**Definition 0.4.1** Let  $\mathcal{U}$  be a non-empty finite set of objects called the universe and R be an equivalence relation on  $\mathcal{U}$  named as the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair  $(\mathcal{U}, R)$  is said to be the approximation space. Let  $X \subseteq \mathcal{U}$ .

(i) The lower approximation[57] of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by  $L_R(X)$ . That is,  $L_R(X) = \bigcup_{x \in \mathcal{U}} \{R(x) : R(x) \subseteq X\}$ , where R(x) denotes the equivalence class determined by x.

- (ii) The upper approximation [57] of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by  $U_R(X)$ . That is,  $U_R(X) = \bigcup_{x \in \mathcal{U}} \{R(x) : R(x) \cap X \neq \emptyset\}$ 
  - (iii) The boundary region[57] of X with respect to R is the set of all objects, which can be classified neither as X nor as not-X with respect to R and it is denoted by  $B_R(X)$ . That is,  $B_R(X) = U_R(X) L_R(X)$ .

**Remark 0.4.2** [57] If  $(\mathcal{U}, R)$  is an approximation space and  $X, Y \subseteq \mathcal{U}$ , then

(i) 
$$L_R(X) \subseteq X \subseteq U_R(X)$$
.

(ii) 
$$L_R(\phi) = U_R(\phi) = \phi$$
 and  $L_R(\mathcal{U}) = U_R(\mathcal{U}) = \mathcal{U}$ 



(iii) 
$$U_R(X \cup Y) = U_R(X) \cup U_R(Y)$$

(iv) 
$$U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$$

(v) 
$$L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y)$$

(vi) 
$$L_R(X \cap Y) = L_R(X) \cap L_R(Y)$$

(vii) 
$$L_R(X) \subseteq L_R(Y)$$
 and  $U_R(X) \subseteq U_R(Y)$  whenever  $X \subseteq Y$ 

(viii) 
$$U_R(X^C) = [L_R(X)]^C$$
 and  $L_R(X^C) = [U_R(X)]^C$ 

(ix) 
$$U_R U_R(X) = L_R U_R(X) = U_R(X)$$

$$(x) L_R L_R(X) = U_R L_R(X) = L_R(X)$$

Remark 1.1.1 Let  $\mathcal{U}$  be an universe of objects and R be an equivalence relation on  $\mathcal{U}$ . For  $X \subseteq \mathcal{U}$ , let  $\tau_R(X) = \{\mathcal{U}, \phi, L_R(X), U_R(X), B_R(X)\}$ . We note that  $\mathcal{U}$  and  $\phi \in \tau_R(X)$ . Since  $L_R(X) \subseteq U_R(X), L_R(X) \cup U_R(X) = U_R(X) \in \tau_R(X)$ . Also,  $U_R(X) \cup B_R(X) = U_R(X) \in \tau_R(X)$  and  $L_R(X) \cup B_R(X) = U_R(X) \in \tau_R(X)$ . Also,  $L_R(X) \cap U_R(X) = L_R(X) \in \tau_R(X)$ ;  $U_R(X) \cap B_R(X) = B_R(X) \in \tau_R(X)$  and  $U_R(X) \cap B_R(X) = F_R(X)$ .

**Definition 1.1.2** Let  $\mathcal{U}$  be an universe, R be an equivalence relation on  $\mathcal{U}$  and  $\tau_R(X) = \{\mathcal{U}, \phi, L_R(X), U_R(X), B_R(X)\}$  where  $X \subseteq \mathcal{U}$ .  $\tau_R(X)$  satisfies the following axioms:

- (i)  $\mathcal{U}$  and  $\phi \in \tau_R(X)$ .
- (ii) The union of the elements of any sub-collection of  $\tau_R(X)$  is in  $\tau_R(X)$ .
- (iii) The intersection of the elements of any finite sub-collection of  $\tau_R(X)$  is in  $\tau_R(X)$ .

That is,  $\tau_R(X)$  forms a topology on  $\mathcal{U}$  called the nano topology on  $\mathcal{U}$  with respect to X. We call  $(\mathcal{U}, \tau_R(X))$  as the nano topological space. The elements of  $\tau_R(X)$  are called nano-open sets.

**Example 1.1.3** Let  $\mathcal{U} = \{a,b,c,d,e\}$ ,  $\mathcal{U}/R = \{\{a,b\},\{c,d\},\{e\}\}\}$ , the family of equivalence classes of  $\mathcal{U}$  by an equivalence relation R and  $X = \{a,c,d\}$ . Then  $U_R(X) = \{a,b,c,d\}$ ,  $L_R(X) = \{c,d\}$  and  $B_R(X) = \{a,b\}$ . Therefore the nano topology,  $\tau_R(X) = \{\mathcal{U},\phi,\{a,b,c,d\},\{c,d\},\{a,b\}\}$ .

**Proposition 1.1.5** If  $\tau_R(X)$  is the nano topology on  $\mathcal{U}$  with respect to X, then the set  $B = \{\mathcal{U}, L_R(X), B_R(X)\}$  is the basis for  $\tau_R(X)$ .



## **Proof:**

- (i)  $\bigcup_{A \in B} A = \mathcal{U}$ .
- (ii) Consider  $\mathcal{U}$  and  $L_R(X)$  from B. Let  $W = L_R(X)$ . Since  $U \cap L_R(X) = L_R(X)$ ,  $W \subset \mathcal{U} \cap L_R(X)$  and every X in  $\mathcal{U} \cap L_R(X)$  belongs to X. If we consider  $\mathcal{U}$  and  $\mathcal{U}$  and  $\mathcal{U}$  from B, taking  $\mathcal{U} = \mathcal{U} \cap \mathcal{U} \cap$

**Proposition 1.1.6** Let  $\mathcal{U}$  be a non-empty finite universe and  $X \subseteq \mathcal{U}$ .

(i) If  $L_R(X) = \phi$  and  $U_R(X) = \mathcal{U}$ , then  $\tau_R(X) = \{\mathcal{U}, \phi\}$ , the indiscrete nano topology on  $\mathcal{U}$ .

- (ii) If  $L_R(X) = U_R(X) = X$ , then the nano topology,  $\tau_R(X) = \{U, \phi, L_R(X)\}$ .
- (iii) If  $L_R(X) = \phi$  and  $U_R(X) \neq \mathcal{U}$ , then  $\tau_R(X) = \{\mathcal{U}, \phi, U_R(X)\}$ .
- (iv) If  $L_R(X) \neq \phi$  and  $U_R(X) = \mathcal{U}$ , then  $\tau_R(X) = \{\mathcal{U}, \phi, L_R(X), B_R(X)\}$ .
- (v) If  $L_R(X) \neq U_R(X)$  where  $L_R(X) \neq \phi$  and  $U_R(X) \neq \mathcal{U}$ , then  $\tau_R(X) = \{\mathcal{U}, \phi, L_R(X), U_R(X), B_R(X)\}$  is the discrete nano topology on  $\mathcal{U}$ .