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NONSTATIONARITY 

The autoregressive-moving average (ARMA) class of models relies on the 

assumption that the underlying process is weakly stationary, which 

restricts the mean and variance to be constant and requires the 

. As we have seen, however, autocovariance to depend only on the time lag

many time series are certainly not stationary, for they tend to exhibit time 

changing means and/or variances. 

Definition If d is a nonnegative integer, then {Xt} is an ARIMA(p, d, q) 

process if Yt : (1 - B)dXt is a causal ARMA(p, q) process. 

where φ(z) and θ(z) are polynomials of degrees p and q, respectively, and 

φ(z)=0 for |z| ≤ 1. The polynomial φ∗(z) has a zero of order d at z  1. The 

process {Xt} is stationary if and only if d  0, in which case it reduces to an 

ARMA(p, q) process. Notice that if d ≥ 1, we can add an arbitrary 

polynomial trend of degree (d -1) to {Xt} without violating the difference 

equation (6.1.1). ARIMA models are therefore 6.1.1 useful for 

representing data with trend. It should be noted, however, that ARIMA 

processes can also be appropriate for modeling series with no trend. 



Example 

 

When the data shows variation that increases or decreases with the level 

of the series. And we can do by making more consistent pattern across the 

data set of the series. Its’ not easy to choose from so many methods as 

each transformation is different from one another and has its own 

mathematical intuition. In this article we will be covering the Square Root, 

Logarithmic and Box-Cox Transformations. 

Box-Cox transformations 

 They include both logarithms and power transformations. It depends on 

the parameter λ, and is defined as- 

 

 

 

 

 



To deal with such nonstationarity, we begin by characterizing a time 

series as the sum of a level plus a random error nonconstant mean 

component: 

Unit Roots in Time Series Data  

Definition: Unit roots represent non-stationarity, where the mean and 

variance of a time series are not constant over time. 

For example, consider a causal AR(1) process (we assume throughout this 

section that the noise is Gaussian),  

xt = φxt-1 + zt         …..(1) 

Applying (1 – B)  to both sides shows that differencing 

or    yt = φyt-1 + wt - wt-1 

A unit root test provides a way to test whether (1) is a random walk (the 

null case) as opposed to a causal process (the alternative). That is, it 

provides a procedure for testing 

 

1. Null Hypothesis (H0): There exists a unit root in the time series and it is 

non-stationary. Unit root = 1 or δ = 0 

2. Alternate Hypothesis (H1): There exists no unit root in the time series and 

it is stationary. Unit root < 1 or δ < 0 

Condition to reject H0 and accept H1 

If the test statistic is less than the critical value or if the p-value is less than a 

then the null hypothesis is rejected pre-specified significance level (e.g., 0.05), 

and the time series is considered  stationary.
 

Given the estimate   ̂  conventional way of testing the null hypothesis 

would be to construct the t-statistic 



 

Aspect Unit Circle Unit Root Tests in Time Series 

Definition 

A geometric concept representing the 

complex roots of ARMA processes in the 

complex plane. 

Statistical tests used to evaluate the presence 

of unit roots and determine time series 

stationarity. 

Nature Geometric and graphical representation. Statistical and quantitative analysis. 

Dickey Fuller Test 

Dickey Fuller test is a statistical test that is used to check for stationarity in 

time series. This is a type of unit root test, through which we find if the time 

series is having any unit root. Presence of unit root makes a time series non-

stationary 

Augmented Dickey Fuller(ADF) Test 

Is an extension of Dickey Fuller test for more complex models than AR(1). 

The primary difference between the two tests is that the ADF is utilized for 

a larger sized set of time series models which can be more complicated. 

Augmented Dickey Fuller test assumes a AR(p) type time series 

model and it is represented mathematically as, 

 

After we substract yt-1 from both the side, we get: 

 

ADF is the same equation as the DF with the only difference being the 

addition of differencing terms representing a larger time series. 

The test statistic formula is: 

 



Assumptions 

The test is conducted under following assumptions: 

1. Null Hypothesis (H0): There exists a unit root in the time series and it 

is non-stationary. Unit root = 1 or δ = 0 

2. Alternate Hypothesis (H1): There exists no unit root in the time 

series and it is stationary. Unit root < 1 or δ < 0 

Condition to reject H0 and accept H1 

If the test statistic is less than the critical value or if the p-value is less 

than a pre-specified significance level (e.g., 0.05), then the null 

hypothesis is rejected and the time series is considered stationary. 

If the test statistic is greater than the critical value, the null hypothesis 

cannot be rejected, and the time series is considered non-stationary. 

The critical value is found from the Dickey Fuller table (similar to t-table 

that we use for t-test, we have a table with critical values for Dickey Fuller 

test). 
Example 

 



Table (1) explain that the p-value of the Dickey-Fuller test equals (0.1459) and it is 

greater than (0.05). This result indicates that the data of the time series is not  

stationary  

The time series after the first differenced 

 

 

The p-value of the Dickey-Fuller test equals (0.0006) and it is less than (0.05). 

This result indicates that the data of the time series of monthly Groundwater 

level is stationary 

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test 

KPSS is another test for checking the stationarity of a time series. The null 

and alternate hypothesis for the KPSS test are opposite that of the ADF 

test. 

Null Hypothesis: The process is trend stationary. 

Alternate Hypothesis: The series has a unit root (series is not stationary). 

A function is created to carry out the KPSS test on a time series. 
 

Seasonal ARMA Let us assume that there is seasonality in the data, but 

no trend. Then we could model the data as 

 



Xt = st + Yt,    ….(4.1) 

where Yt is a stationary process. The seasonality component is such that 

st = st−h, 

where h denotes the length of the period and 

 

To remove the seasonal effect from the data by varying the lag h. We have 

introduced the lag-h operator  

∇hXt = Xt − Xt−h = Xt − BhXt = (1 − Bh)Xt, 

which, for (4.1), gives 

∇hXt = st + Yt − st−h − Yt−h = ∇hYt. 

Hence, this operation removes the seasonality effect. This fact leads to 
introducing the seasonal ARMA model, denoted by ARMA(P, Q)h, which 
is of the form 

Φ(Bh)Xt = Θ(Bh)Zt, 

Where      and 

Φ(Bh) = 1 − Φ1Bh − Φ2B2h − . . . − ΦP BPh, 

 
Θ(Bh) = 1 + Θ1Bh + Θ2B2h + . . . + ΘQBQh 

 

 

are, respectively, the seasonal AR operator and the seasonal MA 
operator, with seasonal period of length h. 

Remark . Analogously to ARMA(p, q), the ARMA(P, Q)h model is causal 
only when the roots of Φ(zh) lie outside the unit circle, and it is invertible 
only when the roots of Θ(zh) lie outside the unit circle. 

Example . Seasonal ARMA(1, 1)12. 

Such a model can be written as 

(1 − ΦB12)Xt = (1 + ΘB12)Zt, 

or 
Xt − ΦXt−12 = Zt + ΘZt−12, 



When written as 
Xt = ΦXt−12 + Zt + ΘZt−12, 

and compared to ARMA(1, 1) 

Xt = φXt−1 + Zt + θZt−1 

 
we see that the seasonal ARMA presents the series in terms of its past values 

at lag equal to the length of the period (here h=12), while the non-seasonal 

ARMA does it in terms of its past values at lag 1. Seasonal ARMA incorporates 

the seasonality into the model. 

 
Similarly as for the non-seasonal ARMA, here too, we require |Φ| < 1 for the 
causality and |Θ| < 1 for invertibility of the model. 

 
Example . ACF of MA(1)12 

A seasonal MA model with the period length h = 12 can be written as 

Xt = Zt + ΘZt−12. 

 
It is a zero mean stationary model and it is easy to calculate its 

autocovariance, namely 

 
Thus, the only non-zero correlations are ρ(0) = 1 and 

 
which is of the same form as ρ(±1) for a non-seasonal MA(1). 

 
Example. ACF of AR(1)h 

Using the techniques for calculating ACVF and ACF of the non-seasonal 

AR(1)  we obtain 

Homework 



 

This give the ACF similar to the ACF of a non-seasonal AR(1), namely 

 

The following table summarizes the behaviour of the ACF and PACF of the 
causal and invertible seasonal ARMA models  
 
 AR(P )h MA(Q)h ARMA(P, Q)h 
ACF Tails off at lags kh, Cuts off after lag Qh Tails off at lags kh 
PACF Cuts off after lag Ph Tails off at lags kh Tails off at lags kh 

 

where h is the length of the seasonal period, k = 1, 2, . . . and the values of 
ACF and PACF are zero at non-seasonal lags τ /= kh. 
 

Mixed Seasonal ARMA 

When we combine seasonal and non-seasonal operators we obtain a model 

Φ(Bh)φ(B)Xt = Θ(Bh)θ(B)Zt, 

which is called mixed seasonal ARMA and it is denoted by 

ARMA(p, q) × (P, Q)h. 

We can subtract the effect of the season (say month) using the backshift 
operator Bh to obtain seasonal stationarity 

Xt − Xt−h = (1 − Bh)Xt. 

This is a seasonal difference of order 1. In general we define a seasonal 
difference of order D as 

 

where D = 1, 2, . . .. Usually D = 1 is sufficient to obtain seasonal stationarity. 
This leads to a very general seasonal autoregressive integrated moving 
average (SARIMA) model written as follows 

 

 
Example. The model ARIMA(0, 1, 1)×(0, 1, 1)12 with α = 0 is often applied for 
various economic data. Using formula (7.6) we obtain 



(1 − B12)(1 − B)Xt = (1 + ΘB12)(1 + θB)Zt 

or, when expanded, we get the following form 

(1 − B − B12 + B13)Xt = (1 + θB + ΘB12 + ΘθB13)Zt 

Autoregressive Fractionally Integrated Moving Average (ARFMA)  

 

The class of ARIMA processes may be extended to model this type of long-

range persistence by relaxing the restriction to just integer values of d, so 

allowing fractional differencing within the class of AR-fractionally integrated-

MA (ARFIMA) processes , and is made operational by considering the 

binomial series expansion of ∇d for any real d >-1 :  

 

 
A. When "d" is a positive value in the range (0, 1), it indicates a long-

memory process with persistent autocorrelation, suggesting that past 

values have a lasting influence on future values.  

B. When "d" is zero, it corresponds to a stationary time series without 

long-memory properties 

C. When "d" is a negative value in the range (-1, 0), it signifies anti-

persistence, where past values have a temporary effect on future 

values, and the autocorrelation decays rapidly. 

Table: Comparison of ARFMA, ARMA, and ARIMA Models 

Aspect ARFMA ARMA ARIMA 

Components AR, MA, Fractional Int. AR, MA AR, MA, Differencing 

Long Memory Suitable for long memory. Less effective for LM May not capture LM 

Complexity More complex Simpler Intermediate complexity 

Applications Various, long memory Stationary data Stationary with some LM 

 

The standard range for the parameter "d" is typically unrestricted, 

meaning that "d" can take any real value. However, the more common and 

widely used range for "d" is (-1, 1), which includes all real numbers 

between -1 and 1 but excludes -1 and 1 themselves. 

 


