
 
Chapter 6:  Markov Chains 

 
 
 

6.1  What is a Markov Chain? 
 
 In many real-world situations (for example, values of stocks over a period of time, 
weather patterns from day to day, results of congressional elections over a period of 
elections, and so forth) analysts would like to be able to predict the future, both in the 
short term and in the long term.  In this chapter you will see how probability and matrix 
theory can be combined to analyze the short and long term behavior of certain kinds of 
phenomena which can be modeled as “Markov Chains.” 
 
 Example 6.1.  John’s Truck Rental does business in North Carolina, South Carolina 
and Virginia.  As with most rental agencies, customers may return the vehicle that they 
have rented at any of the company’s franchises throughout the three state area.  In order 
to keep track of the movement of its vehicles, the company has accumulated the 
following data:  50% of the trucks rented in North Carolina are returned to North 
Carolina locations, 30% are dropped off in Virginia, and 20% in South Carolina.  Of 
those rented in South Carolina, 40% are returned to South Carolina, 40% are returned in 
North Carolina, and 20% in Virginia.  Of trucks rented in Virginia, 50% are returned in 
Virginia, 40% in North Carolina, and 10% in South Carolina. 
 Here are some additional things that the company might like to know. 
 
 Question 1:  If a truck is presently in North Carolina, what is the probability that it 
will again be in North Carolina after it has been rented twice? 
 Question 2:  If a particular truck is now in Virginia, what is the probability that it 
will be back in North Carolina next July 4? 
 Question 3:  If a new truck is put in service this week, what fraction of the life of 
that truck will it spend in each of the three states? 
 Question 4:  All routine servicing of vehicles is performed at the franchises in 
North Carolina.  If a truck in Virginia needs servicing, on the average how many more 
times will it be rented before it is deposited in North Carolina and can be serviced? 
 
 The scenario described in Example 6.1 is a special case of a Markov Chain.  The 
three states (North Carolina, South Carolina, and Virginia) represent the possible 
locations of a truck at any point in time.  The data that is given about how the trucks pass 
back and forth from one state to another are called transition probabilities.  By the end of 
this chapter you will know how to answer each of the four questions posed above, and 
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you will know how to model lots of different kinds of situations as a Markov Chain. 
 So what is a Markov Chain anyway?  Suppose a series of experiments is run and 
suppose each time the experiment is conducted, the set of possible outcomes or “states” 
remains the same.  Moreover, each time the experiment is repeated, the probability a 
given outcome occurs depends (at most) on the outcome of the previous trial which was 
just run.  Such a series of experiments constitutes a Markov Chain.  In Example 6.1 the 
“states” are literally states:  N.C., S.C., and VA.  The probability of a truck landing in a 
state depends on where the truck was rented, that is, on which state it was in previously. 
 
 Example 6.2.  In working with a particular gene for fruit flies, geneticists classify an 
individual fruit fly as dominant, hybrid or recessive.  In running an experiment, an 
individual fruit fly is crossed with a hybrid, then the offspring is crossed with a hybrid 
and so forth.  The offspring in each generation are recorded as dominant, hybrid or 
recessive.  The probabilities the offspring are dominant, hybrid or recessive depends only 
on the type of fruit fly the hybrid is crossed with rather than the genetic makeup of 
previous generations.  In this example the “states” are dominant, hybrid, and recessive.  
The probabilities involved will be considered a little later in this section. 
 
 Example 6.3.  A psychologist runs a series of experiments with a mouse in a maze 
containing 3 rooms.  (See the diagram below.)  Each hour the doors are opened briefly.  
50% of the time the mouse chooses to leave the room it is in and go to an adjoining room.  
If it does leave the room it is in, it is equally likely to choose any of the available doors. 
 So if the mouse is in room 1, it either stays in room 1 (probability .5) or it goes to 
room 3 (probability .5).  Similarly if the mouse is in room 2, it can stay in room 2 
(probability .5) or go to room 3 (probability .5).  But when the mouse is in room 3, there 
is a .5 probability it will stay in room 3, a .25 probability it will go to room 1, and a .25 
probability it will go to room 2.  The three rooms are the 3 “states” in this example. 
 

1

2
3

 
 
 Example 6.4.  Asthmatics are questioned every 8 hours to determine if their 
condition is excellent, good, fair, or poor.  These 4 possible conditions of the patient 
constitute the 4 “states” for a Markov Chain. 
 
 Example 6.5.  Toss a coin repeatedly.  The set of possible outcomes on each toss is 
{H, T}.  This is a 2-state Markov Chain.  No matter which outcome occurs on one toss, 
the probabilities for each of the two “states” (heads and tails) is .5 on the next toss. 
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 Example 6.6.  Kathy and Melissa are playing a game and gambling on the outcome.  
Kathy has $3 and Melissa has $2.  Each time the game is played, the winner receives $1 
from the loser.  Assume the game is fair and that the girls quit playing when either of 
them runs out of money.  If the “states” are the amount of money Kathy has at any time 
then this is a 6-state Markov Chain (since at any time Kathy has either $0, $1, $2, $3, $4, 
or $5). 
  
 The short term aspects of Markov Chains will be considered in this section and the 
next one and the question of what’s likely to happen in the long run will be looked at in 
the last two sections.  For instance, the first of the 4 questions posed in Example 6.1 is a 
short-term question.  As another illustration, in Example 6.6 Kathy might want to know 
what the probability is that she hasn’t lost any money after three games.  You’ll see how 
to answer both of these questions in this section.  She probably also would like to know 
what the probability is that she will eventually wind up with $5.  How to answer that 
question will be taken up in Section 6.4. 
 Before going further with Markov Chains it’s necessary to establish the language 
that will be used.  Although it’s assumed the set of outcomes or “states” is finite and 
remains the same from one trial to the next, the things that may constitute the “states” of 
a Markov Chain can vary greatly from one problem to another.  For instance, in Example 
6.2, the states are dominant, hybrid and recessive.  In Example 6.3, the states are the 
rooms, i.e. room 1, room 2 and room 3.  In Example 6.4, the states are “excellent”, 
“good”, “fair”, and “poor”, while in Example 6.5 the states are “H” and “T”.  In Example 
6.6 the states are $0, $1, $2, $3, $4, and $5.   
 It’s also necessary to know the probabilities of moving from a given state to another 
state on the next trial of the experiment.  These probabilities are called transition 
probabilities. In the case of Example 6.3, there’s enough information so the transition 
probabilities can be represented using tree diagrams, as is done below.  
 

room 1 room 2 room 3 room 1 room 2 room 3 room 1 room 2 room 3

room 1 room 2 room 3

1/2 1/20 1/4
1/4 1/2

1/2
1/20

 
 
 To make it easier to discuss transition probabilities and do computations with them, 
it’s helpful to number the states in the experiment as 1, 2, 3 and so forth.  For instance in 
Example 6.2, “dominant” could be called state 1, “hybrid” state 2 and “recessive” state 3.  
In Example 6.3, the obvious thing to do is number each state the same number as the 
corresponding room.  Once the states are numbered the transition probability can then be 
defined. 
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Definition:  Transition Probability 
The transition probability pij is the probability of moving from 
state i (the current state) to the state j on the next trial. 

 

 
You should note that the first subscript (i) represents the current state and the second 
subscript (j) represents the state into which the Markov Chain is moving. Thus in 
Example 6.3, the transition probability p32 represents the probability of moving from 
state 3 (in this instance room 3) to state 2 (room 2) when the bell is rung.  As can be seen 
from the first tree diagram, p32 = 1/4.  In fact, looking at the tree diagrams it’s clear that: 
 

p11 = 1/2 p12 = 0 p13 = 1/2     
 

p21 = 0 p22 = 1/2 p23 =1/2        
 

p31 = 1/4 p32 = 1/4 p33 = 1/2        
 
 It’s convenient to organize these transition probabilities in a matrix which is called 
the transition matrix.   Thus the transition matrix for Example 6.3 is 
 

        next state 
      1      2       3 

current state  
1
2
3

  
⎝
⎜
⎛

⎠
⎟
⎞1/2 0 1/2

0 1/2 1/2
1/4 1/4 1/2

   

                            
The transition matrix for Example 6.5 is  

  next state 
   1       2 

current state  
1
2  ⎝
⎛

⎠
⎞1/2 1/2

1/2 1/2   
 
where state 1 is “getting a head” and state 2 is “getting a tail”.  In general the states for a 
Markov Chain are either numbered or, as often happens, are simply labeled by some 
convenient name.  For instance, in Example 6.6, there are six states which could be called 
states 1-6 or could be labeled $0, $1, $2, $3, $4, $5 depending on how much money 
Kathy has.  Then the transition matrix could be written  

                   next state 
     $0     $1    $2      $3     $4     $5 



Section 6.1:  What is a Markov Chain? 213 
 

 current state

$0
$1
$2
$3
$4
$5

  

⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 0 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 0 1

   

 
 In order to determine the transition matrices for Example 6.2 or Example 6.4 more 
information is needed because the examples as stated do not contain enough information 
to determine the transition probabilities.  For instance, in Example 6.2, using the rules of 
inheritance as determined by the monk Gregor Mendel (excluding the possibility of 
mutations), the offspring of a dominant individual crossed with a hybrid are dominant 
50% of the time and hybrid the other 50%.  The offspring of a hybrid crossed with a 
hybrid are dominant 25%, hybrid 50% and recessive 25%, while the offspring of a 
recessive crossed with a hybrid are hybrid 50% and recessive 50%.  So if the states are 
numbered as follows: 
 

state 1 = dominant 
state 2 = hybrid 
state 3 = recessive 

  
then the transition matrix for Example 6.2 would be 
 

        1     2     3 

T  =
1
2
3 ⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞.5 .5 0

.25 .5 .25
0 .5 .5

  . 

 
 However the transition matrix for Example 6.4 can’t be determined without having 
access to data on the group of asthmatics in the study. 
 

 
Definition:  Transition Matrix 

If a Markov Chain has n states, state 1, state 2, . . . , state n, 
then the transition matrix for the Markov Chain is an n × n matrix 
T which has as entries the transition probabilities 

pij,  i = 1, 2, . . . , n,  j = 1, 2,  . . . , n. 
 

 
 Notice that transition matrix T for a Markov Chain has the following properties: 
 

 1.  T is square 
 2.  0 ≤ pij ≤ 1, i = 1, 2, . . . ,n, j = 1, 2, . . . , n 
 3.  the sum of the entries in each row of T is 1. 

 
 Property 1 is clearly true and it’s easy to see that property 2 is true since the entries 
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in T are probabilities.  Property 3 is true since each row of T represents a possible starting 
state for the Markov Chain and the entries are the individual probabilities for all possible 
outcomes for the experiment.  Those probabilities must sum to one since the probability 
of the sample space is always one. Moreover, for any matrix it is possible to determine 
whether or not it is a transition matrix for a Markov Chain based on whether or not it 
satisfies the above properties.   
 
 
 Example 6.7.  Which of the following matrices are transition matrices? 
 

(a)   
⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

1/2 1/3 0 1/6
0 0 1 0

   (b)   
⎝
⎜
⎛

⎠
⎟
⎞1/2 1/4 1/4

0 2/3 1/3
3/4 0 1/4

            

 

(c)   
⎝
⎜
⎛

⎠
⎟
⎞0 2 -1

1/2 1/2 0
1/3 2/3 0

  (d)   ⎝
⎛

⎠
⎞1/2 2/3

1/2 1/3   

 
 Solution:  (b) is the only transition matrix.  (a) is not square.  In (c), p12 = 2 which is 
greater than 1 (and p13 = –1 < 0), and in (d) the sum of row 1 is 1/2 + 2/3 = 7/6 ≠ 1.  
 
 The key to working with Markov Chain problems is finding the transition matrix 
since virtually all the questions you’ll be asked about a Markov Chain can be answered 
by doing computations using its transition matrix.  Thus, assuming you have decided (or 
have been told) that an experiment can be modeled with a Markov Chain, the following 
procedure summarizes how to find the transition matrix: 
 

1.  Decide what the states of the Markov Chain are and number or label them.   
2.  Determine each transition probability, pij.  
3.  Arrange the transition probabilities in a matrix labeling the rows and columns 

with the appropriate numbers or names for the states. 
 
 Now let’s consider the “mouse in a maze” example (Example 6.3) further.  Suppose 
the mouse is in room 1 and you want to know the probability it will be in room 1 after it 
has been given two opportunities to move.  How could you determine that probability?  
One easy way would be by using tree diagrams. 
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room 1 room 2 room 3 room 1 room 2 room 3 room 1 room 2 room 3

room 1 room 2 room 3

1/2 1/20 1/4
1/4 1/2

1/2
1/20

room 1

1/2
0

1/2

 
 
 Then the probability the mouse winds up in room 1 after 2 steps given that it started 
in room 1 is  

1/2 × 1/2 + 0 × 0 + 1/2 × 1/4 = 3/8. 
                                                          
 This probability is denoted by p11

(2)  .  Similarly, if you want the probability the 
mouse is in room 3 after 2 steps if it started in room 1 (which is denoted by p13

(2) ), you can 
use the same tree diagram to get 
 

p13
(2)  = 1/2 × 1/2 + 0 × 1/2 + 1/2 × 1/2  = 1/2. 

 
You can also compute  p12

(2)  = 1/2 × 0 + 0 × 1/2  +  1/2 × 1/4 = 1/8.  
 
 But to compute the other 2 step transition probabilities, some more tree diagrams 
would have to be drawn, one for starting in state 2 and one for starting in state 3 and then 
computations similar to the ones done above would have to be done.  As you can see, that 
would be quite tedious and, if you wanted to find transition probabilities for 3 or 4 steps 
later, it would quickly become painful.  Keeping that in mind, the following computation 
is very interesting. 
 
 If T is the transition matrix for the mouse problem, then  
                        

     T × T = T2 =  
⎝
⎜
⎛

⎠
⎟
⎞1/2 0 1/2

0 1/2 1/2
1/4 1/4 1/2

  
⎝
⎜
⎛

⎠
⎟
⎞1/2 0 1/2

0 1/2 1/2
1/4 1/4 1/2

   

                          

                 =    
⎝
⎜
⎛

⎠
⎟
⎞3/8 1/8 1/2

1/8 3/8 1/2
1/4 1/4 1/2

  . 

         
Not only do the entries in the first row have the same values as were found for p11

(2) , p12
(2)  

and p13
(2)  respectively but the computations involved in finding the entries for T2 are 

precisely the same as those done to find the 2-step transition probabilities.  For instance, 
you saw that  
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p11
(2)  = 1/2 × 1/2 + 0 ×  0 + 1/2 × 1/4. 

 
 
But that computation is exactly what is done when the first row of T is multiplied by the 
first column of T to find the entry in the first row and first column of T2.  Similarly, the 
computation done to find p12

(2)  is the same as the one done to find the entry in the first row 
and second column of T2.  It’s easily verified using the tree diagrams that p ij

(2)  has the 
same value as the entry in the ith row and jth column of T2, where i = 1, 2, 3 and j = 1, 2, 
3.  So, after this, rather than compute the 2-step transition probabilities by doing all the 
tree diagrams, you can simply compute T2.  
 

 
Since T 2  = T (2), the easy way to compute the 2-step transition 
probabilities is to multiply the transition matrix times itself to find 
T 2 . 

 

 
 Example 6.6 (continued).  If Kathy has $3 what is the probability she has at least $3 
after two more games? 
 
 Solution: 

T2 =  

⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 0 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 0 1

   

⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 0 0 0 0 0
1/2 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 0 1

  

  
       $0     $1     $2     $3     $4     $5 

= 

$0
$1
$2
$3
$4
$5

 

⎝⎜
⎜⎛

⎠⎟
⎟⎞

1 0 0 0 0 0
1/2 1/4 0 1/4 0 0
1/4 0 1/2 0 1/4 0
0 1/4 0 1/2 0 1/4
0 0 1/4 0 1/4 1/2
0 0 0 0 0 1

  

 
Thus p44

(2)  = 1/2, p45
(2)  = 0 and p46

(2)  = 1/4 so the probability Kathy has at least $3 after two 
games given she started with $3 is 3/4.  (The subscripts may be confusing here.  You 
should note that $3 is state 4, $4 is state 5, and so forth.) 
               
 
Problems 
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1.  Determine which of the following matrices are  transition matrices.  If a matrix is not 
a transition matrix explain why not. 

 

 (a)  ⎝
⎛

⎠
⎞0 1

3/4 1/4                   (b)  ⎝
⎛

⎠
⎞1/2 1

1/2 0                    (c)  ⎝
⎛

⎠
⎞1/2 1/3 1/6

1/4 1/12 2/3   
 

 (d)  ⎝
⎜
⎛

⎠
⎟
⎞1 -1/2 1/2

0 1 0
2/3 1/3 0

            (e)  ⎝
⎜
⎛

⎠
⎟
⎞.2 .5 .3

.1 .7 .2

.7 .3 0
  

 

2. Find the values of x, y and z in order for  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 x 1/3

0 0 y
1/3 1/4 z

   to be a transition matrix. 

 

3. If T =  ⎝
⎛

⎠
⎞1/3 2/3

3/4 1/4  , find p12
(2) , p21

(2) ,  and p22
(3)  using 

(a) tree diagrams 
(b) matrix multiplication 

 

4. If T = ⎝
⎛

⎠
⎞0 1

3/4 1/4    find p12
(2) , p21

(2) ,  and p22
(3) . 

 

5. If T =  ⎝
⎜
⎛

⎠
⎟
⎞.2 .5 .3

.1 .7 .2

.7 .3 0
   find p13

(2) . 

 
6. Is the 6 × 6 identity matrix a transition matrix? 
 
7. The Chancellor of NCSU tells a friend A his decision on whether or not to accept a 

job at another university.  A then tells B what the decision is, B tells C, etc., each 
time to a new person.  Suppose each time the decision is relayed, a “yes” is changed 
to a “no” with probability .05 and a “no” is changed to a “yes” with probability .08.  
Let state 1 be the reply “yes” given at that time and state 2 be the reply “no” given at 
that time. 
(a) Find the transition matrix T. 
(b) If the Chancellor tells A “yes” he will accept the job, what is the probability C is 

told he will not accept the job? 
 
8. A mouse is put in the maze below.  Each time period the doors in the maze are 

opened and it is allowed to move to another room.  50% of the time it decides to stay 
where it is but if it moves to another room, it chooses a door at random. 

 



218  Chapter 6:  Markov Chains 
 

1

2 3

4

  
(a) Find the transition matrix T. 
(b) If the mouse is now in room 1, what is the probability it will be in room 2 after 

three time periods? 
 
9. Two bowls, I and II, each contain 2 balls.  Of the four balls, 2 are red and 2 are 

green.  Each time period a ball is selected at random from each bowl.  The ball from 
Bowl I is put in Bowl II and the ball from Bowl II is put in Bowl I.  Take as state the 
number of red balls in Bowl I. 
(a) Find the transition matrix T for this Markov Chain. 
(b) Find T2 and T3. 

 
10. Suppose in Exercise 9, Bowl I has three balls and Bowl II has two balls and of the 

five balls, three are red and two are green.  Otherwise the situation is the same.  
Answer questions (a) and (b) for this Markov Chain. 

 
11. John finds a bill on his desk.  He either puts it on his wife’s desk to be dealt with the 

next day or he leaves it on his own desk for the next day or he pays it immediately 
with probabilities .3, .6 and .1 respectively.  Similarly, his wife Mary can keep it 
until the next day, put it on John’s desk or pay it immediately with probabilities .5, 
.2, and .3 respectively.  Assume this is a Markov Chain process and set up the 
transition matrix.  Find the probability a bill now on John’s desk will be paid within 
two days. 

 
12. When Grace eats her evening meal she has tea, beer, wine or water.  She only has 

one beverage with her meal.  She never has alcoholic beverages twice in a row but if 
she has beer or wine one time she is twice as likely to have tea as water the next 
time.  If she has tea or water one evening she has an alcoholic beverage the next time 
and is just as likely to choose beer as wine.  Set up the transition matrix for this 
Markov Chain. 

 
13. A baby crawls from room to room in a house described by the following diagram.  

Each time he moves from a room, he chooses a door at random.  Assume this is a 
Markov Chain process and set up the transition matrix. 

 



Section 6.1:  What is a Markov Chain? 219 
 

1

3
24

 
 
14. A junior college has freshmen and sophomore students.  80% of the freshmen 

successfully complete their year and go on to become sophomores, 10% drop out 
and 10% fail and must repeat their freshman year.  Among the sophomores 85% 
graduate, 5% drop out and 10% fail and must repeat their sophomore year.  Set up 
the transition matrix and find the probability an entering freshman graduates within 3 
years. 

 
15. The victims of a certain disease being treated at Wake Medical Center are classified 

annually as follows:  cured, in temporary remission, sick, or dead from the disease.  
Once a victim is cured, he is permanently immune.  Each year, those in remission get 
sick again with probability 1/4, are cured with probability 1/2, and stay in remission 
with probability 1/4.  Those who are sick are cured, go into remission, or die from 
the disease with probability 1/3 each. 
(a) Find the transition matrix. 
(b) If a victim is now in remission, find the probability he is still alive in two years. 

 
16. Set up the transition matrix for Example 6.1 and answer question 1. 
 
 
 
 
 6.2  Multi-Step Transition Probabilities and Distribution Vectors      
 
 You saw in the last section that the 2-step transition probabilities for a Markov 
Chain with transition matrix T can be found by computing T2.  Similarly, the 3-step 
transition probabilities can be determined by finding T3 and, in general, Tk gives the k-
step transition probabilities.  This result and the notation used are summarized as: 
 

 
Multi-step transition probabilities 

If k is a positive integer, the k-step transition probability p ij
(k)  is 

the probability a Markov Chain is in state j after k steps given it 
started in state i.   If Tk is computed then p ij

(k)  is the entry in the 
ith row and jth column of Tk. 
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Example 6.8.  A student has a class that meets on Monday, Wednesday and Friday.  If he 
goes to class on one day, he goes to the next class with probability 1/2.  If he doesn’t go 
to class that day, he goes to the next class with probability 3/4.  Set up the matrix T of 
transition probabilities and find the probability 

(a) he goes to class on Friday, if he didn’t go to class the preceding Monday. 
(b) If he goes to class on Monday, find the probability he’ll show up for class the 

following Monday.   
 
 Solution:  There are 2 states in this problem:  “going to class”, which will be 
numbered state 1, and “not going to class”, which will be numbered state 2.  The 
transition matrix is then 

     1     2 

T =
1
2 ⎝
⎛

⎠
⎞1/2 1/2

3/4 1/4   . 
 
The answer to (a) is obtained by finding p21

(2)  and the answer to (b) by finding p11
(3) . 

So it’s necessary to compute T2 and T3. 
 

T2 =   ⎝⎛ ⎠
⎞5/8 3/8

9/16 7/16         and       T3 =   ⎝⎛ ⎠
⎞19/32 13/32

39/64 25/64   
 
So p21

(2)  = 9/16 and p11
(3)  = 19/32.   

 
 You may have noticed that T2 and T3 both turn out to be transition matrices.  In 
fact, if you think about it, it makes perfectly good sense that Tk, the matrix of k-step 
transition probabilities, ought to be a transition matrix.  If T is a square matrix then it’s 
obvious that Tk is also a  square matrix so property 1 is satisfied.  The entries in Tk are 
probabilities, so property 2 (which required that the entries have values between 0 and 1) 
is satisfied.  Also, for any row the sum of the  entries in that row must be 1 since the 
entries in that row are the probabilities that, starting in the state represented by that row, 
the experiment winds up in state 1, state 2, ... , state n, respectively after k steps.   Since 
these states are all the possible outcomes, the sum of the probabilities must be 1. So 
property 3 is satisfied.  
 You have seen that if you know the state the system begins in, you can determine 
the probability the system will subsequently be in state j, for any j, j = 1,2, . . ., n, after 
any finite number of trials by looking at the appropriate entry of the right power of the 
transition matrix.  What if you don’t know the state in which the system begins?  It’s still 
possible to determine the probabilities if you know the initial probability distribution 
which is summarized in a row vector called the initial probability distribution vector. 
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Initial probability distribution vector   
The initial probability distribution vector is 
  

p0 = (p1, p2, . . . ,pn)    
where pi = probability the system is in state i initially.   

 

 
 The next example shows how the initial probability distribution can be used: 
 
 Example 6.8 (continued).  Suppose the student in Example 6.8 attends the first class 
with probability .9.   
 (a)  What is the probability he attends the next class? 
 (b)  What is the probability he attends class on the third day? 
                                                          
 Solution:   As before a tree diagram can be used to answer this question.  Let’s 
extend the tree diagram to the third day so both questions (a) and (b) can be answered. 
The probability he attends the first class is .9 but after that the Markov Chain process 
takes over so the tree diagram for the problem is: 
 

attends doesnʼt attend

attends attendsdoesnʼt attend doesnʼt attend

attends attends attends attendsdoesnʼt doesnʼt doesnʼt doesnʼt

.9 .1

1/2 1/2 3/4 1/4

1/2 1/2 3/4 1/4 3/4 1/41/21/2

 
          The answer to (a) is 

(.9)(1/2) + (.1)(3/4) = 21/40, 
and the answer to (b) is 
 

(.9)(1/2)(1/2) + (.9)(1/2)(3/4) + (.1)(3/4)(1/2) +  (.1)(1/4)(3/4) = 99/160. 
 
However, it’s also possible to use matrix methods to solve this problem. Since the initial 
distribution vector is p0 =  (.9    .1),the results obtained by using the tree diagram can 
easily be computed as:  

p0T =  (.9   .1) × ⎝⎜
⎛

⎠⎟
⎞1/2 1/2

3/4 1/4    =  (21/40   19/40)  =  p1. 
 
where p1 is the distribution vector whose entries are the probabilities the student goes to 
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class or doesn’t go to class on the second day.  Similarly, to find the probabilities he does 
or doesn’t attend class on the third day compute 
 

p2 = p0T2 = (p0T)T = p1T 
 

=   (21/40   19/40)  ×   ⎝⎜
⎛

⎠⎟
⎞1/2 1/2

3/4 1/4    =  (99/160   61/160). 
 
The first entry in p2 is the answer to (b).    
 
          In general, to determine the probability the system is in state i after k steps, 
knowing the initial distribution vector, you need to find the kth distribution vector 
                              

pk = p0Tk 
 
and take the ith entry in that vector.  It should be noted that distribution vectors have the 
properties that the entries are all nonnegative and the sum of the entries are 1.  That’s 
because the entries are again probabilities and represent all possible outcomes for the 
experiment. 
 Now let’s look at a few more examples. 
 
 Example 6.2 (continued):  In working with a particular gene for fruit flies, 
geneticists classify an individual fruit fly as dominant, hybrid or recessive.  In running an 
experiment, an individual fruit fly is crossed with a hybrid, then the offspring is crossed 
with a hybrid and so forth.  The offspring in each generation are recorded as dominant, 
hybrid or recessive. 

(a) What is the probability the third generation offspring is dominant given the first 
generation offspring is recessive? 

(b) If the population of fruit flies initially is 20% dominant, 50% hybrid and 30% 
recessive, what percentage of the population is dominant after 3 generations?  

 
 Solution:   As was seen earlier, the transition matrix for this problem is 
 

  1     2    3 

T =  
1
2
3

 
⎝
⎜
⎛

⎠
⎟
⎞.5 .5 0

.25 .5 .25
0 .5 .5

  

  
where states 1, 2, and 3 are “dominant”, “hybrid” and “recessive” respectively.  To 
answer (a) it’s necessary to compute T2 and take the entry in the first row and third 
column, i.e. find p13

(2)  .  Thus 
 

T2 =  
⎝
⎜
⎛

⎠
⎟
⎞1/2 1/2 0

1/4 1/2 1/4
0 1/2 1/2

  
⎝
⎜
⎛

⎠
⎟
⎞1/2 1/2 0

1/4 1/2 1/4
0 1/2 1/2

   =  
⎝
⎜
⎛

⎠
⎟
⎞3/8 1/2 1/8

1/4 1/2 1/4
1/8 1/2 3/8

  . 

 
So  p13

(2)  = 1/8. 
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 The answer to (b) is found by computing p0T3, where  
 

p0 =  (.2   .5   .3). 
Thus,  

p0T3 =  (.2    .5    .3) 
⎝
⎜
⎛

⎠
⎟
⎞1/2 1/2 0

1/4 1/2 1/4
0 1/2 1/2

  

3

  =  (.2    .5    .3) 
⎝
⎜
⎛

⎠
⎟
⎞5/16 1/2 3/16

1/4 1/2 1/4
3/16 1/2 5/16

    

 
           =  (39/160   1/2    41/160). 

 
So the answer to (b) is 39/160. 
 
 Example 6.9.  Customers in a certain city are continually switching the brand of 
soap they buy.  If a customer is now using brand A, the probability he will use brand A 
next week is .5, that he switches to brand B is .2 and that he switches to brand C is .3.  If 
he now uses brand B, the probability he uses B next week is .6 and the probability that he 
switches to C is .4 .  If he now uses brand C, the probability he uses C next week is .4, 
that he switches to A is .2 and to B is .4.  Assume the process is a Markov Chain. 

(a) Find the probability a customer now using brand A will be using brand B in two 
weeks. 

(b) If the percentage of customers now using brand A is 30%, the percentage using 
brand B is 20% and the percentage using brand C is 50%, find the percentage of 
customers using brand C in three weeks. 

(c) Find the probability a customer now using brand A will be using brand B in 6 
weeks. 

 
 Solution:  Let the states be “using brand A”, “using brand B”, and “using brand C”.  
Then the transition matrix T is 

    A   B   C 

T =  
A
B
C ⎝
⎜
⎛

⎠
⎟
⎞.5 .2 .3

0 .6 .4
.2 .4 .4

  

 
where the order of the states is as listed above. 
 
  (a)  The answer to this question is p12

(2)  , so let’s find T2. 
 

  T2 =    
⎝
⎜
⎛

⎠
⎟
⎞.5 .2 .3

0 .6 .4
.2 .4 .4

  

2

  =  
⎝
⎜
⎛

⎠
⎟
⎞.31 .34 .35

.08 .52 .40

.18 .44 .38
  

 Thus, p12
(2)   = .34. 

 
 (b)  Now, p0 =   (.3   .2   .5) and, omitting the computations involved in finding p0T3, 
it turns out that: 

p0T3 =  (.1745    .4454     .3801). 
 
So in three weeks the percentage of customers using brand C is about 38%.  
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 (c)  Here p12

(6)   is needed, so computing T6 gives 
 

T6 =  
⎝
⎜
⎛

⎠
⎟
⎞.160599 .456266 .383135

.150632 .464048 .38532

.155002 .460636 .384362
  . 

 
 Thus the probability a customer now using brand A will be using brand B in 6 
weeks is  

p12
(6)  = .456266. 

 
 
 
Problems 
 
In Exercises 1-4, determine which of the vectors below are probability distribution 
vectors. 
 
1. [1/2  0  1/2] 2. [0  0  1  0] 
 
3. [1/2  -1/3  2/3  1/6] 4. [1/3  1/2  1/3]  
 
In Exercises 5-8, if p0 and T are as given, find the probability distribution after 2 steps 
using  (a) tree diagrams,  (b) matrix multiplication 
 

5. p0 = (.8  .2)     T = ⎝⎛ ⎠
⎞.4 .6

.3 .7   6. p0 = (1/3  2/3)    T = ⎝
⎛

⎠
⎞1/2 1/2

3/4 1/4   
 

7. p0 = (0  1/2  1/2)    T = ⎝
⎜
⎛

⎠
⎟
⎞1/3 2/3 0

0 0 1
1/2 1/6 1/3

  8. p0 = (1  0  0)    T = ⎝
⎜
⎛

⎠
⎟
⎞1/4 1/4 1/2

1 0 0
1/2 0 1/2

  

 

9. If  T = ⎝
⎜
⎛

⎠
⎟
⎞p11 p12

p21 p22
  is a transition matrix and p0 = (p1  p2) is a distribution  

 
 vector, show that  p0T  is a probability distribution vector. 
 
10. A mouse is put in the maze below.  Each time period the doors in the maze are 

opened and it is allowed to move to another room.  50% of the time it decides to stay 
where it is but if it moves to another room, it chooses a door at random. 

 

1

2 3

4

 
  If  p0 = (1/4  1/2  1/8  1/8), find the probability distribution after 2 steps. 
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11. Two bowls, I and II, each contain 2 balls.  Of the four balls, 2 are red and 2 are 

green.  Each time period a ball is selected at random from each bowl.  The ball from 
Bowl I is put in Bowl II and the ball from Bowl II is put in Bowl I.  Take as state the 
number of red balls in Bowl I.  If Bowl I contains 1 red and 1 green ball initially, 
find p1, p2, and p3 and interpret the results. 

 
12. Suppose in the above problem, Bowl I has three balls and Bowl II has two balls and 

of the five balls, three are red and two are green.  Otherwise the situation is the same.  
If Bowl I contains 2 red and 1 green ball initially, find p1, p2, and p3 and interpret the 
results. 

 
13. A bead is located at one of the three points A, B or C on the wire drawn below.  Each 

time period the bead moves clockwise to an adjacent point with probability 1/2, 
counterclockwise to an adjacent point with probability 1/3 or stays put with 
probability 1/6.  
(a) Set up the transition matrix T. 
(b) Find T2 and T3. 
(c) If the bead is initially at point A, find p1, p2, and p3. 

 

A B

C  
14. A problem in the last section describes the following situation: 
 
 John finds a bill on his desk.  He either puts it on his wife’s desk to be dealt with the 

next day or he leaves it on his own desk for the next day or he pays it immediately 
with probabilities .3, .6 and .1 respectively.  Similarly, his wife Mary can keep it 
until the next day, put it on John’s desk or pay it immediately with probabilities .5, 
.2, and .3 respectively. 

 
 If the bill is on John’s desk on Monday, what is the probability it will be paid by 

Friday?  [Use the idea of an initial probability distribution vector in your solution.] 
 
15. Nancy buys groceries once a week and during her shopping trip she always buys 

exactly one bag of candy, choosing from Jolly Ranchers, chocolate-covered mints 
and Skittles.  If she chooses Jolly Ranchers one week, the next week she is equally 
likely to choose any of the three types of candy.  If she picks chocolate-covered 
mints one week, she doesn’t pick them the next week but is equally likely to choose 
Jolly Ranchers as Skittles.  If she chooses Skittles one week, the next week she picks 
chocolate-covered minst half the time and otherwise is equally likely to choose Jolly 
Ranchers as Skittles.   
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 If she chooses chocolate-covered mints one week, use the idea of an initial 

probability distribution vector to find the probability she buys Skittles 3 weeks later. 
 
 
 
6.3  Regular Markov Chains 
 
       This section and the next one deals with the long term behavior of Markov Chains.  
The last section showed that k-step transition probabilities for a Markov Chain with 
transition matrix T can be found by simply computing Tk and looking at the appropriate 
entries of Tk.  If you had a distribution vector p0 and wanted to find the kth distribution 
vector pk, you computed p0Tk.   Determining long term behavior means finding, at least 
approximately, the entries of Tk and pk for k very large.  However, while it’s possible to 
find Tk and pk for any k as long as it’s known what the value of k is, in practice it can be 
relatively difficult if the value of k is large.  For example, suppose you wanted to find p25, 
where  
 

T  = ⎝
⎛

⎠
⎞.8 .2

.4 .6   and p0 =  (.3    .7) . 
 
   Even though T is only a 2 × 2 matrix, doing the computations by hand is quite 
unpleasant.  However, in many situations the problem isn’t so much one of “what is p8”, 
or “what is pk” but rather is the problem of “approximately what is pk, when k is large”.  
In fact, if an approximation of Tk can be obtained,  that’s enough, since pk can then be 
found by computing  

pk = p0Tk 
 
 For the T above, let’s see if an approximation of Tk, for large k, can be found by 
computing various powers of T.  
  

T2 =  ⎝⎛ ⎠
⎞.72 .28

.56 .44                      T6  =  ⎝
⎛

⎠
⎞.668032 .331968

.663936 .336064
  

 

T12 = ⎝
⎛

⎠
⎞.666672259 .333327741

.6666554819 .3333445181         T15 = ⎝
⎛

⎠
⎞.6666670246 .3333329754

.6666659508 .3333340492
  

 
 It looks like the matrices T12  and T15 can be approximated by a matrix S where 
 

  S =  ⎝⎛ ⎠
⎞2/3 1/3

2/3 1/3   . 
 
Note that the rows of S are identical.  Moreover, when the following distribution vectors 
are computed, 
 
  p2 = p0T2 =  (.608      .392) 
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  p6 = p0T6 =  (.6651648    .3348352) 
 
  p12 = p0T12 =  (.666660515   .333339485) 
 
  p15 = p0T15 =  (.666666273   .333333727) 

 
it’s easy to see that these vectors are approaching the vector 
 
  p0S = s =   (2/3    1/3)              
 
 where s is a vector that has the same entries as a row in the matrix S. 
 Now for this T it was possible to find a matrix S so that 
    

S ≈ Tk, for large k, 
 
(the symbol “≈” means “is approximately equal to”). However, you might ask if there’s 
something special about this particular matrix T.  It turns out that if T is a regular 
transition matrix then a matrix can always be found which approximates Tk.  A regular 
transition matrix is defined as:  
 

 
Definition:  Regular transition matrix 

T is a regular transition matrix if T is a transition matrix and if 
there is some power of T, say Tm, so that Tm has all positive 
entries. 

 

 
 The following theorem then describes what the above observations were all about. 
 

 
Theorem  

If T is a regular transition matrix then there is a matrix S, called 
the steady-state matrix, so that  

Tk ≈ S    if k is large 
(The symbol “≈” means “is approximately equal to”.) 

 

 
 You might then ask:  “Are all transition matrices regular?”  Consider the following 
examples. 
 

 Example 6.10.   T =   ⎝⎛ ⎠
⎞2/3 1/3

4/9 5/9   
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T is clearly regular, since all its entries are positive.  (In this case,  m = 1 in the 
definition.) 
 

 Example 6.11.   T = ⎝
⎛

⎠
⎞0 1

1/3 2/3   
 
 T is regular, since the entries of T2 are all positive. 
 

 Example 6.12.  T =  
⎝
⎜
⎛

⎠
⎟
⎞1 0 0

0 1 0
0 0 1

  

 
T is not regular, since Tm = T for every m and T clearly has zero entries. 
 
 In the above examples it was simple to find out whether or not the matrices were 
regular since it wasn’t necessary to compute many powers of T to either get a matrix that 
had all positive entries or to see that all powers of T would contain a zero entry.  But it 
can get rather messy if you have to compute several powers of T or if T is large or if T 
has difficult numbers to work with.  An easier way to handle the problem of determining 
if T is regular is discussed at the beginning of the exercise set at the end of this section.  
In any case, once you have determined whether or not a transition matrix is regular and 
thus know it has a steady-state matrix, how do you find that steady-state matrix?  You 
certainly don’t want to have to compute Tk for large k and then “eyeball” S as was done 
above.  That really defeats the purpose.   Fortunately, the following theorem gives a 
simple way to compute S. 
 

 
Theorem  

Let T be a regular transition matrix.  Then the following 
statements are true, where S is the steady-state matrix for T.     
(a) The rows of the matrix S are identical.  Thus each row of S 

is a row vector (which is denoted by s and called the 
steady-state vector).  Moreover, S is a transition matrix so 
the entries of s are nonnegative and the sum of the entries 
of s is 1.   

(c) If p0 is an initial probability distribution vector, then p0Tk 
approaches s if k is large and p0S = s.    

(d) To find s, you need to solve the equation sT = s and use 
the fact  that the sum of the entries of s is 1. 

 

 
 Example 6.8 (continued). A student has a class that meets on Monday, Wednesday 
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and Friday.  If he goes to class on one day, he goes to the next class with probability 1/2.  
If he doesn’t go to class that day, he goes to the next class with probability 3/4.  In the 
long run, what fraction of the time does he goes to class? 
 
 Solution:   You saw earlier that the transition matrix for this problem is 
 

T =  ⎝⎛ ⎠
⎞1/2 1/2

3/4 1/4   
 
where state 1 represents “attends class” and state 2 represents “doesn’t attend class”.  To 
answer the question in this problem, you need to find the steady-state vector s which is 
done by solving the matrix equation 
 

sT = s, where s = (x   y)  
together with     

x + y = 1. 
 

Now,  sT = s  implies   (x   y)  ⎝
⎛

⎠
⎞1/2 1/2

3/4 1/4    =   (x   y), which gives the equations 
 

1/2 x + 3/4 y = x 
1/2 x + 1/4 y = y 

which simplify to  
–1/2 x + 3/4 y = 0 
1/2 x – 3/4 y = 0. 

 
The two equations have the same solution set, x = 3/2 y.  Substituting this back into the 
equation x + y = 1 gives 

3/2 y + y = 1    
or      

y = 2/5. 
 
Thus,  x = 3/5 and s = (3/5, 2/5).  Therefore, in the long run the student attends class 3/5 
of the time (and doesn’t attend class 2/5 of the time). 
 
 Example 6.13.  Bob, Alice and Carol are playing frisbee.  Bob always throws to 
Alice and Alice always throws to Carol.  Carol throws to Bob 2/3 of the time and to Alice 
1/3 of the time.  In the long run what percentage of the time do each of the players have 
the frisbee? 
 
 Solution:   Letting the states be A, B, and C  where state A is “Alice has the frisbee”, 
state B is “Bob has the frisbee” and state C is “Carol has the frisbee”, the transition 
matrix T is 

  A     B    C 

T =  
A
B
C

  
⎝
⎜
⎛

⎠
⎟
⎞0 0 1

1 0 0
1/3 2/3 0

  . 

 
  Since T has several 0 entries, you first need to determine if T is regular.  The 
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discussion at the beginning of the exercise set at the end of this section shows that all the 
entries of T5 are positive.  Thus T is regular and the equation 
 

sT = s, where   s = (x   y   z) 
must be solved, together with 

x + y + z = 1. 
 
Solving sT = s gives the system of equations 
 

   y + 1/3 z = x 
   2/3 z = y 

   x = z 
which reduces to  

   -x + y + 1/3 z = 0 
       –  y + 2/3 z = 0 
    x            – z = 0. 

The second equation says  
 

y = 2/3 z 
 
while the third equation says 
 

x = z. 
 
Substituting these values for x and y into the first equation gives 0 = 0.  However, s is a 
probability vector, so x + y + z = 1 and substituting the above values for x and y in terms 
of z into that equation gives 
 

z + 2/3 z + z = 1    or    z = 3/8. 
Thus 

x = 3/8, y = 1/4 and z = 3/8 
 
so Alice has the frisbee 3/8 of the time, Bob has it 1/4 of the time and Carol has it 3/8 of 
the time. 
 
 It’s useful to note that in both of these examples when the system of equations 
obtained from the matrix equation 
 

sT = s 
 
was simplified, the system ended up with one equation that was superfluous.  That wasn’t 
an accident.  In fact, that should happen every time you solve sT = s, where T is a regular 
transition matrix and if it doesn’t happen, you’ve made a mistake somewhere.  As for the 
method you use in solving the system of equations, that’s up to you.  With more than two 
variables involved, you may want to go to the matrix methods which were studied in 
Chapter 1, but it generally depends on the complexity of the system of equations you 
have to solve.  In both of the examples done above, it wasn’t necessary to use row 
reduction to solve the system of equations since the systems were easily solved using 
other methods, but in many problems row reduction may be the preferred method.  
Consider the following example. 
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 Example 6.9 (continued).  Customers in a certain city are continually switching the 
brand of soap they buy.  If a customer is now using brand A, the probability he will use 
brand A next week is .5, that he switches to brand B is .2 and that he switches to brand C 
is .3.  If he now uses brand B, the probability he uses B next week is .6, that he switches 
to C  is .4, and he doesn’t switch to A.  If he now uses brand C, the probability he stays 
with C is .4, that he switches to A is .2 and to B is .4.  Assuming the process is a Markov 
Chain, find the percentage of customers using each brand of soap in the long run. 
 
 Solution:   The transition matrix T for this problem is 
  

T =   
⎝
⎜
⎛

⎠
⎟
⎞.5 .2 .3

0 .6 .4
.2 .4 .4

  . 

  
To answer the question in this problem it’s necessary to find s.  Using sT = s, where s is 
given by  s = (x, y, z), yields 

(x   y   z)  
⎝
⎜
⎛

⎠
⎟
⎞.5 .2 .3

0 .6 .4
.2 .4 .4

   =   (x   y   z) 

 
This is equivalent to the following system of equations: 
 

   .5x           + .2z = x 
   .2x + .6y + .4z = y 
   .3x + .4y + .4z = z 

which simplify to  
   –.5x       + .2z = 0 
   .2x – .4y + .4z = 0 
   .3x + .4y – .6z = 0 

 
 Remember also that  x + y + z = 1.  This equation must be used in addition to the 3 
listed above, for the system above does not have a unique solution.  Inclusion of the 
equation  

x + y + z = 1  
 
does, however, guarantee a unique solution.   
 These four equations may be solved using the techniques of Chapter 1.  A good 
approach that tends to cut down on the computation is to use the augmented matrix for 
only the first 3 equations, and then come back to the equation  x + y + z = 1 at the very 
end.  Let’s also multiply each of the original 3 equations by 10 so as to clear out the 
decimals: 
 

   –5x       + 2z = 0 
   2x – 4y + 4z = 0 
   3x + 4y – 6z = 0 

 
 The augmented matrix approach then might go like this: 
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⎝
⎜
⎛

⎪
⎪
⎪-5 0 2

2 -4 4
3 4 -6 ⎠

⎟
⎞0

0
0

 

R1 + 2R3

 

 
⎝
⎜
⎛

⎪
⎪
⎪1 8 -10

2 -4 4
3 4 -6 ⎠

⎟
⎞0

0
0

  

 
R2 – 2R1

R3 – 3R1

 
⎝
⎜
⎛

⎪
⎪
⎪1 8 -10

0 -20 24
0 -20 24 ⎠

⎟
⎞0

0
0

 

R3 – R2

 

 
⎝
⎜
⎛

⎪
⎪
⎪1 8 -10

0 -20 24
0 0 0 ⎠

⎟
⎞0

0
0

  

 
– 

1
20 R2 

 
⎝
⎜
⎛

⎪
⎪
⎪1 8 -10

0 1 -6/5
0 0 0 ⎠

⎟
⎟
⎞0

0
0

 

R1 – 8R2

 

 
⎝
⎜
⎛

⎪
⎪
⎪1 0 -2/5

0 1 -6/5
0 0 0 ⎠

⎟
⎞0

0
0

  

 The first and second rows now say 

x = 
2
5  z  and y = 

6
5  z . 

Substituting this information into  x + y + z = 1 gives 
 

z +  25  z  + 65  z  =  13
5   z = 1, so z = 

5
13  , x = 

2
13  , and y = 

6
13  . 

  
Thus, in the long run, the proportion of customers using brand A is 2/13, and the 
percentage is 15.38% approximately.  Similarly the percentage of customers using brand 
B is 46.15% and using brand C is 38.46% (approximately).  You should compare these 
values with the entries obtained for T6 in Example 6.8 of the last section. 
 
 
Problems 
 
 To determine if a transition matrix is regular the following technique can be used: 

(a) Replace all positive entries in T by *. 
(b) In finding Tk, if k is any positive integer, let * represent a positive entry of T.  

(Note:  In checking for regularity, all that’s important is whether there are any 
zero entries in a given power of T.  The actual value of a given positive entry of 
T is irrelevant.)  
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Example:  Suppose T = ⎝
⎜
⎛

⎠
⎟
⎞0 0 1

1 0 0
1/3 2/3 0

  .  Replacing positive entries of T by *’s gives 

 

T = ⎝
⎜
⎛

⎠
⎟
⎞0 0 *

* 0 0
* * 0

  .  Then T2 =  ⎝
⎜
⎛

⎠
⎟
⎞0 0 *

* 0 0
* * 0

  × ⎝
⎜
⎛

⎠
⎟
⎞0 0 *

* 0 0
* * 0

   =  ⎝
⎜
⎛

⎠
⎟
⎞* * 0

0 0 *
* 0 *

  , and  

 

T4 = T2 × T2  =   ⎝
⎜
⎛

⎠
⎟
⎞* * 0

0 0 *
* 0 *

  × ⎝
⎜
⎛

⎠
⎟
⎞* * 0

0 0 *
* 0 *

   =  ⎝
⎜
⎛

⎠
⎟
⎞* * *

* 0 *
* * *

  . 

 

T5 = T4 × T  =  ⎝
⎜
⎛

⎠
⎟
⎞* * *

* 0 *
* * *

  × ⎝
⎜
⎛

⎠
⎟
⎞0 0 *

* 0 0
* * 0

   =   ⎝
⎜
⎛

⎠
⎟
⎞* * *

* * *
* * *

  .  The purpose of this  

 
calculation is to demonstrate that all the entries of T5 are positive. 

 
1. Use the technique described above to determine which of the following matrices are 

regular. 
 

(a)  ⎝
⎛

⎠
⎞0 1

1/3 2/3   (b)  ⎝
⎛

⎠
⎞1 0

1/4 3/4   (c)  ⎝
⎛

⎠
⎞1/2 1/2

1 0   
 

(d) ⎝
⎛

⎠
⎞2/3 1/3

0 1   (e)  ⎝
⎛

⎠
⎞1 0

0 1   (f)  ⎝
⎛

⎠
⎞0 1

1 0   
 

(g) ⎝
⎜
⎛

⎠
⎟
⎞0 1 0

1 0 0
1/2 1/4 1/4

  (h) ⎝
⎜
⎛

⎠
⎟
⎞0 1/5 4/5 0

0 0 1 0
1 0 0 0

2/3 0 0 1/3

  

 

(i) ⎝
⎜
⎛

⎠
⎟
⎞1/3 1/2 1/6

0 1 0
1/2 1/2 0

  (j) 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 1 0 0 0

1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0

  

 
2. For each of the following matrices, verify that the given row vector is the steady-

state vector for the regular transition matrix. 
 

(a) ⎝
⎛

⎠
⎞0 1

1/4 3/4    ,  s = (1/5  4/5) (b) ⎝
⎛

⎠
⎞.3 .7

.6 .4   ,  s = (6/13  7/13) 
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(c) ⎝
⎜
⎛

⎠
⎟
⎞0 1/2 1/2

1/3 1/3 1/3
1/4 1/2 1/4

  ,  s = (8/35  15/35  12/35) 

 
3. For each of the following matrices verify that the given row vector is the steady-state 

vector for the regular transition matrix. 
 

(a) ⎝
⎛

⎠
⎞2/3 1/3

1/2 1/2   ,  s = (3/5,2/5) (b) ⎝
⎛

⎠
⎞.1 .9

.6 .4   ,  s = (.4  .6) 
 

(c) ⎝
⎜
⎛

⎠
⎟
⎞.2 .3 .5

.4 .4 .2

.3 .6 .1
  ,  s = (14/45   19/45   12/45) 

 
In Exercises 4-13, find the steady-state vector. 
 

4. ⎝
⎛

⎠
⎞4/7 3/7

1/6 5/6            5.  ⎝
⎛

⎠
⎞.7 .3

.6 .4          6.  ⎝
⎛

⎠
⎞.9 .1

.7 .3          7.  ⎝
⎛

⎠
⎞1/7 6/7

5/7 2/7   
 
 

8.  ⎝
⎜
⎛

⎠
⎟
⎞.6 .2 .2

.4 .3 .3
0 .9 .1

          9.  ⎝
⎜
⎛

⎠
⎟
⎞3/5 1/5 1/5

1/10 4/5 1/10
0 1/5 4/5

        10.  ⎝
⎜
⎛

⎠
⎟
⎞1/2 1/5 3/10

2/5 2/5 1/5
3/10 1/10 3/5

  

 
 

11. ⎝
⎜
⎛

⎠
⎟
⎞1/2 1/2 0

1/3 1/3 1/3
1/2 0 1/2

        12.  ⎝
⎜
⎛

⎠
⎟
⎞1/4 1/4 1/2

1/2 0 1/2
0 1 0

         13.  ⎝
⎜
⎛

⎠
⎟
⎞.6 .2 .2

.1 .7 .2

.4 .2 .4
  

 

14. Show that  T = ⎝
⎛

⎠
⎞0 1

1 0   has a unique vector  s = (1/2  1/2) so that sT = s but that 

 Tn  does not converge to S = ⎝
⎛

⎠
⎞1/2 1/2

1/2 1/2   as n gets larger and larger. 
 

15. (a)   Show that if  T = ⎝
⎜
⎛

⎠
⎟
⎞1 0 0

1/4 1/2 1/4
0 0 1

  there is more than one s such that sT = s. 

 
(b)   Find a steady-state matrix S so that  Tn ≈ S.  Are the rows of S identical? 

 
16. In a group of registered voters, 80% of those who voted in the last election will vote 

in the next election and 30% of those who didn’t vote in the last election will vote in 
the next election.  In the long run, what percentage of the voters are expected to vote 
in a given election? 

 
17. In a group of registered voters, 60% of those who voted Democratic in the last 

election will vote Democratic in the next election, 20% will vote Republican and 
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20% will fail to vote.  70% of those who voted Republican will vote Republican in 
the next election, 10% will vote Democratic and 20% will fail to vote.  Of those who 
didn’t vote last time, 20% will vote Democratic, 10% will vote Republican and 70% 
will fail to vote.  In the long run, what percentage vote Democratic? 

 
18. The Cola Bottling Company is considering purchasing one of two types of vending 

machines A and B.  On a month-to-month basis a machine can be in one of two 
states 

   
    W = working properly 
    N = not working properly 
 
 The transition matrices for each type of machine are: 
 

           W    N                       W    N 

 
W
N ⎝
⎛

⎠
⎞.77 .23

.68 .32     
W
N ⎝
⎛

⎠
⎞.75 .25

.81 .19   
  A                    B 

 
 Based on long-term performance, which machine should Cola Bottling Company 

buy? 
 
19. Washington, D.C. has two airports, Washington National and Dulles International.  

A car rental agency rents cars at both airports and the cars can be returned to either 
airport.  If a car is rented at Washington National the probability is .6 that it will be 
returned to Washington National.  If a car is rented at Dulles the probability is .7 that 
it is returned to Dulles. 
(a) If a car starts out at Dulles, what is the probability it is returned to Dulles after 2 

rentals? 
(b) What percentage of the cars owned by the agency wind up at Dulles? 

 
20. Answer questions 2 and 3 in Example 6.1. 
 
21. A woman gets her daily exercise by running, swimming or biking.  She never runs or 

bikes two days in a row.  If she runs one day, she is equally likely to swim or bike 
the next day.  If she bikes then the next day she is three times as likely to swim as 
run.  If she swims one day, then half the time she swims the next day and otherwise 
she is equally likely to run or bike.  In the long run, what portion of her time is spent 
on each of the activities? 

 
22. A shelf in a toy store is stocked with 4 teddy bears.  Each hour a teddy bear is sold 

with probability 1/3.  As soon as all the teddy bears are sold, the shelf is restocked 
with 4 more bears.  Set up the transition matrix for this Markov Chain process, 
assuming the states are the number of teddy bears on the shelf at any time.  Show the 
matrix is regular, find the steady-state matrix and interpret the entries. 

 
23. Nancy buys groceries once a week and during her shopping trip she always buys 

exactly one bag of candy, choosing from Jolly Ranchers, chocolate-covered mints 
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and Skittles.  If she chooses Jolly Ranchers one week, the next week she is equally 
likely to choose any of the three types of candy.  If she picks chocolate-covered 
mints one week, she doesn’t pick them the next week but is equally likely to choose 
Jolly Ranchers as Skittles.  If she chooses Skittles one week, the next week she picks 
chocolate-covered minst half the time and otherwise is equally likely to choose Jolly 
Ranchers as Skittles.  In the long run, what fraction of the time does she buy each 
time of candy? 

 
 
 
6.4  Absorbing Markov Chains 
 
 An absorbing state in a Markov Chain is a state from which it is impossible to 
leave.  Once you hit an absorbing state, you’re stuck there forever.  An absorbing Markov 
Chain is one which has absorbing states, in which it is possible to reach an absorbing 
state from any nonabsorbing state.  While this concept of an “absorbing state” may seem 
a bit curious at first, it’s actually very useful and fits several situations that have already 
been examined.   
 

 
Definition:  Absorbing Markov Chain 

A state in a Markov Chain is absorbing if it is impossible to leave 
the state.  The Chain is an absorbing Markov Chain if the 
following two properties are satisfied: 
(1) the Markov Chain has at least one absorbing state 
(2) from each nonabsorbing state it is possible to go to an 

absorbing state (perhaps in more than one step). 
 

 
 In other words, a state in a Markov Chain is absorbing if the probability is 1 that 
once in the state, the process remains in that state (pii = 1).  So, an easy way to check to 
see if a Markov Chain has absorbing states and to identify those states is to look down the 
main diagonal of the transition matrix and see if there are any 1’s.  If there are, the states 
associated with those 1’s are the absorbing states.  Once it’s been determined that the 
Markov Chain has absorbing states, property 2 must be checked for each nonabsorbing 
state.  
   
 Example 6.14.  Identify the absorbing states in each of the following transition 
matrices.  Then determine which are absorbing Markov Chains.   
 

(a)  
⎝
⎜
⎛

⎠
⎟
⎞1/2 1/4 0 1/4

0 1 0 0
3/4 0 1/4 0
1/3 1/3 1/3 0

         (b)  
⎝
⎜
⎛

⎠
⎟
⎞1/3 0 2/3 0

1/8 1/4 3/8 1/4
1/2 0 0 1/2
2/5 1/5 1/10 3/10
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(c)  
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞3/4 0 1/4 0 0

0 1 0 0 0
1/3 0 2/3 0 0
0 0 0 1 0
0 1/3 0 1/2 1/6

  

 
 Solution:  The absorbing state in (a) is state 2, while (b) has no absorbing states and 
(c) has states 2 and 4 as absorbing states.  However,  (a) is the only absorbing Markov 
Chain.  In (a) it is possible to go from each of the states 1 and 4 to state 2 in one step and 
it’s possible to go from state 3 to state 2 in two steps.   (b) is not an absorbing Markov 
Chain since it has no absorbing states, while (c) is not absorbing since it is not possible to 
get to any absorbing state from either state 1 or state 3. 
 
 The long-term behavior of an absorbing Markov Chain has several interesting 
aspects.  For example, 
 

 
Theorem 

Starting from any state in an absorbing Markov Chain, the 
probability is 1 that the process will wind up in an absorbing 
state. 

 

 
 However, even though the above theorem is useful, it raises more questions than it 
answers.  For instance, how long does it take for the process to get absorbed?  And if 
there is more than one absorbing state in the Markov Chain, in which state is the process 
most likely to get absorbed?   And how long and in which nonabsorbing states is the 
process going to spend time before being absorbed?  To understand why it might be 
worthwhile to know the answers to these questions let’s look at the following example. 
 
 Example 6.15.  A rat is placed in the maze of the figure below. In room 1 is a cat 
and in room 4 is a piece of cheese.  If the rat enters either of these rooms he does not 
leave it.  If he is in one of the other rooms, each time period he chooses at random one of 
the doors of the room he is in and moves into another room. 
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1

4 2

3

 
 
 
 
 
 

         room 
  1     2     3     4 

So  T =   room

1
2
3
4

  
⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

1/3 0 1/3 1/3
1/2 1/2 0 0
0 0 0 1

  . 

 
 Questions of vital importance to the rat are:  “What’s the probability I wind up in 
state 4 as opposed to state 1?” “Does it make a difference which state I start in?” 
“Depending on which state I start in, how long is it on average before I’m absorbed ?”  
(Here “absorbed” means absorbing (cheese) or being absorbed (by cat))  “On the average, 
how much time do I spend in each of the rooms before absorption?” 
 So how do you go about trying to answer these questions?  In the last section you 
saw that questions on long term behavior of a regular transition matrix  could be 
answered by determining its steady-state matrix.  It turns out that the transition matrix for 
an absorbing Markov Chain also has a steady-state matrix, i.e. if T is the transition matrix 
then there is a matrix S so that 
 

Tk ≈ S  for large k. 
 
 However, in doing the computations necessary to determining a steady-state matrix  
for an absorbing Markov Chain it turns out to be more convenient to rewrite the transition 
matrix so the absorbing states are listed first, followed by the nonabsorbing states.  Thus 
the matrix ends up having the following form, called the canonical form: 
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I 0
R Q

absorbing
states

nonabsorbing
states

absorbing
states

nonabsorbing
states

 
 

If the Markov Chain has m absorbing states then I is an identity matrix of size m x m.  If 
there are n states in the process, then there are n – m nonabsorbing states so Q is also a 
square matrix and has size (n – m)  ×  (n – m).  The zero matrix in the upper right hand 
corner has size m × (n – m) and R has size (n – m) × m.   
 
 Example 6.15 (continued).  To put the transition matrix into canonical form, the 
matrix needs to be rearranged so that the absorbing states, corresponding to rooms 1 and 
4, are listed first.  Thus the canonical form of the transition matrix is: 
 

       room 
1     4      2     3 

T =   room 

1
4
2
3

  
⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

0 1 0 0
1/3 1/3 0 1/3
1/2 0 1/2 0

  

 
In rewriting the matrix make sure that it’s rearranged so that the states are in the same 
order for both the row labels and the column labels.  In T above, the rows are labeled in 
order as rooms 1, 4, 2,3 so the columns have to be labeled in the same order. In any 
event, in the canonical form for T,  the matrices R and Q are 
 

       room           room 
      1     4         2     3 

R =  room 
2
3  ⎝
⎛

⎠
⎞1/3 1/3

1/2 0    and  Q =  room
2
3  ⎝
⎛

⎠
⎞0 1/3

1/2 0   . 

 
 Example 6.16.  Put the following transition matrices for absorbing Markov Chains 
in canonical form .   Then find R and Q for each of the matrices. 
          1      2     3     4             1    2   3    4 

(a)  

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞1/2 0 1/4 1/4

0 1 0 0
0 0 1 0

1/3 1/3 0 1/3

         (b)  

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞0 1 0 0

0 0 1 0
0 0 1 0

1/2 0 0 1/2

  

 
 Solution: 
 (a)  First notice that states 2 and 3 are absorbing states.  Then the canonical form of 
the transition matrix is: 
             2     3     1      4 
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T =  

2
3
1
4

 
⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

0 1 0 0
0 1/4 1/2 1/4

1/3 0 1/3 13

  

 
        2     3     1      4 

with R =  
1
4  ⎝
⎛

⎠
⎞0 1/4

1/3 0    and Q =  
1
4  ⎝
⎛

⎠
⎞1/2 1/4

1/3 1/3   

 (b)  Here state 3 is the only absorbing state.  The canonical form is: 
 

       3    1    2    4 

T =  

3
1
2
4

 
⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

0 0 1 0
1 0 0 0
0 1/2 0 1/2

  

 
      3          1    2   4 

with  R  =  
1
2
4

 
⎝
⎜
⎛

⎠
⎟
⎞0

1
0

  and  Q = 
1
2
4

 
⎝
⎜
⎛

⎠
⎟
⎞0 1 0

0 0 0
1/2 0 1/2

  

 
 Once the transition matrix has been put in canonical form, the following theorem 
can be used: 
 
 

 
Theorem 

If T is the transition matrix for an absorbing Markov Chain and T 
is in canonical form, then when k is large:   
   Tk ≈ S =  

I  0  
NR  0  
! 

" # 
$ 

% & 
    

 
where N = (I – Q)-1 and S is the steady-state matrix. 

  
If there are n states in the Markov Chain and m of them are 
absorbing then I is the m ×  m identity matrix, the size of N is 
then (n – m) × (n – m), and NR has size (n – m) × m. 

 

 
 
 The fact that the last n – m columns of the steady-state matrix are all zeroes simply 
says again that, in the long run, the process will end in an absorbing state no matter which 
state the process started in.  Since NR is the matrix that gives the steady-state 
probabilities for ending in any absorbing state given that the process started in a non-
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absorbing state, all that’s needed is to look at the appropriate entry of NR to find the 
probability that if the process started in a given nonabsorbing state then it ends in a 
particular absorbing state.  Let’s see how it works for the “rat in a maze” problem. 
 
 
 Example 6.15 (continued).  Since  
 

        room           room 
       1     4         2     3 

R =  room 
2
3  ⎝
⎛

⎠
⎞1/3 1/3

1/2 0    and  Q =  room
2
3  ⎝
⎛

⎠
⎞0 1/3

1/2 0   

then 

I – Q =   ⎝
⎛

⎠
⎞1 -1/3

-1/2 1     and   N = (I – Q)-1 =  ⎝
⎛

⎠
⎞6/5 2/5

3/5 6/5   
 
so 

NR =    ⎝
⎛

⎠
⎞6/5 2/5

3/5 6/5   ⎝
⎛

⎠
⎞1/3 1/3

1/2 0    =  ⎝
⎛

⎠
⎞3/5 2/5

4/5 1/5    

 
 Notice that the matrix NR occupies the same “block” in Tk in the limit theorem 
above that the matrix R occupies in T.  This means that the rows and columns of NR 
correspond to the same states as those of R.  So the rows and columns of NR are labeled 
in the same way as the rows and columns of R are labeled.  Thus: 
 

         room 
        1      4 

NR =  room 
2
3   ⎝
⎛

⎠
⎞3/5 2/5

4/5 1/5   

 
So if the rat starts out in room 2 the probability he winds up in room 1 is 3/5 while the 
probability he ends up in room 4 is 2/5.  On the other hand, if he starts in room 3, the 
probability he winds up in room 1 is 4/5 and the probability he ends up in room 4 is 1/5.  
 
 The matrix N (which is called the fundamental matrix) also has important properties 
of its own.  Since  N = (I – Q)-1, if row and column labels are to be supplied to N they 
should be the same as those used with Q.  In this example that would mean writing 
 

    room 
   2     3 

N = (I – Q)-1 =  room
2
3 ⎝
⎛

⎠
⎞6/5 2/5

3/5 6/5   
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Properties of the fundamental matrix N 
  

1.  The entries of N give the average (or expected value) of the 
number of times the process is in each nonabsorbing state 
for each possible nonabsorbing starting state.   

2.  The sum of a row of N is the average (or expected value) of 
the number of steps before the process is absorbed 
assuming the process started in the state represented by the 
row.  

  
3. NR is the matrix whose entries represent the probabilities 

that the process ends up in a particular absorbing state for 
each possible nonabsorbing starting state. 

 

 
 Example 6.15 (continued).  Since  
 

    room 
   2     3 

N = (I – Q)-1 =  room
2
3 ⎝
⎛

⎠
⎞6/5 2/5

3/5 6/5   

 
property 1 above says that the average number of times the rat is in room 2 given it 
started in room 2 is 6/5, while the average number of times it goes to room 3 is 2/5 
(before absorption).  The average number of times spent in room 2 given it started in 
room 3 is 3/5 and the average number of times spent in room 3 if it started in room 3 is 
6/5. If the rat starts in room 2 the average number of steps before absorption is 8/5, while 
if it starts in room 3 the average number of steps before absorption is 9/5. 
 
 Let’s look at a few more examples to give you some more practice setting up and 
interpreting problems of this sort. 
 
 Example 6.17.  Suppose Kathy and Melissa repeatedly play a game in which each 
time they play Kathy has probability .6 of winning.  If they each start out with $2 and 
each bets $1 each time they play, and if they play until one person has lost all her money, 
determine: 
 (a) the probability Kathy ends up with $4 
 (b) the average number of times Kathy has $2 in the course of the game. 
 (c) the average number of times Kathy plays the game. 
 
 Solution:  Taking as the states the amount of money Kathy has at any time during 
the game, the states are $0, $1, $2, $3, $4.  The game ends when Kathy has $0 or $4, so 
these are the absorbing states.  Putting the transition matrix in canonical form gives 

$0  $4  $1  $2  $3 
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T =  

$0
$4
$1
$2
$3
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 0 0 0 0

0 1 0 0 0
.4 0 0 .6 0
0 0 .4 0 .6
0 .6 0 .4 0

   

 
         $1   $2  $3            $1   $2   $3 

Then  Q =  
$1
$2
$3 ⎝
⎜
⎛

⎠
⎟
⎞0 .6 0

.4 0 .6
0 .4 0

   and so  I – Q =  
$1
$2
$3 ⎝
⎜
⎛

⎠
⎟
⎞1 -.6 0

-.4 1 -.6
0 -.4 1

  . 

 
Computing the inverse of  I – Q  gives 
 

        $1       $2       $3 

N  =  (I – Q)-1  =  
$1
$2
$3 ⎝
⎜
⎛

⎠
⎟
⎞19/13 15/13 9/13

10/13 25/13 15/13
4/13 10/13 19/13

   

 
 
Since Kathy started with $2, the answer to (b) is 25/13.  To answer (c) look at the row 
sums.  The entries in the second row of N add up to 50/13, so on the average the number 
of rounds they would play before Kathy either loses all her money or wins all of 
Melissa’s money is 50/13.  The reason for looking at the second row is that it is the row 
that is labeled $2, and that’s the amount she started with.  If Kathy starts with $3 and 
Melissa with $1, then the average number of times they would play until someone goes 
bankrupt would be 33/13 times, the sum of the third row.  (Do you see intuitively why the 
game might be expected to end quicker in this case than it would if they started out with 
equal amounts?) 
 To answer (a) it’s necessary to find the matrix 
 
 

   NR =   
⎝
⎜
⎛

⎠
⎟
⎞19/13 15/13 9/13

10/13 25/13 15/13
4/13 10/13 19/13

 
⎝
⎜
⎛

⎠
⎟
⎞.4 0

0 0
0 .6

    

 
         $0       $4 

=  
$1
$2
$3 ⎝
⎜
⎛

⎠
⎟
⎞38/65 27/65

4/13 9/13
8/65 57/65

  

 
 
(Notice again that the same labels are used for the matrix NR as are used for R.)  Thus, 
the probability Kathy ends up with $4 is 9/13 (since she started with $2.)  If she had 
started with $3 and Melissa had started with $1 then the probability Kathy would have 
wound up with $4 is 57/65. 
 
 Example 6.18.  Jim and Sally are playing catch but neither of them is very good at 
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catching the ball.  When Jim throws to Sally, 1/3 of the time she gets the ball, 1/6 of the 
time Jim retrieves it, 1/6 of the time the dog runs off with it and 1/3 of the time it rolls 
down the storm sewer.  When Sally throws to Jim, 1/3 of the time he gets it, 1/3 of the 
time Sally retrieves it, 1/6 of the time the dog runs off with it and 1/6 of the time it rolls 
down the storm sewer.  Use as the states who or what has the ball and assume the dog and 
the storm sewer are absorbing states. 
 

(a) If Jim has the ball now, how many times on average will Sally have the ball 
before it’s lost to the dog or the sewer? 

 
(b) If Sally has the ball now, how many times, on average, will the ball get thrown 

before it’s lost? 
 

(c) If Sally has the ball now, what is the probability the ball winds up in the storm 
sewer?   

 
  
 Solution:  Since the dog and the storm sewer are absorbing states, they are listed 
first.  The canonical form for the transition matrix is: 
 

 D    SS    J      S 

T =  

D
SS
J
S
⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

0 1 0 0
1/6 1/3 1/6 1/3
1/6 1/6 1/3 1/3

  ,  and 

 
  J      S            J      S 

Q =
J
S  ⎝
⎛

⎠
⎞1/6 1/3

1/3 1/3    and  N  =  (I – Q)-1  =  
J
S  ⎝
⎛

⎠
⎞3/2 3/4

3/4 15/8   
Then 

     D      SS 

NR  =  
J
S ⎝
⎛

⎠
⎞3/8 5/8

7/16 9/16    

 
 The answer to (a) is obtained by looking at the entry in the first row and second 
column of N so the average number of times Sally has the ball before absorption is 3/4. 
(This is the average number of times Sally has the ball before it goes into the storm sewer 
or the dog gets it.)  The answer to (b) is found by adding up the numbers in the second 
row of N, so the average number of times the ball is thrown (until it goes into the storm 
sewer or the dog gets it) is 21/8.  The answer to (c) is 9/16 which is obtained from the 
entry in the second row and second column of NR.  
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Troubleshooting 
There are several things you can watch for in doing 
computations on absorbing Markov Chains that will tell you that 
youʼve made a mistake somewhere in your computations:    
(1) The entries in N and NR should all be nonnegative. 

  
(2) Each row of NR should sum to 1.  (Since the entries in NR 

are probabilities which give the probability of winding up in 
each absorbing state for a given nonabsorbing state and 
since the process must end in an absorbing state, the 
probabilities must sum to 1.)  

  
(3) The entries along the main diagonal of N should be ≥ 1.  

The entry in the ith row and the ith column of N is the 
average number of times the process is in the ith state 
assuming it started in the ith state.  But that number of times 
includes that initial time and so the number must be ≥ 1. 

 

 
 
 
 
 Problems 
 
In Exercises 1-7, determine if the given matrix is a transition matrix for an absorbing 
Markov Chain. 
 

1. ⎝
⎛

⎠
⎞1/3 2/3

0 1   2. ⎝
⎛

⎠
⎞0 1

1/3 2/3   
 

3. ⎝
⎜
⎛

⎠
⎟
⎞0 1/2 1/2

0 1 0
1/2 1/4 1/4

  4. ⎝
⎜
⎛

⎠
⎟
⎞1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

  

 

5. ⎝
⎜
⎛

⎠
⎟
⎞1/3 0 0 2/3

0 1 0 0
0 0 1 0

3/4 0 0 1/4

  6. ⎝
⎜
⎛

⎠
⎟
⎞2/3 1/2 1/6

0 0 1
1 0 0
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7. 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 1 0 0 0

1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 1 0

  

 
 
In Exercises 8-13, each of the matrices is a transition matrix for an absorbing Markov 
Chain.  Rewrite the matrices in canonical form and then identify the R and Q matrices. 
 
      1      2        3         1     2      3         1     2      3 

8. 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞1/3 1/12 7/12

2/3 1/6 1/6
0 0 1

  9. 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞2/3 0 1/3

1/2 1/2 0
0 0 1

  10. 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞1 0 0

1/4 1/2 1/4
0 0 1

  

 
          1      2     3     4      5         1     2      3   4   5 

11. 

1
2
3
4
5
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 0 0 0 0

2/3 0 1/3 0 0
0 2/3 0 1/3 0
0 0 2/3 0 1/3
0 0 0 0 1

  12. 

1
2
3
4
5
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1/2 0 1/2 0 0

3/7 4/7 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 0

  

 
           1     2      3     4      5     6 

13. 

1
2
3
4
5
6
⎝⎜
⎜⎛

⎠⎟
⎟⎞

1/2 0 1/4 0 0 1/4
0 1 0 0 0 0
0 0 1/3 1/3 1/3 0
0 0 0 1 0 0
0 1/5 2/5 0 0 2/5
0 0 0 0 0 1

  

 
In Exercises 14-21, find N and then determine the steady-state matrix for each of the 
following transition matrices for absorbing Markov Chains. 
 
          1     2 

14. 
1
2 ⎝
⎛

⎠
⎞1 0

.33 .67   
 

          1     2     3 

15. 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞1 0 0

1/3 1/2 1/6
0 0 1

  

 
          1      2     3 

16. 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞1/4 1/4 1/2

0 1 0
1/2 1/4 1/4

  

 

          1      2      3     4 

17. 

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞1/2 1/4 1/4 0

0 1 0 0
0 0 1 0
0 1/3 1/3 1/3
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          1      2     3     4 

18. 

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞1/2 0 1/2 0

0 1 0 0
1/4 1/2 1/4 0
1/3 0 1/3 1/3

  

 

         1    2    3    4 

19. 

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞0 0 1 0

0 1 0 0
0 0 0 1
0 3/4 0 1/4

  

 
          1      2     3     4      5 

20. 

1
2
3
4
5
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 0 0 0 0

1/4 1/4 0 0 1/2
0 0 1/3 1/3 1/3
0 0 0 1 0

1/3 1/3 0 1/3 0

  

 
 

          1      2    3    4     5 

21. 

1
2
3
4
5
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞0 1/3 0 1/3 1/3

0 1 0 0 0
0 0 0 3/4 1/4
0 0 0 1 0

1/2 0 0 0 1/2

  

 

 
22. Answer question 4 in Example 6.1. 
 
23. A mouse is put into the maze of the following figure.  Each time period it chooses at 

random one of the doors in the room it is in and moves to another room.  From room 
1 the mouse can escape to the outside (state 5) but in room 3 is a (Havahart) mouse 
trap. 

 

1
23

4

5 (outside the maze)
  

(a) Set up the process as a Markov Chain. 
(b) Find N and NR. 
(c) If the mouse starts in room 4, what is the average number of rooms he will visit 

before he escapes or is caught? 
(d) If he starts in room 4, what is the average number of times he visits room 1? 
(e) If he starts in room 2, what is the probability he escapes? 

 
24. A junior college has freshmen and sophomore students.  80% of the freshmen 

successfully complete their year and go on to become sophomores, 10% drop out 
and 10% fail and must repeat their freshman year.  Among the sophomores 85% 
graduate, 5% drop out and 10% fail and must repeat their sophomore year.  Set up 
the transition matrix and find  
(a) the probability a freshman eventually graduates. 
(b) the average number of years an entering freshman spends at the junior college. 
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25. The victims of a certain disease being treated at Wake Medical Center are classified 

annually as follows:  cured, in temporary remission, sick, or dead from the disease.  
Once a victim is cured, he is permanently immune.  Each year, those in remission get 
sick again with probability 1/4, are cured with probability 1/2, and stay in remission 
with probability 1/4.  Those who are sick are cured, go into remission, or die from 
the disease with probability 1/3 each.  Determine  
(a) the probability of being cured if the victim is now in remission. 
(b) the average number of years before a victim currently in remission is either 

cured or dies. 
 
26. Sally and Becky are playing tennis.  When deuce is reached, the player winning the 

next point has advantage.  On the following point, the player either wins the game or 
the game returns to deuce.  Suppose that at deuce, Sally has probability 2/3 of 
winning the next point and Becky has 1/3 probability of winning the point.  When 
Sally has advantage she has probability 3/4 of winning the next point and when 
Becky has advantage she has probability 1/2 of winning the next point.  Set this up 
as a Markov Chain with states:  Sally wins the game, Becky wins the game, Sally’s 
advantage, Becky’s advantage, deuce. 
(a) If the game is at deuce, find how long the game is expected to last and the 

probability that Becky wins. 
(b) If Sally has advantage, what is the probability she eventually wins the game? 

 
27. John has $750 and needs $1000 for his vacation.  He decides to go to the track and 

bet his money until he either loses all of it or makes $1000.  Suppose each time he 
bets, he wins with probability 2/5 and loses with probability 3/5.  Also suppose that 
each time he bets, he either bets as much as he has or as much as he needs to get his 
$1000, whichever is smaller.  (In other words, if he has $250, he bets $250, if he has 
$500 he bets $500, and if he has $750 he bets $250.) 
(a) Set up the transition matrix. 
(b) Find N and NR. 
(c) Find the expected number of bets he makes. 
(d) Find the probability he gets to go on his vacation. 
 
 

28. Andy, Bill and Carl are playing Laser Tag.  Suppose Andy has probability 1/2 of 
hitting his opponent any time he fires, Bill has probability 1/3 of hitting his opponent 
and Carl has probability 1/6 of hitting his opponent.  Assume the boys fire 
simultaneously each round with each boy firing at his strongest opponent and also 
assume that a boy is out of the game if he is hit.  Treat this as a Markov Chain with 
the states being the boys left in the game after any one round. 
(a) Find the transition matrix. 
(b) Find N and NR. 
(c)  What is the probability Andy wins the game?  What is the probability no one 

wins the game? 
(d) If Carl and Bill are left after a round, how many more rounds is the game 
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expected to last?  
 
29. Suppose instead of following the strategy in Exercise 27, John simply bets $250 each 

time.  Answer questions (a), (b), (c), and (d) for this new strategy.  Which strategy is 
the best one for him to follow if he wants to go on his vacation? 

 
 
 
 
Chapter 6 Review Problems 
 
1. Determine which of the following matrices are transition matrices.  For those which 

are transition matrices, classify them as regular or absorbing or neither.  For those 
which are regular or absorbing, find the steady-state matrix and interpret the entries. 

 
          1     2      3                   1     2     3 

(a) 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞0 1 0

1/2 1/4 1/4
1/3 1/2 1/3

  (b) 
1
2
3 ⎝
⎜
⎛

⎠
⎟
⎞0 1 0

1/4 1/4 1/2
0 2/5 3/5

  

 
         1   2   3   4          1  2   3   4 

(c) 

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞0 1 0 0

0 0 1 0
0 1 0 0
0 1 0 0

  (d) 

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞0 0 1 0

1 0 0 0
0 0 0 1
0 1 0 0

  

 
           1     2     3     4      5           1      2     3     4     5 

(e) 

1
2
3
4
5
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1/4 1/4 1/4 0 1/4

0 1/3 0 1/3 1/3
0 0 1/3 1/3 1/3
0 0 0 1 0
0 0 0 0 1

  (f) 

1
2
3
4
5
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 0 0 0 0

1/4 0 3/4 0 0
0 1/2 0 1/2 0
0 0 3/4 0 1/4
0 0 0 0 1

  

 
          1       2      3      4 

(g) 

1
2
3
4
⎝
⎜
⎛

⎠
⎟
⎞1/3 1/12 1/6 1/2

1 0 0 0
1 0 0 0
1 0 0 0

  

 
2. For Exercises 7, 10, 11, 12, and 13 in Section 6.1, determine if the transition matrix 

is regular, absorbing or neither.  Then for those which are regular or absorbing, find 
the steady-state matrix and interpret the entries. 

 
3. Each day Andy eats at Two Cousins or Fat Mamas.  If he eats at Two Cousins one 

day, there is a 50% chance he will return there the next day.  If he eats at Fat Mamas 
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one day, there is a 75% chance he will go to Two Cousins the next day.  Consider 
this a 2 state Markov Chain with state 1= eating at Two Cousins and state 2 = eating 
at Fat Mamas. 
(a) Find the transition matrix. 
(b) If Andy eats at Two Cousins on Monday, what is the probability he will eat at 

Fat Mamas on Thursday? 
(c) In the long run, what fraction of the time does he eat at Two Cousins? 

 
4. A company has stores in Boston and Chicago and sells items to men, women and 

children.  Sometimes items that do not sell well are transferred from one store to 
another.  Each week at the Boston store, 10% of the items are sold to men, 10% are 
sold to women, 20% are sold to children, 20% are shipped to Chicago, and the 
remaining 40% are kept in Boston.  The Chicago store sells 10% to men, 20% to 
women, 30% to children, ships 10% to Boston, and keeps the remaining 30%. 
 (a) Treat this as a 5-state Markov chain with men, women, and children as 

absorbing states.  Write down the transition matrix. 
 (b) What is the probability that an item in the Boston store will eventually be sold 

to a woman? 
 (c) What is the probability that an item in the Chicago store will eventually be sold 

to a child? 
  

5. A banker has three different suits she wears to work, a navy blue one, a gray one and 
a beige one.  She never wears the same suit two days in a row.  If she wears the navy 
blue suit one day she always wears the gray one the next day.  If she wears either the 
gray or beige suits one day she is twice as likely to wear the navy blue one rather 
than the other one the next day.  In the long run what fraction of the time does she 
wear each suit? 

 


