Problems
KEconometri




There are three main problems due
importance in terms of their pro
and effect on the results
1. Multicollinearity Proble
2. Autocorrelation Problem

3. Hetroscedasticity Proble




Multicellingaritx Prob

You get the problem of Multicollinearity wh
two or more explanatory variables with v
linear relationship so that it becomes difficult t
the effect of each variable on the dependent vari
Multicollinearity term 1s composed of three se
Multi — multiple
Co — common correlation
Linearity — linear
The assumption of multicollinearity is there is no
or semi-perfect linear relationship between any o
explanatory variables. As well as it should be the n
of parameters to be estimated less than the samp

Rank(X) =k +1<n



Illustrating Multicollinearit

 When correlation among
X’s 1s low, OLS has lots of
information to estimate

* This gives us confidence
in our estimates of §




*When correlation among
X’s 1s high, OLS has very
little information to
estimate 0.

*This makes us relatively
uncertain about our
estimate of [.




Reasons or Sources of
Multicollinearity Problem

1. Could change some of the explanato
variables together because of lack of
collection from a broad base, or becau
the nature of the variables. When the v
of one of the explanatory variables dep
on the value of one or more of the
explanatory variables, I.e., one of

explanatory variable can be written as lin
combination for the other variables.




Ex1:// perfect collinearity
X,:10 15 18 24 9
X,:50 75 90 120 45

Then X; & X, are perfectly correlated b
X, = 9X;.

Ex2:// Family income (X,)= husband’s In
X,) + wife’s income (X,)

X, = X, + X,
hen X, , X, & X, are perfectly corre




2. Possible to share all explanatory vari
particular time trend (general trend) [w
variables move together], or that one
explanatory variables may be its value la
(lag-variable) from the other that goes I
direction of another time. In this case arise
problem of multicollinearity between
explanatory variables.



For example//

Let; X, :variable of time series
X._, - lag variable

Then X,and X, _, are correlated.

L_ag — variable: means that variable
X, _,) lags than the other variable
t a particular time interval.




3. Misspecification of the model :

For example: when you add polynom
to the model, and especially if the r
the variable X 1s small, in this c
problem multicollinearity may occur .

EXT Y=o + B X+ BX2 + B X3 + U,

4. when the number of explanatory variable
greater than the number of observation
(sample size), [ k > n].




Consequences of

Multicollinearity
» In case perfect correlation (ry; x; = +1)

1- (X'X) singular matrix —» | X'X| =0
— (X'X) 1 — o0

2- Cannot.estimation the values of param

by P = (X'X)1X'Y -

3- Cannot estimation.the Standard errors
estimators V-Cov(F ) =02 (X'X)! —

1"

- Cannot procedure the statistical t



» In case semi-perfect correlationtx,x
1- | X'X| #0 — 0 (Very small)

2- The value of estimated parameters
model be 1naccurate and very large.

3- Standard errors for estimators will be v
large 0% (X'X)'! — o

- The confidence intervals become large
wrong.




5- Wrong conclusions

a. Wrong explanation for effects
variables on dependent variable res
t-test, (i.e., Insignificant but In
significant).

b. The result of t-test insignificant whil
value of R? very large and the result
F-test significant.

Wrong signs for some estimators.




6- The estimates of para
not be stable or not very r
1.e., estimates become very se
(speed 1mpact) to addition
data or simple changes 1n da
analysis a part of sample ma
to large changes in the values
that estimates.



Methods for Detecting Multicoll

1- The determinant of matrix (X'X) meth

a. If |X'X|=0 then we have perfect
multicollinearity.

b. If |X'X| — 0 then we have higher
multicollinearity.

2- The result of t-test insignificant while the valu
R2 very large and the result of F-test significan

- Scatter-plot for explanatory variables an
correlation matrix for variables. ¢




4- Variance Inflation Factor (VIF)
1
1-R?

J

VIF; = , J=1,..,k(No. of varia

Where compute R} by regress each explanat
variable (X;) on the rest of explanatory variat

a. ITVIF> 10 , then very high multicollinearit)

If VIF<10—1 then no multicollinearity




5- Clien Method

Compute multiple correlation coe
which equals to square rogt of
determination coefficient RY x .  x,
general linear model, and compare It
simple correlation coefficients bet
explanatory variables.

If Ry.x...x for model is greater than sj
correlation coefficients that me
multicollinearity, and vice versa. -




Ex: Test multicollinearity probl
Clien method , 1f a

R%{.xl ..... Xk =0.932

(1 .956 .919)
R = 1 .901
SOlo 1
\ J

Ry i x = R¥.x....x, =/0.932=0.966

Since multiple correlation coefficien
ogreater than simple correlation
coefficients that means no
multicollinearity problem.




6- Farrar-Glaubber Test

1. Chi-Square Test (y2- test):
To detect the presence of the multi colli
problem in the function included for s
explanatory variables.

2. F- Test: To determine correlated varia
linearly.

3. t-Test: To determine the wvariables
cause the multi collinearity.




First: Chi-Square Test (y*- t

» The hypotheses of test
H,: The explanatory variables X/s are ortho
(uncorrelated : Independent)

H,: The explanatory variables X/’s are not ort
(correlated : dependent)

» Calculate the value of test statistic (Calculat
value for y?: Cal ), as follows

Cal y° :[g—n+%1]ln\R\

here; n: sample size.
k: No. of explanatory variables.
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In |[R|: The natural logarithm for th
determination of simple correlation c
matrix between explanatory variables.

1 1, Ry .. Iy
I 1 r .. I
‘R‘: 21 23 2k
g N Ny - 1

M. X : simple correlation coefficiert between X;, X;

D% X

rij:rxi’x_: ) _13 IJS+1
| \/in2 \/ZXJ2

2

in2=zxi2—”ii > ZXJ?:ZXJZ_n

21




> Under particular significant leve
find the tabulated value (Tab y?), as fo

Tab;((za k(k —1). » Where k(k2— D IS degrees of free

> )

> We compare the value of (Cal y?) with (T
« 1f Cal x?>Tab x?, we rejected H,
« if Cal x? <'Tab x?, we not rejected H,




Second: F- Test

After testing the presence of multic
problem according to y? — test requires
which variable from the explanatory
correlated linearly, where lead to occur this
we perform such diagnosis by using F-t
follows

» The hypotheses of test

. P2 _
Ho:Rj23..k=0

.
H,: Rj.2,3,...,k >0

we calculate the general form for test
calculated value) for this test and for eac
s follow;




(R{23. )/ (k=1

1-Rj23..)/(n=k)

Where;
R; 53 1. Multiple correlation coetficient
X, and the rest of studied explanatory vari

» We compare the value of Cal F; with
with degrees of freedom (£ — 1), (n — k) an
particular significant level (a).

» 1if Cal F;>Tab F, we rejected H,
his means that the wvariable X,
inearly with the rest explanatory vari



 if Cal Fj < Tab F, we not rejected Ho
This means that the variable Xj not correla
linearly with the rest explanatory variables

‘*Apply this test for each explanatory
to determine all explanatory wvariable
correlated or not correlated with the
xplanatory variables.




Third: t — Test

After determination the correlated variable
F — test, we use t — test for all possible pairs
» The hypotheses test

Hoiliji2s.6=0
H o5 « 70
» we calculate the test statistic value (calc

value) for this test (Cal t;;,,, ,) withrespectt
explanatory variables X; , X, , as follows

(r, i 123 )N —K

Cal tij.1,2,3,...,k — >
\/1 - rij. 1,2,3,...k




Where;

I;; 195 Ihe partial correlation coefficie
X; , X; with hold the rest of explanator
constant.

Ex: If we have three explanatory variables

- The multiple correlation coefficient betwee

X, X, 1s
] k 2
r’ +r2 —2r..r. ri
R . ] 1k 1] ik
ijk — 1
_rjk

The partial correlation coefficient between
with hold Xk constant 1s

- rlkrjk

\/1—r,k \/1—r




»>We compare the value of (Cal t;;
with (Tab.t), with degree of freedo
and under particular significant le

(Tab t(q4/2), (n - 1)

1 Cal. t;;; 5. 1 2>Tab {9 (-
we reject H, This means that The part
correlation coefficient between X; , X; wit
old the rest of explanatory variables
onstant 1s significant, which both ar
sponsible for the problem multic
model.




It Cal. ¢;;;5 r<Tabt,g), »-
not rejected H, This mean
The partial correlation coeffi
between X; , X; with hold the re
explanatory wvariables constan
not significant, which both ar
responsible for the  probl
multicollinearity in model.




Example: From the following data
explanatory variables, test multicol
problem between explanatory variab
X,, X3) under significant level (a = 0.0
using Farrar — Glaubber test.

n=23, X, =839, ) X,=416115, ) X, =3660
Y X7 =392, ) X;=9530780489 , ) X;=
X,X, =14391509, ) X,X, =12131426 , ) X,X, =8,625,2
aDt g 20 = 2086, Tab yfes 5 =7.816 , TabFps , o) =




Sol: Farrar-Glaubber Test
1- Chi-Square Test (y?- test

rij:rx,,X]:\/Zzzx\i/ij — , -l<ip;<+1
X; X’
dx X =D X X, = nXi X

— _
DX =2 X=X Y xp = X{-nX,




Sol: Farrar-Glaubber Test

H,: The explanatory variables X's are ortho
(uncorrelated : Independent)

H;: The explanatory variables X/’s are not ort
(correlated : dependent)

» Calculate the value of test statistic (Calculate
value for y?: Cal y9), as follows

Cal y° :[g—n+%1]ln\R\

here; n: sample size.
k: No. of explanatory variables.

32




Y. xi, xj xl X2

Txi Xj = yTx1 x2 =
V2 xi? ’Zx] V2 x1? ’sz

Y x1,x3 Y x2,x3

Tx1,x3 = Tx2 x3 =
VD x12 ’Zsz D x22 ’Zsz

1 -0.63 —0.67
R=|-063 1 0.92
—0.67 0.92 1

Hy: Xq,X,, X5 are othogonal (Uncorrelated)
Hi: X, ,X,, X5 are not othogonal (correlated)




K 11
Cal /2 =|=-n+=| IR
al y L n+6} n|R)

1 —-0.63 —0.67
—063 1 0.92

—0.67 0.92 1

IR| = = 0.084464

Cal 42 = E ~23+ %} (-2.4714298)  =49.84

Cal x*> Tab y* , werejected H, then the explanat
variables X, ,X,, X3 are not orthogonal (correlated) ,
have mullticollinearity problem among the explanatory
variables




2-F-test

e For X1
H,: RIE_H =0
H :R,,>0
(R} ) (k=1)
. ].2,3,...,k
Cal Fj_(l—Rz T (=K
j.2,3,...,k
RZ. . — (112)*+(113)*—2(112713723)
23 1= (r23)?
2 _ (~0.63)2+(-0.67)%2—2(—0.63)*(—0.67)*(0.92) _
R%123 = 1-(092)2 0.45
el F1_  (RE5) /(K —D)

A-R,3)/(n—k)

Cal F1— 045 /(2) _ |
(1 - 0.45) / (20)
al F > Tab F we rejected Ho then

Is means that the variable X, correlated linearly with th
lanatory variables.




B/l for (X,)

Hy:R)\ =0
H R, >0

o =2t (<0.63)° +(0.92)° ~2(-0.63)0.67)092) _ g4
- -1 1-(-0.67)’

ol 5 o Rl 0847312 _ 04236
5T (=R, n-k) (1= 0.8473)/ 20 0.00763

Cal F, =555
Tab ., =349
555>349 , Cal F, > TabF we reject 4,

This means that the variable(X,) correlated linearly with other explanatory variables (X, X))
and therefore 1t 15 the source of the problem of multicollinearity.

=53.5

Ry



C// for (X,)

H R, =0
H:R, >0
2 2 2 2
P 221"121”131‘23 _ (067 +(092)" - O'f3)( 0§1109) _ acns
' -] - (-0.63)
2
Cil F. - R (k=) 086052 0302 o,

(=R, )ln—F) (1-0.8605/20 0.00697
Cal F, =61.72

Tab . =349

61.72>349 , Cal F; > TabF we reject H,
This means that the variable (X,) correlated linearly with other explanatory variables (X,,X,)
and therefore 1t 1s the source of the problem of multicollinearity too.



3- t-test: All for (X1, X5):
H:r,,=0
H:ny#0
-ty (H0.63)-(-067)(0.92)  -0.0136

M3 = \/1 \/1 ru \/ (<0.67) J(l_w.gz]—]_{0.7424]{0.3919]:

-k 0047420 02102
1 -1, \h_ 0,047 "~ 0.998895

Tab fp ) =208 , -021043<-2086 = Cal 1, < Tabt we not reject H,

Cal 1, = =-0.21043

This means that the partial correlation between two explanatory variables (X, X,)with hold
(X,) constant not sigmficant, which both are responsible from the problem multicollinearity

in model.



B// for (X, X,):

Hyrg,=0
H r., 0
o neonn  (06)-(08)0%) -0
B e -8 1-0927)  (0.7766)(03919)

-k _ 029720 _-1382

Cal 1 =82 o 139003
B \/l 1‘13, \/l (-0.297)*  0.9549

Tab fps ) =12086 , -139093<-2086 = Cal 1, < Tabt we not reject H,

This means that the partial correlation between two explanatory variables (X, X,)with hold

(X,) constant not significant, which both are not responsible from the problem

multicollinearity in model too.
—




C//for (X,,X;):

Hyry, =0

Al

heott (092)-(063)-06T) 04979

T oon s s 0707

Cals _ryln-k  08636/20 38621
2o sy 00

Tab

=7.6599

o =208, 7.6599>2.086 = Cal 1, > Tabt wereject H,

This means that the partial correlation between two explanatory variables (X, X,)with hold (X,)
constant significant, which both are responsible from the problem multicollinearity n model.



Example H.W// In the following data we are measuring the quantity y for several values of X
, X, and X; (explonatory variables) we will use the following tables of values:

Y X X X3
0.19 0.5 04 0.3
0.28 0.8 0.6 0.2
0.30 0.9 0.7 Ll
0.25 L.l 12 21
0.29 1.3 14 0.8
0.28 14 1.7 0.4

b
y=159 ) X, =6,
i=l

in =6 ix; =49, ixf =6.56.

i=1

ixj =13 , ixf =6.55
i=] i=1




ZXY 1.633 ZXY 1.636 ZX}’ 1312 Zrz 0.4295 ZXX =6.83 .

i=l i= i=l i=l

ZXX =521 ZXX =533

i=l
T =f +BX +B.X,+BX,=0066+0462X, 057X, ~0.008X,

Tab 7055 =7815 , TabFyy,5 =955 , Tab gy, =13.182

From these information above test multicollinearity problem between explanatory variables
(X,,X,.X,) under significant level (« =0.05)and using Farrar - Glaubber test.




Remedial Tools for Multicollinea

1- Collecting Additional Data (increase of sample size to get more
or collecting new data.

2- Using prior given information for parameters and combine it in
Ex: Let we know that £, = 0.1, (prior information)
Then; Y; = b, + 51X+ f5X, + e

=P, t 51X+ 0.15, X, + e

=p,+ b, X+e; ,whereX=X;+0.1X,

First we estimate the value of f; and then we estimate the value of £, 1
previous relation.




3- Transformation of Functional Relation.
Ex: suppose we have time series data

Y, =B, + 51X+ B X t €
Then; Y,,=p0,+ X1 BoXo 1 €4
Now; Y, —Y,; = 5;(Xy; — Xpp.1) + By Koy — Xy p) + (&

Yo =Bz +5p T +V,
In this case the differences of variables not correlat
each other, 1.e., Z, and T, are uncorrelated. But 1
case may create another problem that i1s the new
erm (V,) May be not satisty their assumptions, it 1
rrors should be uncorrelated.




4- Review of specification of the Model.

5-Omit a Variable. Multicollinearity can be redu
removing one of the highly correlated variables.

6- Centering the Data.
Use this procedure to reduction the trace of Multico

on results. B
Centering the Data = x, = X; — X

7- Another Methods.
» Ridge Regression. This technique introduces a small
mount of bias into the coefficients to reduce their vari
Principal Components Regression.
Factor Analysis.




Autocorrelation Pro

This problem occur in case presence the relation (correlation) ¢
terms (residuals), 1.e.,

Cov(u;,u;))=E(;,,u)=0 , Vi=#]

This means the random variable(error term) which occur through pa
(u,) correlated with random variable which preceding it (z, ;)or 3

(g 11)-

Meaning that the Pearson’s r between the residuals from OLS anc
residuals lagged on period is non-zero.

Simplest type of autocorrelation is call 1%* order autocorrelation, Accor
the random error for each time depend on the random error for preced
for it linearly, can express by the following form,;




u, = pu,_; + e coefficient between es

random error (u,) 1n time ¢ and random errc
preceding it u, _, or which (Ifirst order
autocorrelation)

The residuals are related to their preceding

Where;
p : Simple autocorrelation (ut)(u, ., ), [-1<p<

e, : error term for linear model (v, = pu, ; +

(non autocorrelated white noise), satisfies all

previous assumptions of the random term
e, ~N(O, o, )

Cov(e, e)=0 ,foralli#; .

Cov(e;, X)) =0




Autocorrelation 1s correlation
(u;,u;) returns to the relation not
two or more different wvariabl
between sequential values for the
variable.

* Autocorrelation problem arise in most
studies and researches which depend o
eries data.



Determination the type of Autocor
Graphically

First Method;
+ut

P ° 66 °
“Positive Autocorrelation” Negative Autocorre




Second Method; By this method we perform
residual values as function of time (¢), if the value
sequential residuals arise for us uniform form this
there 1s Autocorrelation, as follows;
1. Positive Autocorrelation: This type occur when th
of sequential residuals have the same sign. 1.e., th
errors are positive follow it negative set then positi
and so on, as the following graph;

Uy

(( Positive Autocorrelation))



2.

Negative Autocorrelation: This type oc
successional errors be alternating in sign. 1.e.
random error follow 1t positive random error an

the following graph;

Uy

WA

/
/

€1

Ve VoA
€3 €s | "

(( Negative Autocorrelation))




Reasons of Autocorrelation

1. mis-specification the mathematical for
model (Wrong functional form).

Ex: 1if the real relation 1s second order
depend on the model of first order, in t
the error term 1n model will
consequences X? and this leads
Autocorrelation in this term.

t

. Inaccuracy of the information or data (mais-
specification of a random variable u,)

X: 1n case(wars, volcanoes, floods, quake
then their consequences expand on n



3. Deleting some of explanatory varia
the model.

4. Autocorrelation bias

This case arises 1n crises or disturban
are located 1n one of the regions to aff
economic budget 1n the neighboring regi
5. Modifications or Transformations of t
data

* Interpolation of missing data with de
on the others observations values,
 differencing




Consequences of Autocorrelatio

1.Coefficient of estimates are unb
but the estimates are not BLUE.

2. The estimated variance of error
be biased (underestimated).Hence
hypothesis tests (¢, F) are suspect
(Inaccuracy).

3. Low accuracy of the estimated
parameters by OLS method.

. Inaccuracy of the future forecas



The expectation of correlated rando
u, = pu,,;+e (the autoregressive form)

e,~N(0, cl) Cov(e,, e) =0, v 1#] , Cov
Uy =P Uiy T e
plous + e.q) + e
U, tpe t e
PPloustes)+pe  + e
P ustpie,tpe, + e
... (continue to substitute) o
e, tpeqtpe,tpie st = 2i-0F i
(the moving average form)

E(u) = E(e) + p E(ey) + p* Eery) + 07 By 5 )t ...
© HK(e) = E(e,,) = E(e,5)=...=0

E(u,) =0



The variance of correlated random

W= e tpetpie,tpie st .
viu) =Elu,— E@w)]? , E@)=0

= EK(u)?=EKle,+ pe,;+ p%e, o+ ple, s+ ..]°

el ..t 2pee  +

2 2 A2 4 2
= E[et TP TP G LT P
+2p°ee_,+2p°€8€ ,+...]

= E(e") + p E(e’;) +p E(el,) + p° E(e ;) +.....

E(etz) = E(etz—l) = E(etz—z) = e T Gez
and E(e.e_,)=E(ee_,)=E(e_&_,)=... =0
V() =ocl +piol+plol+=ol(l+pt+pt +
Sov(Uy) = L -0, =0,

1-p




The covariance of correlat
random variable

cov( U, , u_)=E[u,-E@U)][u,_,-EQ,)]
v E(u)=E{u,,)=0

~cov( U, u,_,)=E[u][u, ]

= E(et +pe_ + P8, t. )(et_1 + 08, + P8 o .. )
= E (et +p (et_1 + P8, +p 8t ) (et_1 +pe_, + 8
E (et(et_1 +pe_, + P8, .. )Jr,z)(et_1 +pe_,+p'e

2
Eee_, + pEeg_, +p Eee ; +.. + pE (e +pe,




wE(e,_, + pe,_, +..)° =v(u, _,) ;o) =v(u,y)

and E(e,e, ,)=E(ee _,)=E(e € 3)=...=0
socov(u,u, )=0+ po’ =po’ =p 1,02 o
.. cov(u,u,_,)= p‘o’
and so on
socov(u, u, )= p'ol , o L o’

"1
o correlation coefficiert between random variables
cov(u,,u, ;) cov(u,,u, ,) cov(u,,u, ;)

@) o) V) o7

Autocorrelatio

Yo,




The variance — covariance matr

correlated random variables
1

E(ut) = O ) V(ut) = O'uz = 5 0-6‘2 , COV(Ut , ut_i) —
l-p
(62 pol piol p" o)
: o,  po, p" %o
var—cov(u,) = Euu = o’ p" 3o
\ Pn_nO'uZ/
(1 D ,02 pn—l\
1 ,0 pn—2
= Guz 1 pn_‘?’ =
N 1)

Q) : Autocorrelations matrix

!
. var—cov(U,) = Euu =0’ Q




The estimated parameters by OLS m
unbiased in the case of Autocorrelati
problem

éOLs:(XX)_lxli ’ !:XE_I_L—J
:(XX)‘1X’(Xé+g):(XX)‘1X’X,§+(
=B +(XX)*X'U

E(B,)=8+(XX)'X"EU) , EU)=0

BB, )=Pp = B . is unbiased est. for S




The Variance — Covariance For
estimated parameters by OLS m
in the case of Autocorrelation pr

Var—cov(é) = E(,é — E(é) )(,é - E(é) )’

ChEAEXX)TXU = f-B=(X'X)TX'U , E(B)

Var—cov(é) = E((X'X)_1 X'L_J) ((X'X)_1 X'L_J),
:E((X'X)-lquX(X'X)‘l)

—(X'X)PX'EUU)X(X'X)T , EQUU) =

var—cov(f) = a7 (X' X) " X' QX (X'X)™

e conclude from above form that estimated parameters are
stimators because the variance of these parameters is not
cause contain error which represent with autocorrelat:



Detecting of Autocorrelation

Durbin-Watson Test (D.W)
1. Determination the hypotheses of D.W te

H, : 0o=0 ; thereis no Autocorrelation between rand
H,: p#0 ;thereis Autocorrelation between random e
fromthe first order

2. We calculate test statistic value for D.W

n
Z (Gt T at—l )2

DW =t=— (( Calculated valu
Z A2
ut
t=1
n 5 n N 5
2: U, — 2 2: utut—1+z U,
t=2 t=2 t=2

n
~2
20,
t=1

62




when n — oo then Zut = Zut = Zut _
t=2 t=1  t=2

2y a2 -2 4,4, 2y 4,0,
t=2
3 3
t=1

0<DW <4



3. We compare calculated value with tabulated
(d;,dy), with taking in account number of obse
and number of parameters (p) under particular
level (a).

Test 1s inconclusive
“Not affect on results

Test 1s 1nconc

/ “Not affect

b

reject H,
positive AC\




Ex: From the following data
X: 63,6 ,569, 3,5, 63, 56 , 36
. 25 , 29 , 22 , 39 , 45 , 43 , 4

Y;: 2.76 , 4.76 , 875 , 7.78 , 6.18 , 9.5 , 5.14
4.76 , 16.7 , 27.68 , 26.64 , 13.71 , 12.32 ,
15.73 , 13.59

1) Estimate simple linear model.

2) Test the problem of Autocorrelation between
errors, 1f you know the tabulated value for (D.W)
under significant level 5% and degrees of freedom
(1,15) are: dy, =1.08 , dy = 1.38

n=15 , IX, =66 ,XY, =176
YXZ=31796 , XY, =669.121



Sol: 1) é:(xxyx'x:(l‘r’ 66 J( 176 j_(za.sm}

66 317.96) |669.121) | —3.82
Y =28541-3.82X, , u =Y Y,
2) H:p=0
Hi:p#0
Z(Ot o ljt—l)z
DW= = = 067.9924 =1.65229
Gz 404.283363
Xt Yt YA. L,jt Gtz l,jt—l l/jt _at—l (at _Gt—1)2

404.2834 667.9924




2 2.62 2.92

1.08 1.38

0

We note that the calculated value for
fall in not rejected region H_, this mean
not rejected H_, and this 1nd1(:ate there 1
utocorrelatlon problem between erro




Ex// Test the Auto correlation by using Durbin-Watson

statistic
¢ (e.—ey) % ¢
-1.108 - - i 1.2276
2,72 -1.108 | -3.828 1465358 7.3984
2.044 272 | 4764 22.6957 4.177936
3 2044 | 0.956 0.913936 9
-2.944 3 -5.944 35.33114 8.667136
2.072 2944 | 5016 25.16026 4.293184
-1.892 2.072 15.7133 3.579664




2
d = i—a(ej—ej—1)
Yt ei’

= 2.985

d;=1.08 d,=1.38




2 2.62 2.92 4

0 1.08 1.38

We note that the calculated value for
D.W falls in rejected region H_, which
means we rejected H, and this
indicates there 1s an Autocorrelation
problem between errors.



Remedial Methods of Autocorrelati

1. The Generalized Least
(GLS) Method.

2. First difference method(Cochr
Orcutt Method).
3. lterative Method.




The Generalized Least Squares I\/Ie
t

This method remedies the problem of Au
between random variables 1in standard mod:
as 1ts remedy the problem of Heterosced
follows; when we have Autocorrelation betweé
then;

' 2
Euu =0, Q

Then Q 1s a square and symmetric matrix of orde

and has inverse. When the error term(random
follows Markov form the first order;

Uy =pu,te
hen Q matrix takes the following form:-



— b)
Hb> >

n-1

AN-2

n-3




The method of GLS collected the OLS metho
make It take Into account the relationship correlat
random variables, and thus, the estimators and va
this method will be as follows compared with
method.

| OLsMethod | GLSMethod
1 E(uu)=o, | Euu) = o O

== u

2 o0y B =R xR

' A’ ’ _1 _1

3. L, YY-Basx¥ 9 YOTY-f g x0Ty
T T k-1 } n—k-1

4 var cov(f) = ol (XX)™* ~ Var- cov(f) = o (XQ'X) ™




The GLS method needs to prior informatio

parameter p and how enter it to the matrix

the elements of Q are unknown , and we can e

as follows:-

1. Iterative Method to get 5 .

2. Durbin-Watson Method: we apply OLS meth
calculate o using D.W. statistic, as follows;

DW =2-25=2(1-p)

1—[):M = .. p=1 D;N

2




3. Using Theil — Nagar Method.
By this method we estimate o by the following

1 (1—M) + k?

n —k2

N

0=

Where:
n. the sample size (No. of observations).
k: the No. of estimated parameters (with S,)




Ex: Random sample of size (5) observations
Y: 1 3 2 1 0
X0 2 5 4 31
1) Estimate coefficients of model using:
a) OLS method. |, Y, =, +6, X+ u,
b) GLS method.
If you know u,~ N(0, 0.3Q2)
u,=pu,_,+e ,fromfirst order
And estimated value for p = — 0.7
2) Estimate var — cov. Matrix for estimated coefficli
by GLS method.




‘%

Sol: Simple Regression - Y: a) OLS Method

& 5 15 7
= -1 =
B =XX)XY (15 55) (29) , XX|=275-225=50

Standard T
Parameter Estimate Error Statistic- . P-Value
CONSTANT -0.7 0331662  -2.11058 .- ~0.1253

X 0.7 0.1 - 7.0 - 0.0060

S ———-- ——— e — — —
—_ ——r S — —_— —_—— - w—

Analysis of Variance

Source Sum of Squares Df Meén Square F-Ratio P-Value

Model 4.9 1 4.9 49.00  0.0060
Residual 0.3 3 0.1

Total (Corr) 5.2 4




Y%

'0.7 + O.7Xtr
R-squared = 94.2308 percent
R-squared (adjusted for d.f.) =

92.3077 percent

Standard Error of Est. = 0.3 16228
Mean absolute error = 0.2 .
Durbln-Watson statistic = 1.16667

b) GLS Method

_ﬁzGLS,= x'e'x)'xely

Q—l

"

0.31

(1 7 0 0 0)
7 149 7 0 0
0 7 149 7 0
0 0 .7 149 7
\0 0 0 " 1




1 7 0
7149 7 0 0|15

0o oY1 2)™

. 11111 1
1_3:-2%(25431)0 7 149 7 0|14 "(2;413130 7 149 7 0|[2
| 0 0 .7 149 7|1 3 . 0 0 7 149 7||1
0 0 0 7 1M1 0 0 0 7 1Ji0
f 1 )’ | (0
15 NE
_|(17 289 289 289 17)| || (17 289 289 289 17)17
1155 1165 1156 797 3.1 | 5|| \85 1165 1156 797 31|
T d 1)) 0,
<
(1207 378 (1904} 1 (142 -3978)(1204
13978 1425) (7154) 1352643978 1207 ){7154
~( 10362 —02893(1904) (-0967 o,
~|-02893 00878)(7154) | 07731 , Y= =09673+0.7731X,

(1 7 0
7 149 7

0 0)(1)

0 0

67

3




0'\'2. _ ZQ-IZ o _:B_ GLS X:Q_I_K _ 03
e - n- k-1 |

/ -

rd

var- 06V(_,/'):’_) =g2(xQ'x)™! |
. ( 1.0362 - 0.2893J ) (O.31086 - 08679}

- ~0.2893  0.0878 Z 08679 0.02634

( 'v(ﬁo)’\- L COV(/?O’ :él)\ ‘
cov(Bos B1)  v(B)

E



Heteroscedasticity
Problem

Definition: Heteroscedasticity Is a problem w
error terms do not have a constant variance,
ie., var(ly) #of , i=1,2,..,n

Of; o1 # G5 #...# Of # O_

- 1.e. the probability distribution of random va
(w;) not constant for all explanatory variable v
this means, there is systematic relation bet
random variable and explanatory variable
cov(z;, X;) # 0

That Is, they may have a larger variance wh
of some X (or the Y;’s themselves) ar
small).
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E(y|x) = B, + px E(y|
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Reasons of Heteroscedasticity

» It may be caused by:
1- Model misspecification.

2- Estimation parameters of
based on cross sectional
sets.

3- Outliers 1n data.




Consequences of Heteroscedast

1. The estimated coefficients using OLS m
not satisfy in it BLUE property (not
variance).

2. The t — test and F — test results
misleading.

3. The estimated coefficients are Inac
consequently that the using of estimated m
become not logical and then leads to an inaccu
results




Tests for Detecting of Heteroscedas

1- Informal Methods

a- Graph the data and look for
patterns!

b- Plot the residuals against eac
the X’s variables.




2- Goldfeld-Quandt Test

This test assumes normal distribution and the
autocorrelation between errors (u;'s)

The steps of this test as follows;
1. Determination the hypotheses of test:

H :ol =0, =..=0’ =0’ or Homogeneity of error
H,:0l # 0, #...# 0. #0° or Heterogendty of error

2. Order the data in ascending order according to t
values of Xi




3. We chose a particular number named ¢ from
of observations and delete it from analysis.

c: No. of deleted middle observations from anal
Can be (c = n /3 or less than it)

In general,
If n=30thenc=8 , n=40thenc=12
n =60thenc =16

The remain observations [ n — c] divide into two sets
equal size (two samples), [ the size of each partial sam
qual to n, = n, = (n —c) / 2 observation].

he first partial sample contains small partial values
nd denoted X,; and the second contains large parti
r X and denoted X,; .




4. Apply separate regressions for each partial
both upper and lower samples) to find the esti
coefficients of linear relation between Y & X, a

2 2 n ny
(81982) . Zelzl ZeZZi
SZ — i=1 SZ i=1
' n-k-1 " % n,-k-1
where; k: No. of explanatory variables in model.

5. Compute calculated value of F (Cal

ollows; S?

Cal F = o7 TabF(a, v, V,)
1

Vi=1V,

1
-
| —
|
>~
|
=
~~
Q.
D
Q
—
(D
(D
w
O
e
—
—
(D
(D



6. We compare between (Cal F) and (Tab

If CalF >TabF , we rejected H,

This means there is heterogeneity problem
between errors variances.
Or this Indicate hetrogeneity of error variance

If CalF < Tab F , we not rejected Ho

This means there is no heterogeneity problem
between errors variances.
Or this indicate homogenelity of error vari




Ex: From the following data , test if there is h
problem between errors variances or not, using
— Quandt test, If you know,

n =10, Tab F(0.05, 2, 2) =19

39 65
43 74
21 52
64 82
57 92
47 74
28 73
75 98
34 56

52 75



. 2 _ 2 _ _ _
H,:of =0, =...=0,; =

H o' #0, #...#0,#0C

n=101fc=2 deleted observations
n—c=10—2=8 remained observations

n— .
n,=n, = © - g =4 No. of observations in ea




Order the data in ascending order accordi

values of X1
Xi Yi
21 52
28 73
34 56
39 65

52

75

57 92
64 82
75 98

The first sample

Xii Y1i
21 52
28 73
34 56
39 65

The seco




The first sample

Xo | Yu | Yy [uy =Yy =Y} U
21|52
28|73
34 |56
39 |65
Sum 236.359

1
'é _ (XX)—lle _ n lei ZYli
o B XXy lezi XX Y

(4 122)7(246) (49.3674
(122 3902) \7575) 0.39779
Y, = 49.3674 +0.39779X,,

,  Sul 236359
S? = -

- = = 118.18
n —k-1




2
CalF = Sz = 118.18 =1.6845

S/  70.1535
TabF(0.05, 2, 2) =19
.+ 1.6845 < 19
-.CalF <TabF , we not rejected H,

This means there IS no heterogeneity pro
etween errors variance.
r this Iindicate homogeneity of error variance.




Ex: From the following data , test if there is h
problem between errors variances or not , usin
— Quandt test, If you know,

n =30, Tab F(0.05, 9, 9) = 3.18

Sol.: n=30thenc=38
.
15 7 9 = & 3 deleted observations
2 3 4 4 3 4 n—-c=30—-8=22
35 4 7 5 remained observati
4 5 6 7 3 3 . _n-c_22_ ..
5 3 7 8 7 1 2 2 2
sl & & It No. of observation in each s
/7 5 8

Cox2 22 -
H, :o =0, =...=0{, =

H:ol#0,#..#0




The first sample

N N 2

Xo Ya Y, Ui=Yy =Yy U

1 6 504 096 09216 )

1 4 = -104 é=(><><)1X’\L=(ZX1i
L8| = - 2.04 B
s EEEm
1 6 = 0.96

1 9 = 304 (87 —.53)[44] _ [5.4
> 3 466  -166 ~-53 37)\62) |-3
2 | 4| = - 0.66 Y, =5.42 - 0.38X,,

2 4 = - 0.66 52 >u’ _ 231476 _
2 3 = -1.66 n —k-1 9

2 4 = - 0.66

Sum 16 44 23.1476




The second sample

N A

Xa Yai Yzi Uy =Yy =Y,
4 3 891 -5.91
3) 3 10.53 - 7.53
3) 7 = - 3.53
5 8 = -2.53
3) 7 = - 3.53
6 2 1215 -10.15
6 6 = - 6.15
6 4 = - 8.15
6 10 = -2.15
7 13.77 -8.77
7 8 = -5.77

Sum 62 63

his indicate heterogeneity of error variance, i.e., the err
m the problem of heterogeneity of errors variancess it
terogeneity problem between errors variances.

445.0475 . CalF >TabF , we reje

11 62 ( 63
62 358, (360

(3.81 -.66) 63
12 )\ 360

2
u2i

34.9281

S =

—.66

Y, =2.43+1.62X,
o2 _ Tuy _ 445.047
* n,-k-1 9
2
calE — 322 _ 4945 _
S? 2572
TabF(0.05, 9, 9) = 3.18

.+19.23 > 3.18

19.23




3- Spearman-Rank Correlation Coeffic
The steps of this test as follows;

1. Determination of test hypotheses

H:r’ =0

0

H .

S
s #0

r’ : Correlation coefficient between ranks of errors and explanatc

2. Order the values of residuals (u;'s) with the
of X, in ascending or descending order,
1gnoring the signs of residuals (absolute val




3. Compute Spearman-Rank Correlation

by the following form; 5 Zn: D?

1=1
" n(n* —1)
Where D. = Rank of X. — Rank of u;

If r . 11nd10ate existence strong relatmn b
errors and explanatory variable X, therefore t
Heteroscedasticity problem.




4. We have two cases

a) If n <30 then we use ¢-test with (n —

r°. n—2
Cal t = == J , Tabt(a/2,
JL=(r2,)

b) If n > 30 then we use z-test
rS

u.X

alz=——, &, :standard deviation for Spearma
O-S u. X

-1 — Calz=r’, \/n-1




5. Compare between Cal z an
z, = £1.96) value We not re]
H, if (— 1.96 < Cal z < +1.96),
the errors are homogeneous, t
1s no Heteroscedasticity probl
nd with inverting 1t we rejected
1.e., the errors are heterogene
here 1s Heteroscedasticity pro




Note: We can apply this test if there are t
explanatory variables in model, by compu
correlation coefficient between u; and each X

Ex: For the following data from
observations, test Heteroscedas
problem at significant level 5% by u
1. Spearman-Rank correlation coeffici
test.

. Bartlett test.




" Ascending | Rank of | Rank of
n Xi Yi Yi ui order for ui Xi
U;

1 8777 264 97.85 166.15 5.97 1 1
2 9210 105 184.46 -29.46 -27.45 2 2
3 9954 90 197.35 | -107.35 -29.46 3 3
1 10508 131 244.18 | -113.18 77.10 4 4
5 10979 122 250.18 | -128.18 -80.04 5 5
6 11912 107 362.87 | -255.87 100.97 6 6
7 -27.45 -107.35 7 7
8 5.97 -113.18 8 8
9 -131.12 -127.24 9 9
10 -80.04 -128.18 10 10
11 127.84 -131.12 11 11
12 100.97 133.68 12 12
13 -147.12 -134.04 13 13
14 -196.73 -135.54 14 14
15 77.10 147.12 15 15
16 411.96 166.15 16 16
31 39700 2300 2585.11 | - 285.11 31 31

Sum




Note: Rank of Yi: represents rank of u; ba
Variable X, corresponding u; value and u; r

Ho : I"uS.X — O
H:r’ =0
63 D’

s _ — 1 6(1474) 203

r — =1- =0.
- n(n* -1 3131 -1)

The Spearman correlation coefficient is large an
approximately approach to one, 1.e., we rejecte
there 1s significant correlation between (u;, X,), th
Indicates existence Heteroscedasticity problem.
o test that we use z — test because (n > 30).




H_: u’s are homogeneous
H;: u/s are heterogeneous

r° 1 1
Calz=%, &, = = =0
G vxo n—1 31-1
~ 0.703

-2 502 | Tabz=71.96
0.14

'+ 5.02>196 = Calz>Tabz , we rejected

This means that the errors are heterogeneous,
which there 1s Heteroscedasticity problem.




» Park test

»As an exploratory test, log the r
and regress them on the logged
the suspected independent varia

Iné =lno® + fln X, + U,
=a+ fIn X, +u

»If the [ 1s significant, then
heteroscedasticity may be a proble



* Bartlett Test
* The basic idea of this test Is partition the samy

partial samples , then computing the error varian
partial samples (s?) with (n; — 1) degrees of freedo
 Often this type of test apply on the samples which
In It more than one observation for each vall
explanatory variable values, therefore then such te
must partition explanatory variable into several
assume there are (n;) observations corresponding each
where (1 = 1,2,..., m), then the total of sample observeé

equals to:— o Z”

Assume the dependent variable correlated with exp
variable by the following form:—

i =6, +t B X;+u; , J=1,2,.



The steps of this test are as follows:—
1. Determination of test hypotheses

L2 2 2 2 2
H,:0, =0, =..=0, ,0ro, =0,
indicate error variances of the partial samples that drawn from populatio

.2 2 2 2 2
H,:o, #0, #..#0, ,0ro0, #0,
indicate error variances of the partial samples that drawn from population h

2. Compute the calculated value for test statistic as fo

Q
Cal y° ZINZ(Zm—l)
/[ m \
> n 8¢ m .
=nl |2 -3 nlnS* , L=1+
? n ,Z; o 3(m -1
\ J
2 1 S YRY. vi 1<
S° = (YIJ—Yi) ) le—-. YIJ




3. Compare the calculated value with tabulated
with (m — 1) degree of freedom and particular
Significant level (o);

If; .
Cal y°> >Tab y2 _, , we rejected H,
This means that the error variances which compute
partial samples and which drawn from population ar
heterogeneous, I.e., there is Heteroscedasticity proble

Either;cal > <Tab % , , we not rejected H,

This means that the error variances which computed fr
artial samples and which drawn from population ar
omogeneous (constant), i.e., there is no Heterosc
roblem.




Remedial Tools of Heteroscedast

» Re — specification of the Model.

» Transformations (Log, ...etc)

» The Generalized Least Squares Metho
»\We covered this in autocorrelation.

» \Weighted Least Squares.

» lteratively weighted least squares (IWLS)

Whites’s corrected standard errors.




