Syllabus of Topology

- Basic Concepts in General Topology, Definitions and Examples for Topology.
- Closed sets, Characterization of topological space in term of closed sets.
- Neighborhoods and their properties.
- Bases and Subbases
- First Axiom Space and Second Axiom Space.
- Operators (Interior, Exterior, Boundary, Limit point, and Closure)
- Properties of operators
- Subspaces

- Connectedness, Path connected,
- Continuity in Topological Spaces
- Homeomorphism and Homeomorphic.

Topological and Hereditary Property.

- Separation Axioms.
- Product Space and Quotient space.

Useful References

Seymour, L. (1965), Theory and Problem of General Topology, Schaum's Outline series.

Willard S.(2012). General Topology. Courier Corporation.

Sharma J. (1977). Topology, Krishna Prakashan Ltd.

§1 Definition and Examples:

Definition 1.1: Let X be any non-empty set. A family \mathfrak{J} of subsets of X is called a topology on X if it satisfies the following conditions:

- (i) $\phi \in \mathfrak{J}$ and $X \in \mathfrak{J}$
- (ii) $A, B \in \mathfrak{J} \Rightarrow A \cap B \in \mathfrak{J}$

(iii)
$$A_{\lambda} \in \mathfrak{J}$$
, $\forall \lambda \in \Lambda$ (where Λ is any indexing set) $\Rightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathfrak{J}$

If \mathfrak{F} is a topology on X, then the ordered pair $\langle X, \mathfrak{F} \rangle$ is called a topological space (or T-space)

Examples 1.2: Throughout X denotes a non-empty set.

1) $\mathfrak{J} = \{\emptyset, X\}$ is a topology on X. This topology is called **indiscrete topology** on X and the T-space (X, \mathfrak{J}) is called indiscrete topological space.

2) $\mathfrak{J} = \mathcal{P}(X)$, $(\mathcal{P}(X)) = \text{power set of } X \text{ is a topology on } X \text{ and is called } \text{discrete topology on } X \text{ and the T-space } (X, \mathfrak{J}) \text{ is called } \text{discrete topological space.}$

Remark: If |X| = 1, then discrete and indiscrete topologies on X coincide, otherwise they are different.

3) Let $X = \{a, b, c\}$ then $\mathfrak{J}_1 = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\mathfrak{J}_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ are topologies on X whereas $\mathfrak{J}_3 = \{\emptyset, \{a\}, \{b\}, X\}$ is a not a topology on X.

- 4) Let X be an infinite set. Define $\mathfrak{F} = \{\emptyset\} \cup \{A \subseteq X \mid X A \text{ is finite}\}$ then \mathfrak{F} is topology on X.
 - (i) $\emptyset \in \mathfrak{J}$ (by definition of \mathfrak{J})

As $X - X = \emptyset$, a finite set, $X \in \mathfrak{J}$

(ii) Let $A, B \in \mathfrak{J}$. If either $A = \emptyset$ or $B = \emptyset$, then $A \cap B \in \mathfrak{J}$. Assume that $A \neq \emptyset$ and $B \neq \emptyset$.

Then X - A is finite and X - B is finite. Hence $X - (A \cap B) = (X - A) \cup (X - B)$ is

finite set. Therefore $A \cap B \in \mathfrak{J}$. Thus $A, B \in \mathfrak{J} \implies A \cap B \in \mathfrak{J}$.

(iii) Let $A_{\lambda} \in \mathfrak{J}$, for each $\lambda \in \Lambda$ (where Λ is any indexing set). If each $A_{\lambda} = \emptyset$, then $\bigcup_{\lambda \in \Lambda} A_{\lambda} = \emptyset \in \mathfrak{J}.$

If
$$\exists \lambda_0 \in \Lambda$$
 such that $A_{\lambda_0} \neq \emptyset$, then $A_{\lambda_0} \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda} \Longrightarrow X - A_{\lambda_0} \supseteq X - \bigcup_{\lambda \in \Lambda} A_{\lambda}$.

As $X - A_{\lambda_0}$ is a finite set and subset of finite set being finite we get $X - \bigcup_{\lambda \in \Lambda} A_{\lambda}$ is finite

and hence $\bigcup_{\lambda} A_{\lambda} \in \mathfrak{J}$. Thus in either case,

$$A_{\lambda} \in \mathfrak{J}, \ \forall \lambda \in \Lambda \implies \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \mathfrak{J}.$$

From (i), (ii) and (iii) is a topology on X. This topology is called **co-finite topology** on X and the topological space is called **co-finite topological** space.

Remark: If X is finite set, then co-finite topology on X coincides with the discrete topology on X.

5) Let X be any uncountable set. Define $\mathfrak{J} = \{\emptyset\} \cup \{A \subseteq X \mid X - A \text{ is countable}\}$ Then \mathfrak{J} is a topology on X.

Example1: Let X=R, and $\tau = \{G \subseteq R; -1 \notin G\} \cup \{R\}$, then show that τ is a topology for R.

Example 2: Let X=R, and $\tau = \{G \subseteq R; x \in G \rightarrow -x \in G\} \cup \{\varphi\}$ then show that τ is a topology for R.

Example 3: Let X=R, and $\tau = \{G \subseteq R; 3 \in G\} \cup \{\varphi\}$, then show that τ is a topology for R.

Definition 2: Let X be a non-empty set and let

 τ_1 and τ_2 be topologies for X, then

- 1) We say that τ_1 is weaker than τ_2 or τ_2 is stronger than τ_1 if $\tau_1 \subseteq \tau_2$.
- 2) If $\tau_1 \subseteq \tau_2$ or $\tau_2 \subseteq \tau_1$ then τ_1 and τ_2 are comparable otherwise are incomparable.

Example: Let X={a,b,c}, $\tau_1 = \{\varphi, X\}$, and $\tau_2 = P(X)$, then

 au_1 is weaker than au_2 and au_2 is stronger than au_1 ,

 au_1 and au_2 are comparable.

Example: Let X={a,b,c}, $\tau_1 = \{\varphi, \{a\}, X\}$, and $\tau_2 = \{\varphi, \{b\}, X\}$, then

 au_1 is not weaker than au_2 and au_2 is not stronger than au_1 ,

 au_1 and au_2 are not comparable.

Union and Intersection of topologies

1) Union of two topologies may not be topology in general.

For example

Example: Let X={a,b,c}, $\tau_1 = \{\varphi, \{a\}, X\}$, and $\tau_2 = \{\varphi, \{b\}, X\}$, then

 τ_1 and τ_2 are topologies for X, but $\tau_1 \cup \tau_2 = \{\varphi, \{a\}, \{b\}, X\}$, is not

topology for X

Union and Intersection of topologies

2) Intersection of two topologies is also topology.

in general arbitrary intersection of topologies is also topology

for X

Proof: Let τ_1 and τ_2 be two topologies for X, we have to show that $\tau_1 \cap \tau_2$ is also topology for X.

Closed sets:

Definition: Let (X, τ) be a topological space, A subset F of X is said to be closed set, if its complement is open.

That's mean F is closed set iff F^c is open set.

Example: Let X={a,b,c}, $\tau_1 = \{\varphi, \{a\}, \{a,b\}, X\}$ then closed sets are X, {b,c},{c} and φ .

Remark:

- 1) Since \emptyset is open, it follows that $\emptyset^c = X$ is closed
- 2) Since X is open, it follows that $X^c = \emptyset$ is closed
- Thus Ø and X are open as well as closed sets