
Problems of 

Econometrics
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There are three main problems due to their

importance in terms of their probabilities

and effect on the results

1. Multicollinearity Problem.

2. Autocorrelation Problem.

3. Hetroscedasticity Problem. 
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Multicollinearity Problem
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You get the problem of Multicollinearity when correlate

two or more explanatory variables with very strong

linear relationship so that it becomes difficult to separate

the effect of each variable on the dependent variable.
Multicollinearity term is composed of three sections:-

Multi →    multiple  

Co →    common correlation

Linearity  →    linear 

The assumption of multicollinearity is there is no perfect

or semi-perfect linear relationship between any of the

explanatory variables. As well as it should be the number

of parameters to be estimated less than the sample size.

Rank(X) = k + 1 < n



Illustrating Multicollinearity
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X1

Y

X2

• When correlation among 

X’s is low, OLS has lots of 

information to estimate β

• This gives us confidence 

in our estimates of β



X1

X2

Y

•When correlation among 

X’s is high, OLS has very 

little information to 

estimate β.

•This makes us relatively 

uncertain about our 

estimate of β.
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1. Could change some of the explanatory 
variables together because of lack of data 
collection from a broad base, or because of 
the nature of the variables. When the value 
of one of the explanatory variables depends 
on the value of  one or more of the 
explanatory variables, i.e., one of   
explanatory variable can be written as linear 
combination for the other variables.

6

Reasons or Sources of 
Multicollinearity Problem



Ex1:// perfect collinearity

X1 :  10     15     18     24     9

X2 :  50     75     90     120   45

Then X1 & X2 are perfectly correlated because 
X2 = 5X1.

Ex2://  Family income (X1)= husband’s income 
(X2) + wife’s income (X3)

X1 =   X2 +  X3

Then X1 , X2 & X3 are perfectly correlated.
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2. Possible to share all explanatory variables at a

particular time trend (general trend) [which the

variables move together], or that one of the

explanatory variables may be its value lag time

(lag-variable) from the other that goes in the

direction of another time. In this case arises the

problem of multicollinearity between the

explanatory variables.
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For example//  

Let;   Xt : variable of time series

Xt – 1 : lag variable                                                                 

Then Xt and Xt – 1 are correlated.

•Lag – variable: means that variable 

(Xt – 1) lags than the other variable (Xt) 

at a particular  time interval.
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3. Misspecification of the model :

For example: when you add polynomial terms

to the model, and especially if the range of

the variable X is small, in this case the

problem multicollinearity may occur .

Ex://  Yi = βo + β1X + β2X
2 + β3X

3 + Ui

4. when the number of explanatory variables be 

greater than the number of observations 

(sample size), [ k > n].
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Consequences of 

Multicollinearity
 In case perfect correlation (rXi, Xj = ±1)

1- (X'X) singular matrix → |X'X| = 0

(X'X)-1  → ∞

2- Cannot estimation the values of parameters 

by           = (X'X)-1 X'Y → ∞ 

3- Cannot estimation the Standard errors for 
estimators V-Cov(     ) = σ2 (X'X)-1 → ∞  

4- Cannot procedure the statistical tests [ t, F ].

11

̂



̂



 In case semi-perfect correlation 

1- |X'X| ≠ 0 → 0 (Very small)

2- The value of estimated parameters for
model be inaccurate and very large.

3- Standard errors for estimators will be very 

large  σ2 (X'X)-1  → ∞

4- The confidence intervals become large and 

wrong. 12
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5- Wrong conclusions

a. Wrong explanation for effects some
variables on dependent variable result for
t-test, (i.e., insignificant but in real
significant).

b. The result of t-test insignificant while the
value of R2 very large and the result of
F-test significant.

c. Wrong signs for some estimators.
13



6- The estimates of parameters
not be stable or not very robust,
i.e., estimates become very sensitive
(speed impact) to addition some
data or simple changes in data or
analysis a part of sample may lead
to large changes in the values of
that estimates.
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Methods for Detecting Multicollinearity

1- The determinant of  matrix (X'X) method

a.  If |X'X| = 0  then we have perfect 

multicollinearity.

b. If |X'X| → 0 then we have higher 

multicollinearity.

2- The result of t-test insignificant while the value of 

R2 very large and the result of F-test significant.

3- Scatter-plot for explanatory variables and 

correlation matrix for variables. 15



4- Variance Inflation Factor (VIF)

Where compute         by regress each explanatory 

variable (Xj) on the rest of explanatory variables.

a. If VIF > 10  , then very high multicollinearity

b. If                         ,then no multicollinearity
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5- Clien Method

Compute multiple correlation coefficient
which equals to square root of multiple
determination coefficient for
general linear model, and compare it with
simple correlation coefficients between
explanatory variables.

If for model is greater than simple
correlation coefficients that means no
multicollinearity, and vice versa. 17
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Ex: Test multicollinearity problem using
Clien method , if and

Sol.

Since multiple correlation coefficient is 
greater than simple correlation 
coefficients that means no 
multicollinearity problem.  
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6- Farrar-Glaubber Test

1.  Chi-Square Test (χ2- test): 

To detect the presence of the multi collinearity

problem in the function included for several

explanatory variables.

2. F- Test: To determine correlated variables

linearly.

3. t-Test: To determine the variables that

cause the multi collinearity.
19



First: Chi-Square Test (χ2- test) 

 The hypotheses of test

Ho: The explanatory variables Xj’s are orthogonal

(uncorrelated : Independent)

H1: The explanatory variables Xj’s are not orthogonal

(correlated : dependent)

 Calculate the value of test statistic (Calculated 

value for χ2 : Cal χ2), as follows

Rn
k

Cal ln
6
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where; n: sample size.
k: No. of explanatory variables. 
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ln |R|: The natural logarithm for the value of

determination of simple correlation coefficients

matrix between explanatory variables.
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 Under particular significant level (α), we

find the tabulated value (Tab χ2), as follows
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 We compare the value of (Cal χ2) with (Tab χ2)

• if   Cal χ2 ≥ Tab χ2 , we rejected Ho

• if   Cal χ2 < Tab χ2 , we not rejected Ho
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Second:  F- Test 
After testing the presence of multicollinearity

problem according to χ2 – test requires determine

which variable from the explanatory variables

correlated linearly, where lead to occur this problem,

we perform such diagnosis by using F-test, as

follows

 The hypotheses of test

 we calculate the general form for test statistic

(calculated value) for this test and for each variable,

as follow;
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Where; 

Rj.2,3,…,k: Multiple correlation coefficient between

Xj and the rest of studied explanatory variables.

 We compare the value of Cal Fj with Tab F

with degrees of freedom (k – 1), (n – k) and under

particular significant level (α).

• if   Cal Fj ≥ Tab F , we rejected Ho

This means that the variable Xj correlated

linearly with the rest explanatory variables.
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• if   Cal Fj < Tab F , we not rejected Ho
This means that the variable Xj not correlated 
linearly with the rest explanatory variables.

Apply this test for each explanatory variable

to determine all explanatory variables that

correlated or not correlated with the rest of

explanatory variables.
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Third: t – Test
After determination the correlated variables by

F – test, we use t – test for all possible pairs of r.v’s .

 The hypotheses test

 we calculate the test statistic value (calculated

value) for this test with respect to two

explanatory variables Xi , Xj , as follows
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Where;

ri j. 1,2,…,k: The partial correlation coefficient between

Xi , Xj with hold the rest of explanatory variables

constant.

Ex: If we have three explanatory variables Xi, Xj, Xk

• The multiple correlation coefficient between Xi and

Xj , Xk is

• The partial correlation coefficient between Xi , Xj

with hold Xk constant is

27
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We compare the value of

with (Tab.t), with degree of freedom (n – k)

and under particular significant level (α),

(Tab t((α/2), (n – k))).

• If Cal. ti j.1,2,…,k ≥ Tab t((α/2), (n – k)), 

we reject Ho , This means that The partial 

correlation coefficient between Xi , Xj with 

hold the rest of explanatory variables 

constant is significant, which both are 

responsible for the problem multicollinearity 

in model. 
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If Cal. ti j.1,2,..,k < Tab t((α/2), (n – k)), we

not rejected Ho , This means that

The partial correlation coefficient

between Xi , Xj with hold the rest of

explanatory variables constant is

not significant, which both are not

responsible for the problem

multicollinearity in model.
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Example: From the following data for three

explanatory variables, test multicollinearity

problem between explanatory variables (X1,

X2, X3) under significant level (α = 0.05), and

using Farrar – Glaubber test.
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Sol: Farrar-Glaubber Test

1- Chi-Square Test (χ2- test) 
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Sol: Farrar-Glaubber Test

Rn
k

Cal ln
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where; n: sample size.
k: No. of explanatory variables. 
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2-F-test  
• For X1

Cal F > Tab F  we rejected Ho then

This means that the variable X1 correlated linearly with the rest 

explanatory variables. 
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Remedial Tools for Multicollinearity

1- Collecting Additional Data (increase of sample size to get more information), 

or collecting new data.

2- Using  prior given information for parameters and combine it in model.

Ex: Let we know that β2 = 0.1β1 (prior information)

Then; Yi = βo + β1X1+ β2X2 + ei

= βo + β1X1+ 0.1β1X2 + ei

= βo + β1X + ei   , where X = X1+ 0.1X2

First we estimate the value of β1 and then we estimate the value of β2 from 

previous relation.
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3- Transformation of Functional Relation.

Ex: suppose we have time series data

Yt = βo + β1X1t+ β2X2t + et

Then;    Yt-1 = βo + β1X1t-1+ β2X2t-1 + et-1

Now; Yt –Yt-1 = β1(X1t – X1t-1 ) + β2 (X2t – X2t-1) + (et  - et-1)

In this case the differences of variables not correlated with

each other, i.e., Zt and Tt are uncorrelated. But in this

case may create another problem that is the new error

term (Vt) May be not satisfy their assumptions, it is the

errors should be uncorrelated.

tttt VTZY 
21 
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4- Review of specification of the Model.

5-Omit a Variable.  Multicollinearity can be reduced by 

removing one of the highly correlated variables.

6- Centering the Data.

Use this procedure to reduction the trace of Multicollinearity 

on results.

Centering the Data 

7- Another Methods.

 Ridge Regression. This technique introduces a small 

amount of bias into the coefficients to reduce their variance.

 Principal Components Regression.

 Factor Analysis.         

XXx ii 



This problem occur in case presence the relation (correlation) among random
terms (residuals), i.e.,

This means the random variable(error term) which occur through particular time
(ut) correlated with random variable which preceding it (ut –1)or which next it
(ut +1).

Meaning that the Pearson’s r between the residuals from OLS and the same
residuals lagged on period is non-zero.

Simplest type of autocorrelation is call 1st order autocorrelation, According to it
the random error for each time depend on the random error for preceding time
for it linearly, can express by the following form;

46
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ut =   ut –1 + et coefficient between each

random error (ut) in time t and random error which 
preceding it ut –1 or which (First order 
autocorrelation)

The residuals are related to their preceding values.

Where;

ρ : Simple autocorrelation (ut)(ut +1 ), [–1 ≤  ≤ 1].

et : error term for linear model (ut =   ut –1 +  et)

(non autocorrelated white noise), satisfies all 
previous assumptions of the random term 

et ~N(0,    )

Cov(ei, ej) = 0  , for all i ≠ j

Cov(ei, Xi) = 0 

47
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Yt = βo + β1Xt + ut

ut =   ut –1 +  et

Autocorrelation is correlation between

(ui,uj) returns to the relation not between

two or more different variables but

between sequential values for the same
variable.

• Autocorrelation problem arise in most 

studies and researches which depend on time 
series data.
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Determination the type of Autocorrelation 
Graphically 
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Second Method; By this method we perform regress for

residual values as function of time (t), if the values of

sequential residuals arise for us uniform form this indicate

there is Autocorrelation, as follows;

1. Positive Autocorrelation: This type occur when the number

of sequential residuals have the same sign. i.e., the set of

errors are positive follow it negative set then positive other

and so on, as the following graph;
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2. Negative Autocorrelation: This type occur when

successional errors be alternating in sign. i.e., negative

random error follow it positive random error and so on, as
the following graph;
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Reasons of Autocorrelation Problem

1. mis-specification the mathematical form of the 

model (Wrong functional form).

Ex: if the real relation is second order but we

depend on the model of first order, in this case

the error term in model will contain

consequences X2 and this leads to get

Autocorrelation in this term.

2. Inaccuracy of the information or data (mis-

specification of a random variable ut)

Ex: in case(wars, volcanoes, floods, quakes,..etc) 

then their  consequences expand on next times.52
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3. Deleting some of explanatory variables from 

the model.

4. Autocorrelation bias

This case arises in crises or disturbances that

are located in one of the regions to affect the

economic budget in the neighboring regions

5. Modifications or Transformations of the 

data

• Interpolation of missing data with depend 

on the others observations values,
• differencing



Consequences of Autocorrelation

1.Coefficient of estimates are unbiased, 
but the estimates are not BLUE.

2. The estimated variance  of error term 
be biased  (underestimated).Hence 
hypothesis tests (t, F) are suspect 
(Inaccuracy).

3. Low accuracy of the estimated 
parameters by OLS method.

4. Inaccuracy of the future forecasts.
54
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ut =  ut-1 + et (the autoregressive form) 

et~N(0,     )  ,  Cov(ei, ej) = 0,      i ≠ j  ,  Cov(ei, Xi)= 0
ut =  ut-1 + et

=  ( ut-2 +  et-1)  +  et
= 2 ut-2 +  et-1 +  et
= 2 ( ut-3 + et-2) +  et-1 +  et
= 3 ut-3 + 2 et-2 +  et-1 +  et
=  ... (continue to substitute)

=  et +  et-1 + 2 et-2 + 3 et-3 + ... = 
=  (the moving average form)

E(ut) =  E(et) +  E(et-1) + 2 E(et-2) + 3 E(et-3 )+ ...

The expectation of correlated random variable

2
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 E(et) = E(et-1) = E(et-2) = ... = 0

 E(ut) = 0
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The variance of correlated random variable
ut =  et +  et-1 + 2 et-2 + 3 et-3 + ...

v(ut) = E[ ut – E(ut)]
2 ,    E(ut) = 0

= E(ut)
2 = E[et +  et-1 + 2 et-2 + 3 et-3 + ...]2
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The covariance of correlated 
random variable
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The variance – covariance  matrix of 
correlated random variables
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The estimated parameters by OLS method are 
unbiased in the case of Autocorrelation 
problem 
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The Variance – Covariance Form for 
estimated parameters by OLS method  
in the case of Autocorrelation problem 
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We conclude from above form that estimated parameters are not best 

estimators because the variance of these parameters is not minimum 
because contain error which represent with autocorrelations matrix.
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Durbin-Watson Test (D.W)
1. Determination the hypotheses of D.W test

orderfirstthefrom

errorsrandombetweenationAutocorrelisthereH

errorsrandombetweenationAutocorrelnoisthereHo
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2.  We calculate test statistic value for D.W 

Detecting of Autocorrelation 
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ationautocorrelno

Hrejectnot 0

4

0Hreject
0Hreject

0
Ud Ld4

Test is inconclusive Test is inconclusive 

ACpositive ACnegative

“Not affect on results” “Not affect on results”

3. We compare calculated value with tabulated value

(dL,dU), with taking in account number of observations(n)

and number of parameters (p) under particular significant

level (α).

Ld Ud4
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Ex: From the following data

Xt: 6.3   ,   6   ,  5.9  ,   3   ,   5   ,   6.3   ,   5.6   ,  3.6         

,   2.5   ,    2.9   ,   2.2   ,   3.9   ,   4.5   ,   4.3   ,   4

Yt: 2.76  ,  4.76  ,  8.75  ,  7.78  ,  6.18  ,  9.5  ,  5.14

4.76  ,  16.7  ,  27.68  ,  26.64  ,  13.71  ,  12.32  ,  

15.73  ,  13.59

1) Estimate simple linear model.

2) Test the problem of Autocorrelation between

errors, if you know the tabulated value for (D.W)

under significant level 5% and degrees of freedom

(1,15) are: dL =1.08 , dU = 1.38

12166996317

1766615

2 .,.
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Sol: 1)

2)   Ho: ρ = 0

H1: ρ ≠ 0  
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40


081. 2381.

651.

oH

rejectednot

622. 922.

We note that the calculated value for D.W

fall in not rejected region Ho, this means we

not rejected Ho and this indicate there is no
Autocorrelation problem between errors.



Ex// Test the Auto correlation by using Durbin-Watson 

statistic

-1.108 - - - 1.227664

-2.72 -1.108 -3.828 14.65358 7.3984

2.044 -2.72 4.764 22.6957 4.177936

3 2.044 0.956 0.913936 9

-2.944 3 -5.944 35.33114 8.667136

2.072 -2.944 5.016 25.16026 4.293184

-1.892 2.072 -3.964 15.7133 3.579664

114.4679 38.34398
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Sol: 1)

Ho: ρ = 0
H1: ρ ≠ 0  
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40


081. 2381.

2.98

oH

rejectednot

622. 922.

We note that the calculated value for

D.W falls in rejected region Ho, which

means we rejected Ho and this

indicates there is an Autocorrelation
problem between errors.



Remedial Methods of Autocorrelation

1. The Generalized Least Squares

(GLS) Method.

2. First difference method(Cochran-

Orcutt Method).

3. Iterative Method.
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The Generalized Least Squares Method 
This method remedies the problem of Autocorrelation

between random variables in standard models as well
as its remedy the problem of Heteroscedasticity,as
follows; when we have Autocorrelation between errors,
then;

Then Ω is a square and symmetric matrix of order (n×n)

and has inverse. When the error term(random variable)
follows Markov form the first order;

ut =  ut-1 + et

Then Ω matrix takes the following form:-
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The method of GLS collected the OLS method manner to

make it take into account the relationship correlation among

random variables, and thus, the estimators and variances of

this method will be as follows compared with the OLS

method.

OLS Method GLS Method

1.
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The GLS method needs to prior information about the

parameter ρ and how enter it to the matrix Ω because

the elements of Ω are unknown , and we can estimate it

as follows:-

1. Iterative Method to get .

2. Durbin-Watson Method: we apply OLS method, and

calculate using D.W. statistic, as follows;
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3. Using Theil – Nagar Method.

By this method we estimate by the following form;

Where:

n: the sample size (No. of observations).

k: the No. of estimated parameters (with βo)
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Ex: Random sample of size (5) observations

Yt :   1    3    2    1    0

Xt :   2    5    4    3    1

1) Estimate coefficients of model using:

a) OLS method.       , Yt = βo +β1Xt + ut

b) GLS method. 

If you know  ut ~ N(0, 0.3Ω)

ut = ρ ut – 1 + et , from first order

And estimated value for ρ =  – 0.7

2) Estimate var – cov. Matrix for estimated coefficients

by GLS method.   
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Heteroscedasticity

Problem
Definition: Heteroscedasticity is a problem when the 

error terms do not have a constant variance, 

i.e.,

• i.e. the probability distribution of random variable
(ui) not constant for all explanatory variable values,
this means, there is systematic relation between
random variable and explanatory variable, i.e.,
cov(ui , Xi) ≠ 0

• That is, they may have a larger variance when values
of some Xi (or the Yi’s themselves) are large (or
small).
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Reasons of Heteroscedasticity Problem

 It may be caused by:

1- Model misspecification.

2- Estimation parameters of model
based on cross sectional data
sets.

3- Outliers in data.
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Consequences of Heteroscedasticity

85

1.The estimated coefficients using OLS method are

not satisfy in it BLUE property (not minimum

variance).

2. The t – test and F – test results may be

misleading.

3. The estimated coefficients are inaccurate

consequently that the using of estimated model

become not logical and then leads to an inaccurate

results



Tests for Detecting of Heteroscedasticity

1- Informal Methods

a- Graph the data and look for 
patterns!

b- Plot the residuals against each of 
the X’s variables.
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2- Goldfeld-Quandt Test

This test  assumes normal distribution and there is no 
autocorrelation between errors (ui's)

The steps of this test as follows;

1. Determination the hypotheses of test:

2. Order the data in ascending order according to the
values of Xi 
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3. We chose a particular number named c from the middle 

of observations and delete it from analysis.

c: No. of deleted  middle observations from analysis.

Can be (c = n / 3 or less than it) 

In general;

If   n = 30 then c = 8        ,      n = 40 then c = 12  

n = 60 then c = 16 

The remain observations [ n – c] divide into two sets of 

equal size (two samples), [ the size of each partial sample 

equal to n1 = n2 = (n – c) / 2 observation].

The first partial sample contains small partial values for X 

and denoted X1i and the second contains large partial values 

for X and denoted X2i .
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4. Apply separate regressions for each partial sample (on

both upper and lower samples) to find the estimation for

coefficients of linear relation between Y & X, and find

.

where; k: No. of explanatory variables in model.

5. Compute calculated value of F (Cal F), as

follows;
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6. We compare between (Cal F) and (Tab F)

If Cal F ≥ Tab F , we rejected Ho

This means there is heterogeneity problem 

between errors variances.

Or this indicate hetrogeneity of error variance. 

If Cal F < Tab F , we not rejected Ho

This means there is no heterogeneity problem 

between errors variances.

Or this indicate homogeneity of error variance. 
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Ex: From the following data , test if there is heterogeneity 

problem between errors variances or not, using Goldfeld 

– Quandt test, if you know, 

n = 10 , Tab F(0.05, 2, 2) = 19

Xi Yi

39 65

43 74

21 52

64 82

57 92

47 74

28 73

75 98

34 56

52 75
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Xi Yi

21 52

28 73

34 56

39 65

43 74

47 74

52 75

57 92

64 82

75 98

X1i Y1i

21 52

28 73

34 56

39 65

X2i Y2i

52 75

57 92

64 82

75 98

The first sample The second sample

Order the data in ascending order according to the 

values of Xi
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The first sample                                          

21 52

28 73

34 56

39 65

Sum 236.359
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oHrejectednotweFTabFCal

FTab

S

S
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6845.1
1535.70

18.118
2

1

2

2











This means there is no heterogeneity problem

between errors variance.

Or this indicate homogeneity of error variance.
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Ex: From the following data , test if there is heterogeneity 

problem between errors variances or not , using Goldfeld 

– Quandt test, if you know, 

n = 30 , Tab F(0.05, 9, 9) = 3.18

Sol.:   n = 30 then c = 8

deleted observations

n – c = 30 – 8 = 22

remained observations

Xi Yi

1 6   4     3     5     6     2

2 3      4     4     3     4

3 5      4     7     5

4 5      6     7     3     3

5 3      7     8     7  

6 2      6     4     10

7 5      8

22
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The first sample                                          

1 6 5.04 0.96 0.9216

1 4 = - 1.04

1 3 = - 2.04

1 5 = - 0.04

1 6 = 0.96

1 2 = - 3.04

2 3 4.66 - 1.66

2 4 = - 0.66

2 4 = - 0.66

2 3 = - 1.66

2 4 = - 0.66

Sum 16 44 23.1476
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4 3 8.91 - 5.91 34.9281

5 3 10.53 - 7.53

5 7 = - 3.53

5 8 = - 2.53

5 7 = - 3.53

6 2 12.15 - 10.15

6 6 = - 6.15

6 4 = - 8.15

6 10 = - 2.15

7 5 13.77 - 8.77

7 8 = - 5.77

Sum 62 63 445.0475
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This indicate heterogeneity of error variance, i.e., the errors suffering

from the problem of heterogeneity of errors variances, it means there is

heterogeneity problem between errors variances.



3- Spearman-Rank Correlation Coefficient Test

The steps of this test as follows;

1. Determination of test hypotheses

2. Order the values of residuals (ui’s) with the values

of Xi in ascending or descending order, with

ignoring the signs of residuals (absolute value).
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3. Compute Spearman-Rank Correlation Coefficient 

by the following form; 

Where; Di = Rank of Xi – Rank of ui

If               indicate existence strong relation between 

errors and explanatory variable X, therefore there is 

Heteroscedasticity problem.
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4. We have two cases

a)  If  n < 30 then we use t-test with (n – 2) df

b) If n ≥ 30 then we use z-test
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5. Compare between Cal z and (Tab

zα = ±1.96) value We not rejected

Ho if (– 1.96 < Cal z < +1.96), i.e.,

the errors are homogeneous, there

is no Heteroscedasticity problem.

And with inverting it we rejected Ho

, i.e., the errors are heterogeneous,

there is Heteroscedasticity problem.
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Note: We can apply this test if there are two or more

explanatory variables in model, by computing rank

correlation coefficient between ui and each Xi.

Ex: For the following data from (31)

observations, test Heteroscedasticity

problem at significant level 5% by using

1. Spearman-Rank correlation coefficient

test.
2. Bartlett test.
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n
Xi Yi ui

Ascending 

order for 

ui

Rank of  

ui

Rank  of   

Xi

Rank of Di
= RX - Ru

1 8777 264 97.85 166.15 5.97 1 1 16 -15 225

2 9210 105 184.46 -29.46 -27.45 2 2 3 -1 1

3 9954 90 197.35 -107.35 -29.46 3 3 7 -4 16

4 10508 131 244.18 -113.18 77.10 4 4 8 -4 16

5 10979 122 250.18 -128.18 -80.04 5 5 10 -5 25

6 11912 107 362.87 -255.87 100.97 6 6 23 -17 269

7 -27.45 -107.35 7 7 2 5 25

8 5.97 -113.18 8 8 1 7 49

9 -131.12 -127.24 9 9 11 -2 4

10 -80.04 -128.18 10 10 5 5 25

11 127.84 -131.12 11 11 9 2 4

12 100.97 133.68 12 12 6 6 36

13 -147.12 -134.04 13 13 15 -2 4

14 -196.73 -135.54 14 14 20 -6 36

15 77.10 147.12 15 15 4 11 121

16 411.96 166.15 16 16 28 -12 144

….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..

31 39700 2300 2585.11 - 285.11 31 31 24 7 49

Sum 1474

i
Ŷ 2

i
D

i
u
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Note: Rank of : represents rank of ui based on the

Variable Xi corresponding ui value and ui rank.

The Spearman correlation coefficient is large and

approximately approach to one, i.e., we rejected Ho,

there is significant correlation between (ui, Xi), that

indicates existence Heteroscedasticity problem. And

to test that we use z – test because (n > 30).



i
u

0

0

1




S

Xu

S

Xuo

rH

rH

.

.

:

:

7030
13131

14746
1

1

6

1
22

1

2

.
)(

)(

)(
.











nn

D

r

n

i
i

S

Xu



106

Ho: ui’s are homogeneous

H1: ui’s are heterogeneous

This means that the errors are heterogeneous, 

which there is Heteroscedasticity problem.
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Park test

As an exploratory test, log the residuals 
and regress them on the logged values of 
the suspected independent variable. 

If the β is significant, then 
heteroscedasticity may be a problem. 
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• Bartlett  Test
• The basic idea of this test is partition the sample into (m)

partial samples , then computing the error variance for each

partial samples ( ) with (ni – 1) degrees of freedom.

• Often this type of test apply on the samples which available

in it more than one observation for each value from

explanatory variable values, therefore then such test will

must partition explanatory variable into several levels,

assume there are (ni) observations corresponding each level,

where (i = 1,2,..., m), then the total of sample observations

equals to:–

Assume the dependent variable correlated with explanatory

variable by the following form:–
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The steps of this test are as follows:–

1. Determination of test hypotheses

2. Compute the calculated value for test statistic as follows;
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3. Compare the calculated value with tabulated value for (     )  

with (m – 1) degree of freedom and particular

Significant level (α); 

If;

This means that the  error variances which computed from 

partial samples and which  drawn from population are 

heterogeneous, i.e., there is Heteroscedasticity problem.

Either;

This means that the  error variances which computed from 

partial samples and which  drawn from population are 

homogeneous (constant), i.e., there is no Heteroscedasticity 

problem.
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Remedial Tools of Heteroscedasticity

 Re – specification of the Model.

 Transformations (Log, …etc)

The Generalized Least Squares Method(GLS) 

We covered this in autocorrelation.

Weighted Least Squares.

 Iteratively weighted least squares (IWLS).

 Whites’s corrected standard errors.
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