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1. Moving Average Process MA(q)

Definition {X:} is a moving-average process of order ¢ if
Xe=Zt+ 0121 +... + Qth—q, (1)
where

Zt~ WN(O, o0?)

and 64, ..., 84 are constants.
Remark. The MA(q) process can also be written in the following equivalent

form
Xe = 6(B)Z, (2)
where the moving average operator
O(B) =1+ 61B + 62B2 + ...+ §,Ba (3)
Defines: a linear combination of values in the shift operator
BkZ; = Zi—k.

Example. MA(2) process.
This process is written as

Xe = Zy+ O1Ziy + 027, = (L+ 0B + 0,B)Z.  (4)

What are the properties of MA(2)? As it is a combination of a zero
mean white noise, it also has zero mean, i.e.,

EXi=E(Z + 012 + 022, ,) = 0.
It is easy to calculate the covariance of X; and X.,. We get
(14602 +62)0% for T =0,
(01 +0102)0’2 fot = 41,

Oy0° for r= £2,
0 for |7| > 2,

(1) =cov(Xy, Xpysr) =

..(5)
which shows that the autocovariances depend on lag, but not on time.
Dividing

y(t) by y(0) we obtain the autocorrelation function,

1 for 7 = 0,
01+60102 - —
/)(7-) _ #‘sogﬁg for = ==,
m for 7 = +2
0 for |7| > 2.

...(6)
a weakly stationary, 2-correlated TS.

Proposition. If {X;} is a stationary g-correlated time series with mean zero,
then it can be represented as an MA(Q) process.

Figure 1: shows MA(2) processes obtained from the simulated Gaussian
1



white noise shown in Figure 1 for various values of the parameters (61, 6,).

The blue seriesis X; =z; + 0.5z, + 0.5z,

While the purple seriesis Xy = z; + 5z + 5z,
As you can see very different processes can be obtained for different sets of
the parameters. This is an important property of MA(q) processes, which is a
very large family of models. This property is reinforced by the following
Proposition.

imulated MA(R)

T T
10 30 50 70 20

Figure 1: Two simulated MA(2) processes, both from the white noise shown in
Figurel, but for different sets of parameters: (¢, #,) = (0.5, 0.5) and (61, 8,) = (5, 5).
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(a) xt=1zt+ 0.5zt-1 + 0.5zt-2 and (b) xt = zt + 5zt-1 + 5zt-2



2. Invertibility of MA Processes

The MA(1) process can be expressed in terms of lagged values of Xt by
substituting repeatedly for lagged values of Zt. We have

Zt - Xt - eZt—1.
The substitution yields

Zi = X¢ — eZt_1
= X; — O(Xi-1 — 6Zi-2)
= X¢ — OX¢—q + 0%Z¢ >
= Xy — OXi—1 + 0% (Xi-2 — BZi-3)
= X¢ — OXi—1 + 6%Xi—2 — 63Z_3

= X — OXi—1 + 07Xz — 03Xio3 + 0" Xicg + .. . + (—0)"Zp.

This can be rewritten as

rr— 1
(—O)'"Zi—,, = Z; — E (—0) Xe—j-

=11

However, if |#| < 1, then

n—1 2
E (Z, - Z(—())JX,_‘,.) =E(¢*Z},) — 0

j=0

And we say that the sum is convergent in the mean square sense. Hence, we
obtain another representation of the model

7, = Z (—6)Z,_; e (D)
=0

This is a representation of another class of models, called infinite
autoregressive (AR) models. So we inverted MA(1) to an infinite AR. It
was possible due to the assumption that || < 1. Such a process is called
an invertible process. This is a desired property of time series.

so in the example we would choose the model with 62 = 25,0 =1/5 .



3. Linear Processes

The class of linear time series models, which includes the class of
autoregressive moving-average (ARMA) models, provides a general
framework for studying stationary processes. In fact, states that every weakly
stationary, purely nondeterministic, stochastic process can be written as a
linear combination.This result is known as Wold’s decomposition

Definition . The TS {Xt} is called a linear process if it has the representation
Xe—M=Zi+Y1Z 1 +YPZ; 5+ =Z;(;0 II)]- Zt—j Py =1 ... (8)

The Zt, t=0,+1, +2, ... are a sequence of uncorrelated random variables often
known as innovations
for all t, where Zt ~ WN(O0, 62) and {;} is a sequence of constants such that

The condition)72, [yj| < co ensures that the process convergesin the mean
square sense, that is

E (‘\', - E L'A,-Z,__,-)z — 0 as n — oo.
j=—n

It is easy to show that the model (8) leads to autocorrelation in x«. From this
equation it follows that:

E(X: )= 0.

y(0) =V(x, ) =E(x, —m)’
=EZ+ Y1 Zp 1+ Yo Zp 5+ )2
=E(Z3) +YIE(Z,—1) +Y3E(ZZ_ 1) + )
=0? + Yio? +YP3i0% + ---
=02¥2oW; ... ©)

by using the white noise result that E(Z,_;Z,_;) = O fori # j Now:
y(k) = E(x; —m)(x,_p —m)

=E(Zi+ Y1 Zi 1+ Y Ze 2+ )Lk +P1 Ze k1 YW Zpjp+ 1)
:02(1-¢k + YV 1Yri1 F 2P+ o)
D Yy S VLV T — (10)

And this implies



pr = Z;Lo YiYirk
g im0 ¥j

If the number of Y-weights in (8) is infinite, the weights must be assumed to
be absolutely summable, so that =Z‘J?°:0 1/)16-’ < oo in which case the linear

filter representation is said to converge. This condition can be shown to be
equivalent to assuming that xt is stationary, and guarantees that all moments
exist and are independent of time, in particular that the variance of xt, Y0, is
finite.

Example : Find Variances , autocovariance and autocorrelation for
MA(1) by Linear Processes

In equation (7)  Z, = X520(—6)/Z,_;
Now consider the model obtained by choosing y; =- 6 and y; = 0,j > 2

In equation (9) y(0)=0?3X72, 1/),-2 = o*(1+ 6%

In equation (10) v(1)=02 219=0 Yk
=-06°0 ,y(0)=0fork>1

0
1 + ¢

= s =0 fork>1

Home Work

1. Find Variances, autocovariance and autocorrelation by Linear
Processes

For Zt= 7:+0.5Z.1+0.35Z;>

2. Prove Variances, autocovariance and autocorrelation in
Equation(5 and 6) by Linear Processes



4. Autoregressive Processes AR(p)

The idea behind the autoregressive models is to explain the present value of
theseries, X;, by a function of p past values, Xi-1, Xi-2, ..., Xt-p.

Definition . An autoregressive process of order p is written as
X = (p1Xt—1 + (PZXt—Z +...+ (PpXt—p + Zt, (12)

where {Zt} is white noise, i.e., {Zt} ~ WN(0, 62), and Zt is uncorrelated
with Xs for each s < t.

Remark. We assume (for simplicity of notation) that the mean of X; is zero. If
the meanis E Xt = m # 0 E X; = u, then we replace X: by X; — 1 to obtain

Xe—p = @1(Xe-1 —p) + Q2(Xe2 —p) + ... + Qp(Xep — 1) + Zs,

what can be written as



t=a+ @i1Xe-1 + @2Xe-2+... + QpXe-p + Zs,

Where a=u(l-p1-...—@p).

Other ways of writing AR(p) model use:

Vector notation: Denote @ = (@1, @2,..., Pp)T, Xe-1 = (Xe-1, Xt-2, - - -, Xe—p)T.

Then the formula can be written as
Xt = PTX-1 + Z4.
Backshift operator: Namely, writing the model (7) in the form
Xt — P1Xe-1 — Q2Xt-2 —... — pXit-p = Zy,
and applying BX: = X:-1 we get
(1 =@1B —@2B2 —... —@ppBP)X: = Z;

Or, using the concise notation we write

P(B)Xe = Zy (13)
where @(B) denotes the autoregressive operator
@(B) =1-@1B —@2B%2 —... - @pBr.
Then the AR(p) can be viewed as a solution to the equation (8), i.e,,
X, = e (14)
@(B)

41 AR(1)
According to Definition the autoregressive process of order 1 is given by

Xe = @Xe-1 + Zy, (15)
where Z: ~ WN(O0, 02) and ¢ is a constant.

Is AR(1) a stationary Time Series or not?

Corollary 4.1 says that an infinite combination of white noise variables is a
stationary process. Here, due to the recursive form of the TS we can write AR(1)



insuch a form. Namely

Xt = pXe-1+ Zt
= p(PpXt-2 + Zt-1) + Z¢
= p2Xt-2 + pZt-1 + Zt

_ .k k—1 . j
= " Xe-k + ijo Q' Z;
This can be rewritten as

PKXew =X - DL @IZy; ...(16)

What would we obtain if we have continued the backwards operation, i.e.,
whathappens when k — co?

Taking the expectation we obtain

k—1 =
A—Ill.l:c E (.\.; = Z CIJZf_J) = “li{l:- (,)2k E('\.;.,—k) =0

=0

if |¢| < 1 and the variance of X 1s bounded. Hence, we can represent AR(1) as

X;== Z dZ,_;

=0

in the mean square sense. This 1s a linear process (4.15) with

| & forj >0,
Y1TY 0 forj<o.

This technique of iterating backwards works well for AR of order 1 but not
for other orders. A more general way to convert the series into a linear process
formis the method of matching coefficients.

The AR(1) model is Pp(B)X: = Z,,
where @(B) = 1—¢B and |¢| < 1. We want to write the model as a linear process



Xe =Y ¥;Z;=v(B)Z,

j=0

where ¢/(B) = ZJ?“':() t; B7. It means we want to find the coefficients ;. Substi-
tuting Z; from the AR model into the linear process model we obtain

Xi = 9(B)Z; = y(B)¢(B)X,. (4.24)

In full, the coefficients of both sides of the equation can be written as

1=(1+yY1B+yY2B2+yY3B3+...)(1 —¢pB)
=1+ l,[)1B + l,[)zBZ + l,[)3B3 + ... —QDB —l/)lchz —l/)z(pB3 —l/)ggDB4 - ..
=1+ (1 -@)B + (2 ~1h19) B2 + (13 = Y2p) B + ..
Now, equating coefficients of.Bj on the LHS and RHS of this equation we
seethat all the coefficients of B must be zero, i.e.,

Y1 = @

/s —_— 'y 7 _ = 2

Yo = Y1 = @

Y3 = YPop = P°
L’i"‘_j = (?:f‘,"i_l(r,-") s Q‘)J_

So, we obtained the linear process form of the AR(1)

Remark. Note, that from the equation (4.24) it follows that y(B) is an inverse
of ¢(B), that is
T
L'll_B,' = m
For an AR(1) we have



1

=1 B + ¢2’B? + ¢*B> + ...
I —oB + @ @ ‘ +

v(B) =

As a linear process AR(1) 1s stationary with mean
EX, =) ¢'E(Z_;)=0
3=0
and autocovanance function given by (4.19), that 1s

W) =02 _ PP =0%¢"» _ o¥.
=0

=0

However. the infinite sum 1n this expression 1s the sum of a geometric progression

as o] < 1,1e.,
sk 1
D =10
=0 L@

This gives us the following form for the ACVF of AR(1).

620'7

= : 428
YRl == e (4.28)
Then the vanance of AR(1) 1s
o2
() = 3
10) =1
Hence. the autocorrelation function of AR(1) 1s
7
() =20 _ 4 (4.29)

T a(0)
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Explosive AR(1) Model and Causality

Random walk, which is AR(1) with ¢ = 1 is not a stationary process. So,
there is a question if a stationary AR(1) process with |@| > 1 exists? Also,
what are the properties of AR(1) models for ¢ > 1?
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Clearly, the sum Z:;i &’ Z,—; will not converge in mean square sense as k — oc
and we will not get a linear process representation of the AR(1). However, if

|¢| > 1then I%l < 1 and we can express a past value of the TS in terms of a future

value rewnting
X =0X + Zi

as

- —1 v —1
Xi=0"Xep1 — 07 Zisa-

7O

AR1E

10 4

-10 7

Ll v Ll Ll
30 80 130 180

Figure 4.13: Simulated Explosive AR(1): x, = 1.02x,_, + =,.
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Then. substituting for X, ; several times we obtain

o0
X, ==Y 6792y,

Which is a future dependent stationary TS. This however, does not have any
practical meaning because it requires knowledge of future values to predict
the future.

When a process does not depend on the future, such as AR(1) when || < 1,
we say that it is causal.

Figure 4.13 shows a simulated series xt = 1.02xt-1+zt. As we can see the
values of the time series quickly become large in magnitude, even for ¢ just
slightly above 1. Such process is called explosive. This is not a causal TS

3. Autoregressive Moving Average Model ARMA(1,1)
This section is an introduction to a wide class of models ARMA(p,q) which
we will consider in more detail later in this course. The special case,
ARMA(1,1), is defined by linear difference equations with constant
coefficients as follows.

Definition . A TS {X:} is an ARMA(1,1) process if it is stationary and it
satisfies

Xt — @Xe-1 = Zt + 021 forevery t, ...(17)

where {Z:} ~ WN (0,0%) and ¢ + 0 £ O.

Such a model may be viewed as a generalization of the two previously
introduced models: AR(1) and MA(1). Compare

AR(I): Xt = (pXt—l +

13



MA(].) Xe=Zt+ 071
ARMA(l,l): Xe— @Xt-1=Zt+ 0Zt-1

Here, as in the MA and AR models, we can use the backshift operator to
write the ARMA model more concisely as

@(B)X:t=06(B)Z;, ... (18)
where ¢@(B) and 6(B) are the linear filters:
e(B)=1-@B 6(B)=1+06B.

A. Causality and invertibility of ARMA(1,1)

For what values of the parameters ¢ and 6 does the stationary ARMA(1,1)
exist and is useful? To answer this question we will look at the two
properties of TS, causality and invertibility.

The solution to 17, or to 18, can be written as

_oeB)Z,
ETE)
However, for |@| < 1 we have
6(B)
@ (B)

=(1+ @B+ @p2B%2 + @3B3+...)(1 + 6B)

=1+ @B+ @2B%2+ @3B3+...+ OB + pOB? + p20B3 + ©30B* + ...
=1+ (@+0)B+(p?+@O)B* + (@3 + p20)B3 +...

=1+ (p+0)B+(p+0)pB2+ (p+0)p?B3+...

= Y2oP;B v 5.2

where Yo =1and y; = (p+0Q)ep/-1forj=1,2, ...
Thus, we can write the solution to 5.1 in the form of an MA(«) model,i.e

X;=Z,+ (¢ + O)Y2,97'Z,_; ... (20)

This is a stationary unique process.
Now, suppose that |@| > 1. Then, by similar arguments as in the AR(1) model,
it can be shown that
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o0
Xy =—00""2Z,—(6+0)> ¢ Zp;.
J=1
If || = 1 then there is no stationary solution to
While causality means that the process {X:} is expressible in terms of past
values of {Z}, the dual property of invertibility means that the process {Z:} is
expressible in the past values of {X;}. Is ARMA(1,1) invertible?
and so writing the solution for Z; we have

1 1
Ly = h(B)X; =
=3B = 148
what 1n terms of the backshift operator B can be written as

1 = "
= —0) BI.
=

Zi=3°(~0YBI(1— 6B)X,

=0
=X, —(¢+60)> (—0)Y ' X, ;.
=1

The conclusion is that ARMA(1,1) is invertible if |#| < 1. Otherwise it is non invertible.
The two properties, causality and invertibility, determine the admissible region for

the values of parameters ¢ and #, which is the square

—1l<ep<l1
—1<6<1.
4.6.1 ACVF and ACF of ARMA(1,1)

The fact that we can express ARMA(1,1) as a linear process of the form
- ]?ZO ll)]Zt—] ....... 21

where Zt is a white noise, is very helpful in deriving the ACVF and ACF of the
process.

y(1) = o? Z Y,
j=0

And we can easily derive expressions for y(0) and y(1).

15



7(0) = o) _¥?

j=0
=0 |1+ (p+6)2> cﬁzu‘”]
! =1
=0 |1+ (¢+0)QZ¢2"] ...... (22)
! =0
2 [, (@ +6)?
= -1 -+ 1_—¢)2 :

And

20
2
1l)=0 Z YiVi+
j=0

2

=0 [1(¢0+0)+(0+0)(0+8)o+ (0 +0)o(o + 0)o* + (0+ 9)02(0+ 0)¢° + .. }

9T 2

=’ [(0+0)+(0+0)°0(1+ 0" +0" +..))]

=g |(0+0)+ (6 + 9)202 02’]

| v (O (23)
=0 [(6+0)+ (Olti);o
Note: S5 ar™t = =, 320 @ = 15
(1) _ (¢+6)1+¢0) - (24)

(1
1) = ——= =
P =)= 11200162

H.w: Find Variances, autocovariance and autocorrelation by Linear Processes

For 7t= 0.6 Zi-1 +Z:+0.5Z:1

Graph 4 shows the admissible region for the parameters ¢ and 6 and indicates the regions
when we have special cases of ARMA(1,1), which are white noise, AR(1) and MA(1).
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MA(1)

AR(1)

phi =-0.9, theta = 0.5

|
phi = 0.9, theta = 0.5

phi=-0.9, theta = -0.5

phi = 0.9, theta = -0.5

Figure 4: ARMA(1,2) for variougjraliies of the

parameters ¢ and 6.
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Causality of ARMA(p,q)
We showed that the condition for stationarity of ARMA(1,1)

Xt - Xt-1 =7t + 0Zt-1, for every t,

1s that
6] # 1,

thatis 1 — ¢ 5% 0 or 1 + ¢ % 0. This is equivalent to say that the polynomial
¢(z) =1— ¢z 7# 0 for |z| = 1.
We have also derived the condition for causality of ARMA(1.,1), which is
o] < 1.
This condition can be viewed in terms of the solution to the equation
P(z) =1—pz=0

which is z = ,l and which should be bigger than 1 or smaller than -1.

Example 6.2. Consider ARMA(2,1)

Xi- 0.8Xe1 - 0.1Xe2 = Ze + 0.3Z¢1.
We can see that the process is causal as the parameters satisfy the conditions.
We can also check it by calculating the roots of the autoregressive polynomial.
These are found by solving the equation

©(z)=1-0.82-0.1z2 = 0.

The discriminantis A =0.82 + 4 - 0.1 = 1.04 and the roots are

g1 == Sy + Adohe

P s Eo
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0.8 —v1.04

2(=0.1)
0.8 +V1.04

29 = = —9.09902
2(—0.1)

!

= 1.09902

The roots are outside the interval [-1, 1] and so the process is stationary and
causal.

Example: Parameter Redundancy, Causality and Invertibility

Consider the process Xt - 0.4Xt-1 - 0.45Xt-2 = Zt + Zt-1 + 0.257Zt-2.

(1-0.4B-0.45B2)Xt=(1+ B+ 0.25B2)Zt.
[s this really an ARMA(2,2) process?

We need to check if the polynomials ¢(z) and 8(z) have common factors. We have
@(z)=1-0.4z-0.45z2=(1+0.5z)(1-0.9z),

The model is causal because

®(z)=1-09z=0whenz=10/9,

which is outside the unit circle. The model is also invertible because
0(z)=1+0.5z=0whenz=-2

This is outside the unit circle too

To obtain a linear process form of the model we need to calculate the
coefficients jj. It can be done from the relation
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P
Y = ()_)' -+ E OkWj—k,
k=1

where 6y = 1, #; = 0 for j > ¢, and 1»; = 0 for 7 < (. This gives

g =0y =1

=0+ =0+, =05+09=14
s =ty =101+ 1) =09 % 1.4

s = Prhs = @3(0) + ¢1) = 0.9 x 1.4

U =i =@ (0 +¢y) =097 x 14,

Hence we can write

g=0

Xe=) $iZ;=Z+14) 097'Z,_;.
J=1

Similarly, we can find the invertible representation of the model which is
Z{ = Z Trj- ,’—j - .\’( - 14 Z(—()r))‘l—l.\’t_’
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