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1. Moving Average Process MA(q) 

Definition  {Xt} is a moving-average process of order q if 

Xt = Zt + θ1Zt−1 + . . . + θqZt−q, (1) 
where 

 
and θ1, . . . , θq are constants. 

 
Zt ∼ WN(0, σ2) 

Remark. The MA(q) process can also be written in the following equivalent 
form 

Xt = θ(B)Zt, (2) 

where the moving average operator 

 

θ(B) = 1 + θ1B + θ2B2 + . . . + θqBq (3) 

Defines: a linear combination of values in the shift operator  

BkZt = Zt−k. 
 

Example. MA(2) process. 

This process is written as 

Xt = Zt + θ1Zt−1 + θ2Zt−2 = (1 + θ1B + θ2B
2
)Zt. (4) 

What are the properties of MA(2)? As it is a combination of a zero 

mean white noise, it also has zero mean, i.e., 

E Xt = E(Zt + θ1Zt−1 + θ2Zt−2) = 0. 

It is easy to calculate the covariance of Xt and Xt+τ . We get 

          …..(5) 

which shows that the autocovariances depend on lag, but not on time. 

Dividing 
γ(τ ) by γ(0) we obtain the autocorrelation function, 

 

 …..(6)

a weakly stationary, 2-correlated TS. 

Proposition. If {Xt} is a stationary q-correlated time series with mean zero, 

then it can be represented as an MA(q) process.   

 

Figure 1: shows MA(2) processes obtained from the simulated Gaussian 
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white noise shown in Figure 1 for various values of the parameters (θ1, θ2). 

 
The blue series is    xt = zt + 0.5zt−1 + 0.5zt−2

While the purple series is  xt = zt + 5zt−1 + 5zt−2 

As you can see very different processes can be obtained for different sets of 

the parameters. This is an important property of MA(q) processes, which is a 

very large family of models. This property is reinforced by the following 

Proposition.  
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Figure 1: Two simulated MA(2) processes, both from the white noise shown in 

Figure1, but for different sets of parameters: (θ1, θ2) = (0.5, 0.5) and (θ1, θ2) = (5, 5). 
 

 
 

Figure 2 : Series Gaussian WN : ACF 

 (a)  xt = zt + 0.5zt−1 + 0.5zt−2 and (b) xt = zt + 5zt−1 + 5zt−2
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2.   Invertibility of MA Processes 

The MA(1) process can be expressed in terms of lagged values of Xt by 

substituting repeatedly for lagged values of Zt. We have  

      Zt = Xt − θZt−1. 

The substitution yields 

Zt = Xt − θZt−1 

= Xt − θ(Xt−1 − θZt−2) 

= Xt − θXt−1 + θ2Zt−2 

= Xt − θXt−1 + θ2(Xt−2 − θZt−3) 

= Xt − θXt−1 + θ2Xt−2 − θ3Zt−3 

= . . . 

= Xt − θXt−1 + θ2Xt−2 − θ3Xt−3 + θ4Xt−4 + . . . + (−θ)nZt−n. 

 

This can be rewritten as   

 
 

 
 

And we say that the sum is convergent in the mean square sense. Hence, we 
obtain another representation of the model 

   ∑                                       

 

   

 

 

This is a representation of another class of models, called infinite 
autoregressive (AR) models. So we inverted MA(1) to an infinite AR. It 
was possible due to the assumption that |θ| < 1. Such a process is called 
an invertible process. This is a desired property of time series. 
 so in the example we would choose the model with σ2 = 25, θ =1/5 . 
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3. Linear Processes 

The class of linear time series models, which includes the class of 
autoregressive moving-average (ARMA) models, provides a general 
framework for studying stationary processes. In fact, states that every weakly 
stationary, purely nondeterministic, stochastic process can be written as a 
linear combination.This result is known as Wold’s decomposition 

Definition . The TS {Xt} is called a linear process if it has the representation 
 

                        =∑  
 
    

 
      

 
             

 

The Zt, t=0,        are a sequence of uncorrelated random variables often 
known as innovations 
for all t, where Zt ∼ WN(0, σ2) and {ψj} is a sequence of constants such that 
 

 The condition∑           
    ensures that the process convergesin the mean 

square sense, that is   

 
 
It is easy to show that the model (8) leads to autocorrelation in xt. From this 
equation it follows that: 

E( Xt )= 0. 

      (  )   (    )
 

 

                        

  (  
     

  (    )   
       

 )    

=     
      

      

=  ∑   
  

                      ……(9) 

by using the white noise result that E(             for     Now: 

      (    )(      ) 

                                                 

=                         

=  ∑       
 
           …..(10) 

 

And this implies 
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∑       
 
   

∑   
  

   

               …….(11) 

 
If the number of ψ-weights in (8) is infinite, the weights must be assumed to 
be absolutely summable, so that =∑   

  
      in which case the linear 

filter representation is said to converge. This condition can be shown to be 
equivalent to assuming that xt is stationary, and guarantees that all moments 
exist and are independent of time, in particular that the variance of xt, γ0, is 
finite. 
  

Example : Find Variances , autocovariance and autocorrelation for 
MA(1) by Linear Processes 
 

In equation (7)        ∑           
 
    

Now consider the model obtained by choosing ψ1 =- θ and ψj = 0,j ≥ 2 

 

                            =  ∑   
  

       =                       

In equation (10)             =  ∑       
 
      

=-       ,                
 

 
 
Home Work  

1. Find Variances , autocovariance and autocorrelation by Linear 
Processes 

For        Zt= Zt+0.5Zt-1+0.35Zt-2 
 
 
 

2. Prove Variances , autocovariance and autocorrelation in 
Equation(5 and 6) by Linear Processes 
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4. Autoregressive Processes AR(p) 

The idea behind the autoregressive models is to explain the present value of 
the series, Xt, by a function of p past values, Xt−1, Xt−2, . . . , Xt−p. 

Definition . An autoregressive process of order p is written as 
 

Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + Zt, (12) 

where {Zt} is white noise, i.e., {Zt} ∼ WN(0, σ2), and Zt is uncorrelated 
with Xs for each s < t. 

 
 

Remark . We assume (for simplicity of notation) that the mean of Xt is zero.  If 
the mean is           E Xt = µ, then we replace Xt by Xt − µ to obtain 
 

Xt − µ = φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + . . . + φp(Xt−p − µ) + Zt,   

what can be written as 
 



 

7 

 

Xt = α + φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + Zt, 
 
Where                               α = µ(1 − φ1 − . . . − φp). 
 

Other ways of writing AR(p) model use: 

Vector notation: Denote   φ = (φ1, φ2, . . . , φp)T, Xt−1 = (Xt−1, Xt−2, . . . , Xt−p)T. 

Then the formula  can be written as 
 

Xt = φTXt−1 + Zt. 

 
Backshift operator: Namely, writing the model (7) in the form 

Xt − φ1Xt−1 − φ2Xt−2 − . . . − φpXt−p = Zt, 

and applying  BXt = Xt−1   we get 

(1 − φ1B − φ2B2 − . . . − φpBp)Xt = Zt 
 

Or, using the concise notation we write 
φ(B)Xt = Zt, (13) 

where φ(B) denotes the autoregressive operator 

φ(B) = 1 − φ1B − φ2B2 − . . . − φpBp. 

Then the AR(p) can be viewed as a solution to the equation (8), i.e., 

   
  

    
         

4.1 AR(1) 
According to Definition the autoregressive process of order 1 is given by 

Xt = φXt−1 + Zt, (15) 

where Zt ∼ WN(0, σ2) and φ is a constant.  

Is AR(1) a stationary Time Series or not? 

Corollary 4.1 says that an infinite combination of white noise variables is a 

stationary process. Here, due to the recursive form of the TS we can write AR(1) 
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in such a form. Namely 
 

Xt = φXt−1 + Zt 

= φ(φXt−2 + Zt−1) + Zt 

= φ2Xt−2 + φZt−1 + Zt 
 
 
 
 

= φkXt-k + ∑      
   Zt-j  

This can be rewritten as 

φkXt-k =Xt- ∑      
   Zt-j   ….(16) 

 

What would we obtain if we have continued the backwards operation, i.e., 
what happens when k → ∞? 

 

 

This technique of iterating backwards works well for AR of order 1 but not 

for other orders. A more general way to convert the series into a linear process 

form is the method of matching coefficients. 

The AR(1) model is              φ(B)Xt = Zt, 

where φ(B) = 1−φB and |φ| < 1. We want to write the model as a linear process 
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1 = (1 + ψ1B + ψ2B2 + ψ3B3 + . . .)(1 − φB) 
= 1 + ψ1B + ψ2B2 + ψ3B3 + . . . − φB − ψ1φB2 − ψ2φB3 − ψ3φB4 − . . . 

= 1 + (ψ1 − φ)B + (ψ2 − ψ1φ)B2 + (ψ3 − ψ2φ)B3 + . . . 

Now, equating coefficients of Bj on the LHS and RHS of this equation we 

see that all the coefficients of Bj must be zero, i.e., 

 
 

So, we obtained the linear process form of the AR(1) 

Remark. Note, that from the equation (4.24) it follows that ψ(B) is an inverse 
of φ(B), that is 

 
 

For an AR(1) we have 
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Explosive AR(1) Model and Causality 

Random walk, which is AR(1) with φ = 1  is not a stationary process. So, 
there is a question if a stationary AR(1) process with |φ| > 1 exists? Also, 
what are the properties of AR(1) models for φ > 1? 
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Which is a future dependent stationary TS. This however, does not have any 
practical meaning because it requires knowledge of future values to predict 
the future. 
When a process does not depend on the future, such as AR(1) when |φ| < 1, 
we say that it is causal. 
 Figure 4.13 shows a simulated series xt = 1.02xt-1+zt. As we can see the 
values of the time series quickly become large in magnitude, even for φ just 
slightly above 1. Such process is called explosive. This is not a causal TS 
 

3. Autoregressive Moving Average Model ARMA(1,1) 
This section is an introduction to a wide class of models ARMA(p,q) which 

we will consider in more detail later in this course. The special case, 

ARMA(1,1), is defined by linear difference equations with constant 

coefficients as follows. 

Definition . A TS {Xt} is an ARMA(1,1) process if it is stationary and it 
satisfies 
Xt − φXt−1 = Zt + θZt−1 for every t,  …(17)  

where {Zt} ∼ WN (0, σ2) and φ + θ /= 0. 

Such a model may be viewed as a generalization of the two previously 
introduced models: AR(1) and MA(1). Compare 

AR(1): Xt = φXt−1 + Zt 
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MA(1): Xt = Zt + θZt−1 

ARMA(1,1): Xt − φXt−1 = Zt + θZt−1 
 
Here, as in the MA and AR models, we can use the backshift operator to 
write the ARMA model more concisely as 

φ(B)Xt = θ(B)Zt,   …..(18)  

where φ(B) and θ(B) are the linear filters: 

φ(B) = 1 − φB, θ(B) = 1 + θB. 

 
A. Causality and invertibility of ARMA(1,1) 

For what values of the parameters φ and θ does the stationary ARMA(1,1) 
exist and is useful? To answer this question we will look at the two 
properties of TS, causality and invertibility. 

The solution to 17, or to 18, can be written as 
 

   
       

     
          ……..(19) 

However, for |φ| < 1 we have 

     

     
 (1 + φB + φ2B2 + φ3B3 + . . .)(1 + θB) 

= 1 + φB + φ2B2 + φ3B3 + . . . + θB + φθB2 + φ2θB3 + φ3θB4 + . . . 

= 1 + (φ + θ)B + (φ2 + φθ)B2 + (φ3 + φ2θ)B3 + . . . 

= 1 + (φ + θ)B + (φ + θ)φB2 + (φ + θ)φ2B3 + . . . 

=  ∑    
  

                  …  5.2 

 
where ψ0 = 1 and ψj = (φ + θ)φj−1 for j = 1, 2, …. 

Thus, we can write the solution to 5.1 in the form of an MA(∞) model,i.e  

             ∑         
 
              ….  (20) 

 

This is a stationary unique process.  
 Now, suppose that |φ| > 1. Then, by similar arguments as in the AR(1) model, 
it can be shown that 
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If |φ| = 1 then there is no stationary solution to  
While causality means that the process {Xt} is expressible in terms of past 
values of {Zt}, the dual property of invertibility means that the process {Zt} is 
expressible in the past values of {Xt}. Is ARMA(1,1) invertible? 

 

 

 

The conclusion is that ARMA(1,1) is invertible if |θ| < 1. Otherwise it is non invertible. 
The two properties, causality and invertibility, determine the admissible region for 

the values of parameters φ and θ, which is the square 

— 1 < φ < 1 

— 1 < θ < 1. 

4.6.1 ACVF and ACF of ARMA(1,1) 

The fact that we can express ARMA(1,1) as a linear process of the form 

=  ∑       
 
     …….21 

where Zt is a white noise, is very helpful in deriving the ACVF and ACF of the 
process.  

       ∑      

 

   

 

And we can easily derive expressions for γ(0) and γ(1). 
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And 

 
Note : ∑       

 

   

 
    ,  ∑     

 

    
 
    

 

 

H.w:    Find Variances, autocovariance and autocorrelation by Linear Processes 

For        Zt= 0.6 Zt-1 +Zt+0.5Zt-1 

 

Graph 4  shows the admissible region for the parameters φ and θ and indicates the regions 
when we have special cases of ARMA(1,1), which are white noise, AR(1) and MA(1). 

………….(23) 

 

……(22) 
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Figure 4 : ARMA(1,1) for various values of the parameters φ and θ. 
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Causality of ARMA(p,q) 

We showed that the condition for stationarity of ARMA(1,1)  

Xt - φXt-1 = Zt + θZt-1, for every t,  

 

Example 6.2. Consider ARMA(2,1) 

                                    Xt - 0.8Xt-1 - 0.1Xt-2 = Zt + 0.3Zt-1. 

We can see that the process is causal as the parameters satisfy the conditions. 

We can also check it by calculating the roots of the autoregressive polynomial. 

These are found by solving the equation 

 

φ(z) = 1 - 0.8z - 0.1z2 = 0. 

 

The discriminant is ∆ = 0.82 + 4 · 0.1 = 1.04 and the roots are 
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The roots are outside the interval [-1, 1] and so the process is stationary and 

causal. 

 

Example: Parameter Redundancy, Causality and Invertibility 

 

Consider the process     Xt - 0.4Xt-1 - 0.45Xt-2 = Zt + Zt-1 + 0.25Zt-2. 

 

(1 - 0.4B - 0.45B2)Xt = (1 + B + 0.25B2)Zt. 

Is this really an ARMA(2,2) process? 

We need to check if the polynomials φ(z) and θ(z) have common factors. We have 

φ(z) = 1 - 0.4z - 0.45z2 = (1 + 0.5z)(1 - 0.9z), 

The model is causal because 

φ(z) = 1 - 0.9z = 0 when z = 10/9, 

which is outside the unit circle. The model is also invertible because 

θ(z) = 1 + 0.5z = 0 when z = -2 

This is outside the unit circle too 

To obtain a linear process form of the model we need to calculate the 

coefficients ψj. It can be done from the relation 
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