

**DEFINITION** The derivative of f at  $P_0(x_0, y_0)$  in the direction of the unit vector  $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$  is the number

$$\left(\frac{df}{ds}\right)_{\mathbf{u},P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s},\tag{1}$$

provided the limit exists.

The directional derivative defined by Equation (1) is also denoted by

$$(D_{\mathbf{u}}f)_{P_0}$$
. "The derivative of  $f$  at  $P_0$  in the direction of  $\mathbf{u}$ "

**EXAMPLE 1** Using the definition, find the derivative of

$$f(x,y) = x^2 + xy$$

at  $P_0(1, 2)$  in the direction of the unit vector  $\mathbf{u} = (1/\sqrt{2})\mathbf{i} + (1/\sqrt{2})\mathbf{j}$ .



Solution Applying the definition in Equation (1), we obtain

$$\left(\frac{df}{ds}\right)_{\mathbf{u},P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s}$$

$$= \lim_{s \to 0} \frac{f\left(1 + s \cdot \frac{1}{\sqrt{2}}, 2 + s \cdot \frac{1}{\sqrt{2}}\right) - f(1, 2)}{s}$$

$$= \lim_{s \to 0} \frac{\left(1 + \frac{s}{\sqrt{2}}\right)^2 + \left(1 + \frac{s}{\sqrt{2}}\right)\left(2 + \frac{s}{\sqrt{2}}\right) - (1^2 + 1 \cdot 2)}{s}$$

$$= \lim_{s \to 0} \frac{\left(1 + \frac{2s}{\sqrt{2}} + \frac{s^2}{2}\right) + \left(2 + \frac{3s}{\sqrt{2}} + \frac{s^2}{2}\right) - 3}{s}$$

$$= \lim_{s \to 0} \frac{\frac{5s}{\sqrt{2}} + s^2}{s} = \lim_{s \to 0} \left(\frac{5}{\sqrt{2}} + s\right) = \frac{5}{\sqrt{2}}.$$

# **DEFINITION** The **gradient vector (gradient)** of f(x, y) at a point $P_0(x_0, y_0)$ is the vector

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

obtained by evaluating the partial derivatives of f at  $P_0$ .

**THEOREM 9—The Directional Derivative Is a Dot Product** If f(x, y) is differentiable in an open region containing  $P_0(x_0, y_0)$ , then

$$\left(\frac{df}{ds}\right)_{\mathbf{u},P_0} = (\nabla f)_{P_0} \cdot \mathbf{u},\tag{4}$$

the dot product of the gradient  $\nabla f$  at  $P_0$  and  $\mathbf{u}$ .

**EXAMPLE 2** Find the derivative of  $f(x, y) = xe^y + \cos(xy)$  at the point (2, 0) in the direction of  $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$ .

**Solution** The direction of  $\mathbf{v}$  is the unit vector obtained by dividing  $\mathbf{v}$  by its length:

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{v}}{5} = \frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}.$$

The partial derivatives of f are everywhere continuous and at (2, 0) are given

$$f_x(2,0) = (e^y - y\sin(xy))_{(2,0)} = e^0 - 0 = 1$$
  
$$f_y(2,0) = (xe^y - x\sin(xy))_{(2,0)} = 2e^0 - 2 \cdot 0 = 2.$$

The gradient of f at (2, 0) is

$$\nabla f|_{(2,0)} = f_x(2,0)\mathbf{i} + f_y(2,0)\mathbf{j} = \mathbf{i} + 2\mathbf{j}$$

$$(D_{\mathbf{u}}f)|_{(2,0)} = \nabla f|_{(2,0)} \cdot \mathbf{u}$$
 Eq. (4)  
=  $(\mathbf{i} + 2\mathbf{j}) \cdot \left(\frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}\right) = \frac{3}{5} - \frac{8}{5} = -1.$ 

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f||\mathbf{u}|\cos\theta = |\nabla f|\cos\theta,$$

### Properties of the Directional Derivative $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos \theta$

1. The function f increases most rapidly when  $\cos \theta = 1$  or when  $\theta = 0$  and  $\mathbf{u}$  is the direction of  $\nabla f$ . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector  $\nabla f$  at P. The derivative in this direction is

$$D_{\mathbf{u}}f = |\nabla f|\cos(0) = |\nabla f|.$$

- 2. Similarly, f decreases most rapidly in the direction of  $-\nabla f$ . The derivative in this direction is  $D_{\mathbf{u}}f = |\nabla f|\cos(\pi) = -|\nabla f|$ .
- 3. Any direction **u** orthogonal to a gradient  $\nabla f \neq 0$  is a direction of zero change in f because  $\theta$  then equals  $\pi/2$  and

$$D_{\mathbf{u}}f = |\nabla f|\cos(\pi/2) = |\nabla f| \cdot 0 = 0.$$

# **EXAMPLE 3** Find the directions in which $f(x, y) = (x^2/2) + (y^2/2)$

- (a) increases most rapidly at the point (1, 1).
- **(b)** decreases most rapidly at (1, 1).
- (c) What are the directions of zero change in f at (1, 1)?

#### Solution

(a) The function increases most rapidly in the direction of  $\nabla f$  at (1, 1). The gradient there is

$$(\nabla f)_{(1,1)} = (x\mathbf{i} + y\mathbf{j})_{(1,1)} = \mathbf{i} + \mathbf{j}.$$

Its direction is

$$\mathbf{u} = \frac{\mathbf{i} + \mathbf{j}}{|\mathbf{i} + \mathbf{j}|} = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{(1)^2 + (1)^2}} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}.$$

**(b)** The function decreases most rapidly in the direction of  $-\nabla f$  at (1, 1), which is

$$-\mathbf{u} = -\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}.$$

(c) The directions of zero change at (1, 1) are the directions orthogonal to  $\nabla f$ :

$$\mathbf{n} = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$
 and  $-\mathbf{n} = \frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$ .

## Algebra Rules for Gradients

$$\nabla (f+g) = \nabla f + \nabla g$$

$$\nabla (f - g) = \nabla f - \nabla g$$

$$\nabla(kf) = k\nabla f \qquad \text{(any number } k\text{)}$$

$$\nabla (fg) = f\nabla g + g\nabla f$$

$$\nabla \left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$$

#### **EXAMPLE 5** We illustrate two of the rules with

$$f(x, y) = x - y$$
  $g(x, y) = 3y$   
 $\nabla f = \mathbf{i} - \mathbf{j}$   $\nabla g = 3\mathbf{j}$ .

We have

1. 
$$\nabla(f-g) = \nabla(x-4y) = \mathbf{i}-4\mathbf{j} = \nabla f - \nabla g$$
 Rule 2

2. 
$$\nabla(fg) = \nabla(3xy - 3y^2) = 3y\mathbf{i} + (3x - 6y)\mathbf{j}$$
  
 $= 3y(\mathbf{i} - \mathbf{j}) + 3y\mathbf{j} + (3x - 6y)\mathbf{j}$   
 $= 3y(\mathbf{i} - \mathbf{j}) + (3x - 3y)\mathbf{j}$   
 $= 3y(\mathbf{i} - \mathbf{j}) + (x - y)3\mathbf{j} = g\nabla f + f\nabla g$  Rule 4

#### **EXAMPLE 6**

- (a) Find the derivative of  $f(x, y, z) = x^3 xy^2 z$  at  $P_0(1, 1, 0)$  in the direction of  $\mathbf{v} = 2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}$ .
- (b) In what directions does f change most rapidly at P<sub>0</sub>, and what are the rates of change in these directions?

#### Solution

(a) The direction of  $\mathbf{v}$  is obtained by dividing  $\mathbf{v}$  by its length:

$$|\mathbf{v}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} = \sqrt{49} = 7$$
  
 $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{2}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}.$ 

The partial derivatives of f at  $P_0$  are

$$f_x = (3x^2 - y^2)_{(1,1,0)} = 2,$$
  $f_y = -2xy|_{(1,1,0)} = -2,$   $f_z = -1|_{(1,1,0)} = -1.$ 

The gradient of f at  $P_0$  is

$$\nabla f|_{(1,1,0)}=2\mathbf{i}-2\mathbf{j}-\mathbf{k}.$$

The derivative of f at  $P_0$  in the direction of  $\mathbf{v}$  is therefore

$$(D_{\mathbf{u}}f)_{(1,1,0)} = \nabla f|_{(1,1,0)} \cdot \mathbf{u} = (2\mathbf{i} - 2\mathbf{j} - \mathbf{k}) \cdot \left(\frac{2}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}\right)$$
$$= \frac{4}{7} + \frac{6}{7} - \frac{6}{7} = \frac{4}{7}.$$

(b) The function increases most rapidly in the direction of  $\nabla f = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$  and decreases most rapidly in the direction of  $-\nabla f$ . The rates of change in the directions are, respectively,

$$|\nabla f| = \sqrt{(2)^2 + (-2)^2 + (-1)^2} = \sqrt{9} = 3$$
 and  $-|\nabla f| = -3$ .

