷0 =

𝜆2

4𝜋
∗
3

2
 

𝐴𝑒𝑚 = 0.119𝜆2   (𝑚2) 

 

To find the HPBW:    𝜃𝑚 = 90𝑜 

𝑈𝑛(𝜃)|𝜃=𝜃ℎ
= 0.5 → 𝑠𝑖𝑛2𝜃ℎ = 0.5  → 𝑠𝑖𝑛𝜃ℎ = 0.707 → 𝜃ℎ = 45𝑜 , 135𝑜 

𝐻𝑃𝐵𝑊 = 2|𝜃𝑚 − 𝜃ℎ| = 2|90 − 45| = 90𝑜   𝑂𝑅  𝐻𝑃𝐵𝑊 = 135𝑜 − 45𝑜 = 90𝑜 
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 The figure below shows the two and three-dimensional radiation pattern of infinitesimal 

dipole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Example: 

Find the radiation resistance of an infinitesimal dipole whose overall length is  

a) l = λ/50.   b) l = λ/75    

Solution: 

𝑎) 𝑅𝑟𝑎𝑑 = 80𝜋2 (
𝑙

𝜆
)
2

= 80𝜋2 (
𝜆 50⁄

𝜆
)

2

= 80𝜋2 (
1

50
)
2

= 0.316 Ω  

𝑏) 𝑅𝑟𝑎𝑑 = 80𝜋2 (
𝑙

𝜆
)
2

= 80𝜋2 (
𝜆 75⁄

𝜆
)

2

= 80𝜋2 (
1

75
)
2

= 0.14 Ω 
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Radiation Pattern in E-plane (x-z plane)            Radiation Pattern in H-plane (x-y plane) 
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Example:  

Derive an expression for the electric fields, magnetic fields, and radiation intensity in far 

region if an infinitesimal dipole is placed symmetrically along the x-axis.                                                 

 

 

Solution:   

 In general:                                                                                                        

𝐸 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
sin𝛾 𝑒−𝑗𝛽𝑟                  𝑠𝑖𝑛𝛾 = √1 − 𝑐𝑜𝑠2𝛾 

𝑐𝑜𝑠 𝛾 =  𝒂𝒙
→  ·  𝒂𝒓

→                    𝒂𝒓
→ = 𝒂𝒙

→ 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 + 𝒂𝒚
→ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 + 𝒂𝒛

→ 𝑐𝑜𝑠 𝜃 

𝑐𝑜𝑠 𝛾 =  𝒂𝒙
→  ·  (𝒂𝒙

→ 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 + 𝒂𝒚
→ 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 + 𝒂𝒛

→ 𝑐𝑜𝑠 𝜃) 

𝑐𝑜𝑠 𝛾 =  𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 

𝐸 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
 √1 − (𝑠𝑖𝑛 𝜃 cos𝜙)2 𝑒−𝑗𝛽𝑟    

𝑎𝑛𝑑   𝐻 ≅ 𝑗
𝛽𝐼0𝑙

4𝜋𝑟
√1 − (𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙)2𝑒−𝑗𝛽𝑟 

𝑈 = 𝑊𝑎𝑣𝑟
2 =

1

2
𝑅𝑒[𝐸 x 𝐻∗]. 𝑟2 = 𝜂

𝛽𝟐𝐼0
2𝑙2

32𝜋𝟐
[1 − (𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙)2] 

 

 

 

 

 

 

 

 

 

 

 

 

H.W Repeat the previous example for an infinitesimal dipole is:  

1. placed symmetrically along the y-axis. 

2. placed symmetrically in the x-y plane along the line y=x. 

 

z 

y 

x 

Radiation Pattern in E-plane (x-z plane)            Radiation Pattern in H-plane (x-y plane) 
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2. Small Dipole 

The current distribution of small dipole (λ /50 < l ≤ λ /10), is the triangular variation.  

𝐼(𝑧) = {
𝐼0 (1 +

2

𝑙
𝑧) 𝒂𝒛                          – 𝑙/2 < 𝑧 < 0  

𝐼0 (1 −
2

𝑙
𝑧) 𝒂𝒛                               0 < 𝑧 < 𝑙/2 

 

𝐴 =
𝜇

4𝜋
[ ∫ 𝐼0 (1 +

2

𝑙
𝑧) 𝒂𝒛

𝑒−𝑗𝛽𝑟

𝑟

0

−𝑙/2

𝑑𝑧 + ∫ 𝐼0 (1 −
2

𝑙
𝑧) 𝒂𝒛

𝑒−𝑗𝛽𝑟

𝑟

𝑙/2

0

𝑑𝑧] 

𝐴 = 𝐴𝑧𝒂𝒛 =
𝜇𝐼0𝑙

8𝜋𝑟
𝑒−𝑗𝛽𝑟𝒂𝒛 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the magnetic potential vector 𝑨 ⃑⃑  ⃑ for the triangular distribution is one-half of the 

corresponding one for the constant (uniform) current distribution, the corresponding fields are 

also one-half. Thus, we can write the E and H-fields radiated by a small dipole in far-field 

region (βr >>1) as:  

𝐸𝜃 ≅ 𝑗𝜂
𝛽𝐼0𝑙

8𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟    𝑎𝑛𝑑    𝐻𝜙 ≅ 𝑗

𝛽𝐼0𝑙

8𝜋𝑟
sin𝜃 𝑒−𝑗𝛽𝑟 

𝐸𝑟 = 𝐸𝜙 = 𝐻𝑟 = 𝐻𝜃 = 0 

The radiation resistance is one-fourth of that for infinitesimal dipole: 

𝑅𝑟𝑎𝑑 = 20𝜋2 (
𝑙

𝜆
)
2

   (Ω) 

Directivity, effective aperture, the radiation pattern, and HPBW are the same of the 

infinitesimal dipole: 

𝐷𝑜 =
3

2
    ,     𝐴𝑒𝑚 = 0.119𝜆2   (𝑚2)    ,    𝐻𝑃𝐵𝑊 = 90𝑜 
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3. Finite Length Dipole 

For a very thin dipole of length > λ/10 placed along the    z-axis, it has a sinusoidal 

current distribution as shown.  

𝐼(𝑧) = {
𝐼0𝑠𝑖𝑛 [𝛽 (

𝑙

2
+ 𝑧)] 𝒂𝒛        – 𝑙/2 < 𝑧 < 0 

𝐼0𝑠𝑖𝑛 [𝛽 (
𝑙

2
− 𝑧)] 𝒂𝒛           0 < 𝑧 < 𝑙/2 

  

 

 

 

 

 

 

 

 

 

 

 

𝐻𝜙 ≅ 𝑗
𝐼0𝑒

−𝑗𝛽𝑟

2𝜋𝑟
[
cos (

𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)

𝑠𝑖𝑛𝜃
] 

𝐸𝜃 = 𝜂𝐻𝜙 = 𝑗𝜂
𝐼0𝑒

−𝑗𝛽𝑟

2𝜋𝑟
[
cos (

𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)

𝑠𝑖𝑛𝜃
] 

 

For the dipole, the average power density can be written as:  

𝑊𝑎𝑣 = 𝑊𝑟𝒂𝒓 =
1

2
[𝐸𝜃𝒂𝛉  ×  𝐻𝝓

∗𝒂𝝓] 

𝑊𝑎𝑣 = 𝜂
𝐼0
2

8𝜋2𝑟2
[
cos (

𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)

𝑠𝑖𝑛𝜃
]

2

𝒂𝒓 

 

And the total power radiated by the dipole is:  

𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑊𝑟𝒂𝒓 . 𝑟
2𝑠𝑖𝑛𝜃𝑑𝜃𝑑ϕ 𝒂𝒓

𝜋

0

2𝜋

0

= ∫ ∫ 𝜂
𝐼0
2

8𝜋2𝑟2 [
cos (

𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)

𝑠𝑖𝑛𝜃
]

2

𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑ϕ
𝜋

0

2𝜋

0

 

𝑃𝑟𝑎𝑑 = 𝜂
𝐼0
2

4𝜋
∫

[cos (
𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)]

2

𝑠𝑖𝑛𝜃

𝜋

0

 𝑑𝜃 = 30 𝐼0
2 ∫

[cos (
𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)]

2

𝑠𝑖𝑛𝜃

𝜋

0

 𝑑𝜃 

 

𝐼0𝑠𝑖𝑛 [𝛽 (
𝑙

2
− 𝑧)] 

𝐼0𝑠𝑖𝑛 [𝛽 (
𝑙

2
+ 𝑧)] 
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This integral is so difficult to be solved and cannot be solved numerically. Table (1) below 

shows the solution of the above integral for dipole length 0.1λ ≤ 𝑙 ≤ 3λ. 

Table (1) The value of the integral:  𝐼 = ∫
[cos(

𝛽𝑙

2
𝑐𝑜𝑠𝜃)−cos(

𝛽𝑙

2
)]

2

𝑠𝑖𝑛𝜃

𝜋

0
 𝑑𝜃    

for dipole length   0.1λ ≤ 𝑙 ≤ 3λ  

Dipole Length(𝒍)  0.1 λ 0.15 λ 0.2 λ 0.25 λ 0.3 λ 0.35 λ 0.4 λ 0.45 λ 0.5 λ 

Value of I  0.0032 0.0157 0.0480 0.1120 0.2197 0.3811 0.6021 0.8833 1.2188 

Dipole Length(𝒍) 0.55 λ 0.6 λ 0.65 λ 0.7 λ 0.75 λ 0.8 λ 0.85 λ 0.9 λ 0.95 λ λ 

Value of I 1.5962 1.9970 2.3980 2.7733 3.0968 3.3446 3.4979 3.5448 3.4827 3.3181 

Dipole Length(𝒍) 1.05 λ 1.1 λ 1.15 λ 1.2 λ 1.25 λ 1.3 λ 1.35 λ 1.4 λ 1.45 λ 1.5 λ 

Value of I 3.0673 2.7550 2.4123 2.0740 1.7756 1.5496 1.4225 1.4122 1.5256 1.7582 

Dipole Length(𝒍) 1.55 λ 1.6 λ 1.65 λ 1.7 λ 1.75 λ 1.8 λ 1.85 λ 1.9 λ 1.95 λ 2 λ 

Value of I 2.0938 2.5057 2.9596 3.4162 3.8349 4.1781 4.4146 4.5226 4.4924 4.3272 

Dipole Length(𝒍) 2.05 λ 2.1 λ 2.15 λ 2.2 λ 2.25 λ 2.3 λ 2.35 λ 2.4 λ 2.45 λ 2.5 λ 

Value of I 4.0433 3.6686 3.2399 2.7999 2.3931 2.0609 1.8385 1.7506 1.8093 2.0128 

Dipole Length(𝒍) 2.55 λ 2.6 λ 2.65 λ 2.7 λ 2.75 λ 2.8 λ 2.85 λ 2.9 λ 2.95 λ 3 λ 

Value of I 2.3449 2.7770 3.2704 3.7800 4.2584 4.6610 4.9499 5.0977 5.0905 4.9291 

 

The radiation intensity is: 

𝑈 = 𝜂
𝐼0
2

8𝜋2
[
cos (

𝛽𝑙

2
𝑐𝑜𝑠𝜃) − cos (

𝛽𝑙

2
)

𝑠𝑖𝑛𝜃
]

2

                      𝑈𝑚𝑎𝑥 = 𝜂
𝐼0
2

8𝜋2
𝑈𝑚 =

15𝐼0
2

𝜋
𝑈𝑚 

 The value of Um can be obtained from table (2). 

Table (2) The maximum value of    𝑈(𝜃) = [
cos(

𝛽𝑙

2
𝑐𝑜𝑠𝜃)−cos(

𝛽𝑙

2
)

𝑠𝑖𝑛𝜃
]

2

  at 0 ≤ 𝜃 ≤ 2𝜋   

for dipole length   0.1λ ≤ 𝑙 ≤ 3λ   

 

Dipole Length(𝒍)  0.1 λ 0.15 λ 0.2 λ 0.25 λ 0.3 λ 0.35 λ 0.4 λ 0.45 λ 0.5 λ 

Um  0.0024     0.0119     0.0365         0.0858 0.1699     0.2981     0.4775         0.7116 1.0000     

Dipole Length(𝒍) 0.55 λ 0.6 λ 0.65 λ 0.7 λ 0.75 λ 0.8 λ 0.85 λ 0.9 λ 0.95 λ λ 

Um 1.3373 1.7135     2.1141     2.5211     2.9142     3.2725     3.5759     3.8066     3.9509     4     

Dipole Length(𝒍) 1.05 λ 1.1 λ 1.15 λ 1.2 λ 1.25 λ 1.3 λ 1.35 λ 1.4 λ 1.45 λ 1.5 λ 

Um 3.9509 3.8066     3.5759     3.2725     2.9142     2.5211     2.1141     1.7135     1.4875     1.9572 

Dipole Length(𝒍) 1.55 λ 1.6 λ 1.65 λ 1.7 λ 1.75 λ 1.8 λ 1.85 λ 1.9 λ 1.95 λ 2 λ 

Um 2.4718 3.0119     3.5543     4.0740     4.5454     4.9445     5.2499     5.4455     5.5204     5.4708 

Dipole Length(𝒍) 2.05 λ 2.1 λ 2.15 λ 2.2 λ 2.25 λ 2.3 λ 2.35 λ 2.4 λ 2.45 λ 2.5 λ 

Um 5.2995 5.0161     4.6362     4.1803     3.6724     3.1375     2.6011     2.0862     2.3823     3.0781 

Dipole Length(𝒍) 2.55 λ 2.6 λ 2.65 λ 2.7 λ 2.75 λ 2.8 λ 2.85 λ 2.9 λ 2.95 λ 3 λ 

Um 3.8206 4.5788     5.3189     6.0054     6.6046     7.0864     7.4264     7.6072     7.6205     7.4663 

      



ANTENNA LECTURES                                                             BY  Abdulmuttalib A. H. Aldouri  & Mohammed Kamil 

 

30 
 

Elevation Plane Amplitude Patterns for a Thin Dipole with Sinusoidal Current Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the length of the dipole increases beyond one wavelength (𝒍 >  𝝀), the number of 

lobes begin to increase. The radiation pattern for a dipole with 𝒍 =  𝟏. 𝟐𝟓𝝀 is shown in 

Figure below: 
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Radiation Resistance, Input Resistance and Directivity of a Thin Dipole with Sinusoidal 

Current Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

4. Half-Wave Dipole  (𝛌 𝟐⁄ ) 

One of the most commonly used antennas is the half-wavelength (l = λ/2) dipole. 

Because its radiation resistance is 73Ω, which is very near the 75Ω characteristic impedances 

of some transmission lines. 

The electric and magnetic field components of a half-wavelength dipole can be obtained by 

letting l = λ/2, thus: 

        
𝛽𝑙

2
=

2𝜋

2𝜆
∗
𝜆

2
=

𝜋

2
 

        𝐻𝜙 ≅ 𝑗
𝐼0𝑒

−𝑗𝛽𝑟

2𝜋𝑟
[
cos (

𝜋

2
𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃
] 

        𝐸𝜃 ≅ 𝑗𝜂
𝐼0𝑒

−𝑗𝛽𝑟

2𝜋𝑟
[
cos (

𝜋

2
𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃
] 

The average power density and radiation intensity can be written, respectively, as:  

𝑊𝑎𝑣 = 𝜂
𝐼0
2

8𝜋2𝑟2
[
cos (

𝜋

2
𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃
]

2

 

𝑈 = 𝑊𝑎𝑣𝑟
2 = 𝜂

𝐼0
2

8𝜋2
[
cos (

𝜋

2
𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃
]

2

         𝑎𝑛𝑑     𝑈max (𝜃=90) = 𝜂
𝐼0
2

8𝜋2
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𝑈𝑛(𝜃) = [
cos (

𝜋

2
𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃
]

2

 

𝑃𝑟𝑎𝑑 = 𝜂
𝐼0
2

4𝜋
∫

[cos (
𝜋

2
𝑐𝑜𝑠𝜃)]

2

𝑠𝑖𝑛𝜃

𝜋

0

 𝑑𝜃 

         = 𝜂
𝐼0
2

4𝜋
(1.2188) = 36.564𝐼0

2   (𝑊)               𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 1.2188 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑡𝑎𝑏𝑙𝑒 (1) 

and the radiation resistance is: 

𝑅𝑟𝑎𝑑 = 2 ∗ 36.564 ≅ 73 Ω 

𝐷𝑜 =
4𝜋𝑈𝑚𝑎𝑥

𝑃𝑟𝑎𝑑
= 4𝜋

𝜂
𝐼0
2

8𝜋2

𝜂
𝐼0
2

4𝜋
(1.2188)

 

𝐷𝑜 = 1.643 

𝐴𝑒𝑚 =
𝜆2

4𝜋
𝐷0 =

𝜆2

4𝜋
∗ 1.643 = 0.13𝜆2   (𝑚2) 

 

To find the HPBW: 

𝜃𝑚 = 90𝑜  ,   270𝑜  

𝑈𝑛(𝜃)|𝜃=𝜃ℎ = 0.5 → [
cos (

𝜋

2
𝑐𝑜𝑠𝜃ℎ)

𝑠𝑖𝑛𝜃ℎ
]

2

= 0.5  →   
cos (

𝜋

2
𝑐𝑜𝑠𝜃ℎ)

𝑠𝑖𝑛𝜃ℎ
= 0.707  

𝑠𝑖𝑛𝜃ℎ =
1

0.707
cos (

𝜋

2
𝑐𝑜𝑠𝜃ℎ) → 𝜃ℎ = sin−1 (

1

0.707
cos (

𝜋

2
𝑐𝑜𝑠𝜃ℎ)) 

By using trial and error, we can find the value of  𝜽𝒉 ≅ 𝟓𝟏𝒐 

𝐻𝑃𝐵𝑊 = 2|𝜃𝑚 − 𝜃ℎ| = 2|90 − 51| = 78𝑜 
 

Figure below shows the two and three-dimensional radiation pattern for a λ/2 dipole. 
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Example: For a λ/4 dipole, find the radiation resistance, maximum directivity and maximum 

aperture, HPBW & FNBW and draw the radiation pattern.  

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W.  For a 3λ/4 dipole, find the radiation resistance, maximum directivity and maximum 

aperture, HPBW & FNBW and draw the radiation pattern. 
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 Example: A 𝝀/𝟐 dipole radiates a time-averaged power of 600 W at a frequency of 300 

MHz. A second 𝝀/𝟐 dipole is placed at a point P(r, θ, φ), where r = 200 m, θ = 90◦,φ= 40◦. It 

is oriented so that its axis is parallel to that of the transmitting antenna. What is the available 

power at the terminals of the second (receiving) dipole? 

 

Solution: 

 

𝑓 = 300 𝑀𝐻𝑧                      𝜆 =
𝑐

𝑓
=

3 × 108

300 × 106
= 1 𝑚 

2𝐷2

𝜆
=

2 (
𝜆

2
)
2

𝜆
= 0.5 𝑚 

𝑟 = 200 ≫ 0.5         𝑠𝑜 𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (
λ

4𝜋𝑅
)
2

 

𝑓𝑜𝑟 𝑙𝑜𝑠𝑠𝑙𝑒𝑠𝑠 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝐺𝑡 = 𝐷𝑡  , 𝐺𝑟 = 𝐷𝑟 

𝐷(𝑓𝑜𝑟𝝀/𝟐 ) = 1.643 

𝑃𝑟 = 600 ∗ 1.643 ∗ 1.643 ∗ (
1

4𝜋 ∗ 200
)
2

= 0.25 𝑚𝑊 

H.W: Find 𝑃𝑟 at r = 200 m, 𝜽 = 50◦, 𝝋 = 20? 

 

Example: A 3𝜆/4 dipole is radiating into free-space. Input power to the dipole is 100 W. 

Assuming an overall efficiency of 50%, find the power density (in W/m2) at (r = 500 m,       

𝜃 = 60o, 𝜑 = 0)? 

Solution: 
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5. Linear Elements Near or On Infinite Perfect Conductors 

Any energy from the radiating element directed toward the ground undergoes a reflection. 

The amount of reflected energy and its direction are controlled by the geometry and 

constitutive parameters of the ground the analysis procedure for hhe Vertical electric dipole 

above infinite perfect electric conductor shown in figure below.  

 

 

 

 

 

 

 

 

 

 

Vertical electric dipole above infinite perfect electric conductor 

 

The electric field of the infinitesimal dipole of length l is given by: 

𝐸𝜃 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟1
sin𝜃1 𝑒

−𝑗𝛽𝑟1 

The reflected component can be written as: 

𝐸𝜃 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟2
sin𝜃2 𝑒

−𝑗𝛽𝑟2 

For far-field observations: 

𝜃1 ≅ 𝜃2 ≅ 𝜃 

{𝑟1 ≅ 𝑟 − ℎ𝑐𝑜𝑠𝜃        and        𝑟2 ≅ 𝑟 + ℎ𝑐𝑜𝑠𝜃}   for phase variation         

𝑟1 ≅ 𝑟2 ≅ 𝑟    for amplitude variation 

 

The total electric field is equal to: 

𝐸𝜃 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟1
sin𝜃1 𝑒

−𝑗𝛽𝑟1 + 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟2
sin𝜃2 𝑒

−𝑗𝛽𝑟2 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
sin𝜃[ 𝑒−𝑗𝛽(𝑟−ℎ𝑐𝑜𝑠𝜃) + 𝑒−𝑗𝛽(𝑟+ℎ𝑐𝑜𝑠𝜃)] 

𝐸𝜃 ≅ 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
 𝑒−𝑗𝛽𝑟 sin𝜃 [2 cos(𝛽ℎ cos 𝜃)]         𝑧 ≥ 0 

The total radiated power over the upper hemisphere 

𝑃𝑟𝑎𝑑 = 𝜋𝜂 (
𝐼0𝑙

𝜆
)
2

[
1

3
−

cos(2𝛽ℎ )

(2𝛽ℎ )2
+

sin(2𝛽ℎ )

(2𝛽ℎ )3
] 
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The radiation intensity can be written as: 

𝑈 =
𝜂

2
(
𝐼0𝑙

𝜆
)
2

 sin2𝜃 cos2(𝛽ℎ cos 𝜃) 

The maximum value of U occurs at 𝜃 =  𝜋/2 and is given by: 

𝑈𝑚𝑎𝑥 = 𝑈𝜃=𝜋 2⁄ =
𝜂

2
(
𝐼0𝑙

𝜆
)
2

  

which is four times greater than that of an isolated element 

The directivity can be written as: 

𝐷 =
2

[
1

3
−

cos(2𝛽ℎ )

(2𝛽ℎ )2
+

sin(2𝛽ℎ )

(2𝛽ℎ )3
]
 

for 𝛽ℎ = 0 then D = 3. The maximum value occurs when 𝛽ℎ = 2.881 (h =0.4585), and it is 

equal to 𝐷𝑚𝑎𝑥 = 6.566 which is greater than four times that of an isolated element: 

𝑅𝑟𝑎𝑑 = 2𝜋𝜂 (
𝑙

𝜆
)
2

[
1

3
−

cos(2𝛽ℎ )

(2𝛽ℎ )2
+

sin(2𝛽ℎ )

(2𝛽ℎ )3
] 

whose value for 𝜷𝒉 →∞  is the same and for 𝜷𝒉 =  𝟎 is twice that of the isolated element  

 

In practice, a wide use has been made of a quarter-wavelength monopole (l = λ/4) mounted 

above a ground plane, and fed by a coaxial line, as shown in Figure below. For analysis 

purposes, a λ/4 image is introduced and it forms the λ/2 equivalent. 

 

 

 

 

 

 

 

 

 

 

Quarter-wavelength monopole on an infinite perfect electric conductor 
 

The input impedance of a λ/4 monopole above a ground plane is equal to one-half that of an 

isolated λ/2 dipole 

𝑍𝑖𝑛(𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒) =
1

2
𝑍𝑖𝑛(𝑑𝑖𝑝𝑜𝑙𝑒) 

𝑍𝑖𝑛(𝜆/4𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒) =
1

2
𝑍𝑖𝑛(𝜆/2 𝑑𝑖𝑝𝑜𝑙𝑒) =

1

2
(73 + 𝑗42.5) = 36.5 + 𝑗21.25 



ANTENNA LECTURES                                                             BY  Abdulmuttalib A. H. Aldouri  & Mohammed Kamil 

 

37 
 

Example: Determine the smallest height that an infinitesimal vertical electric dipole  of 𝒍 =

 𝝀/𝟓𝟎 must be placed above an electric ground plane so that its pattern has only one null 

occurs at 30◦ from the vertical. For that height, find the directivity and radiation resistance? 

 Solution: 

 

𝐸𝜃 = 𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
 𝑒−𝑗𝛽𝑟 sin𝜃 [2 cos(𝛽ℎ cos 𝜃)] 

𝐸𝜃|𝜃=30 = 0 ⇒  𝑗𝜂
𝛽𝐼0𝑙

4𝜋𝑟
 𝑒−𝑗𝛽𝑟 sin𝜃 [2 cos(𝛽ℎ cos 𝜃)] = 0  

 cos(𝛽ℎ cos 30) = 0              ⇒  𝛽ℎ cos 30 =
𝜋

2
                   ⇒

2𝜋

𝜆
 ℎ(0.867) =

𝜋

2
 

ℎ = 0.288𝜆 

2𝛽ℎ = 2
2𝜋

𝜆
(0.288𝜆) = 3.632 

𝐷 =
2

[
1

3
−

cos(2𝛽ℎ )

(2𝛽ℎ )2
+

sin(2𝛽ℎ )

(2𝛽ℎ )3
]
=

2

[
1

3
−

cos(3.632 )

(3.632 )2
+

sin(3.632 )

(3.632 )3
]
= 5.12 = 7.1 𝑑𝐵 

𝑅𝑟𝑎𝑑 = 2𝜋𝜂 (
𝑙

𝜆
)
2

[
1

3
−

cos(2𝛽ℎ )

(2𝛽ℎ )2
+

sin(2𝛽ℎ )

(2𝛽ℎ )3
] 

           = 2𝜋𝜂 (
𝜆

50⁄

𝜆
)

2

[
1

3
−

cos(3.632 )

(3.632 )2
+

sin(3.632 )

(3.632 )3
] = 0.37 Ω 

 

 

H.W 

A very short (𝒍 ≤  𝝀/𝟓𝟎) vertical electric dipole is mounted on a pole a height h above the 

ground perfectly conducting, and of infinite extent. The dipole is used as a transmitting 

antenna in a VHF (𝑓 =  50 𝑀𝐻𝑧) ground-to-air communication system. In order for the 

communication system transmitting antenna signal not to interfere with a nearby radio station, 

it is necessary to place a null in the vertical dipole system pattern at an angle of 80◦ from the 

vertical. What should the shortest height (h) of the dipole be to achieve the desired 

specifications? 

 

 

 


