

KURDISTAN REGIONAL GOVERNMENT MINISTRY OF HIGHER EDUCATION & SCIENTIFIC RESEARCH SALAHADDINUNIVERSITY – HAWLER (SUH) COLLEGE OF ADM. & ECO. STATISTICS & INFORMATICS DEPARTMENT

Syllabus of MULTIVARIATE STATISTICAL ANALYSIS with SPSS

Dr. Delshad Shaker Ismael Botani & Mr. Sami Ali Obed E-mail: <u>delshd.botani@su.edu.krd</u> , <u>sami.obed@su.edu.krd</u>

2022 – 2023, Erbil

Chapter One

SPSS Syntax

SPSS syntax

It is a programming language that is unique to SPSS. It allows you to write commands that run SPSS procedures, rather than using the graphical user interface (GUI).

Example1: For the following data (survey_sample.sav), find the following using GUI and syntax (paste) methods.

- a. Frequency distribution for SEX variable;
- b. Frequency distribution for RACE variable;
- c. Frequency distribution for SEX and RACE variables;

400 July

d. Correlation between SEX and RACE variables.

Solution: Using GUI method

<000 k

Using syntax (paste) method:

Example2: For the following data (survey_sample.sav), find frequency distribution for SEX variable using syntax method.

Solution:

FREQUENCIES VARIABLES = sex.

The * symbol means what?

The. (dot) symbol means what?

Example3: For the following data (survey_sample.sav), find frequency distribution for SEX and RACE variables using GUI and syntax methods.

Solution: Using GUI method

Output Im Log Fequencies Inte Notes	Frequencies ×
Gender Gender	Variable(s): Statistics Statistics Statistics Statistics Charts Eormat Style Bootstrap Display frequency tables
 ➡ Title ➡ Gender ➡ Race of respondent 	Total 2832 100.0 100.0

Using syntax method:

Remark: When saving a syntax file, its extension and icon are different (see below figure).

ta Save Syntax As	×
Look in: 📙 SPSS Data 💿 🔯 🔯 🖽 -	
Old Syntax Analysis Repeat .sps Syntax Analysis .sps Syntax_Regression.sps My Syntax .sps	
File name: Syntax1	Save
Save as type: Syntax (*.sps)	Cancel

ſ

Color-Coding

SPSS uses color and bolding to indicate the roles of the words in the syntax. The colors are as follows:

Dark blue/purple	Procedure names; execution statements
Green	Statements associated with the given procedure
Dark red/orange	Option keywords
Gray	Comments
Black	Variable names; other text

Variable Labels and Value Labels

The labeling of one or more variables will be accomplished as follows:

VARIABLE LABELS

sex "Gender of Respondent" age "Age of my family" race "Race of people in Kurdistan'.

The value labeling of one or more variables will be accomplished as follows:

VALUE LABELS

/sex 0 "Female" 1 "Male" /race 1 "White" 2 "Black" 3 "Brown" 4 "Other" /Marital 1 "Married" 2 "Widowed" 3 "Divorced".

Computing Variables using Syntax

The general form of the syntax for computing a new (numeric) variable is:

Compute y = (x1+x2) / 5. Execute.

- <u>3</u>

Example4: For the following data (survey_sample.sav), compute new variable from adding the values of the highest year school completed by father, mother, and spouse (**paeduc**, **maeduc**, **speduc**) using GUI and syntax methods.

Solution: Using GUI method

Using Syntax method:

COMPUTE Family_edu=paeduc + maeduc + speduc. EXECUTE.

Remark: The following table describes the arithmetic operators, arithmetic functions, and logical operations.

Arithmetic operations	Arithmetic functions	Comparisons and logical operations	
 + Addition - Subtraction * Multiplication / Division ** Exponentiation 	ABS (expr) RND (expr) TRUNC (expr) MOD (expr, divid) SQRT (expr) LN (expr)	EQ or = Equal to NE or ~= Not equal to GE or >= Greater than or equal to GT or > Greater than LE or <= Less than or equal to LT or < Less than	
	Liv (expi)		

Homework1: Find the mean, variance, log, square root, and cubic of the new variable (Family_edu) in example 4.

- 4

Chapter Two

Matrices and Linear Algebra.

Matrix Operations:

To start a Matrix session, the first command must be: Matrix.

To end a Matrix session, the final command must be: End Matrix.

At any time, to display a vector or matrix or results of some computation in the output:

Print vector_matrix_name.

To create a vector or matrix, use the compute command. Vectors and matrices are enclosed in braces {}. The elements of each row are separated by commas, and rows are separated by Compute name= {a1, a2, a3, a4, a5} or semicolons. For example: Compute name= {a1; a2; a3; a4; a5}

Example5: Write the following Matrices in SPSS syntax

			r/1			
			181	ſ1	2	31
X = [1]	2	3	4], $Y = [9], A =$	2	4	6
-			10	3	6	1
			L ₁₁			

Solution:

***** X is a 1 X 4 matrix*******. Matrix. compute $x = \{1, 2, 3, 4\}$. print x / title "Matrix X". End Matrix. ***** Y is a 5 X 1 matrix******.

Matrix. compute $y = \{7; 8; 9; 10; 11\}.$ print y / title "Matrix Y". End Matrix.

```
***** A is a 3 X 3 matrix******.
Matrix.
compute A = \{1, 2, 3; 2, 4, 6; 3, 6, 1\}.
print A
/ title "Matrix A".
End Matrix.
```

Example6: Write the following Matrix operations for matrix A and B in SPSS syntax $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ a.) A + B b.) A - B c.) A^*B d.) A^2

- [5]-

Solution:

```
a.)
***** A + B *******.
Matrix.
compute A = {1,2,3;2,4,6;3,6,1}.
compute B = {1,0,0;0,2,0;0,0,3}.
compute Z = A + B.
print A / title "Matrix A".
print B / title "Matrix B".
print Z / title "Matrix A + B".
End Matrix.
```

b.) & c.) & d.)

```
***** A - B & A*B & A<sup>2</sup>*******.

Matrix.

compute A = {1,2,3;2,4,6;3,6,1}.

compute B = {1,0,0;0,2,0;0,0,3}.

compute Z = A - B.

compute M = A * B.

compute K = A * A.

print A / title "Matrix A".

print B / title "Matrix A".

print Z / title "Matrix A - B".

print M / title "Matrix A * B".

print K / title "Matrix A<sup>2</sup>".

End Matrix.
```

Example7: Using SPSS syntax, find A', |A|, and A^{-1} . $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$

Solution:

***** Transpose, Determinant, & Inverse*******.
Matrix.
compute A = {1,2,3;0,4,0;3,6,1}.
compute Trans_A =transpos (A).
compute det_A = det(A).
compute halg_A = inv (A).
print Trans_A / title "Transpose of Matrix A".
print det_A / title " Determinant of Matrix A".
print halg_A / title "Inverse of Matrix A ".
End Matrix.

Homework2: Find for the following matrix: A', det(A), A^{-1} , \sqrt{A}

```
A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 1 \\ 3 & 6 & 1 \end{bmatrix}
```

- **6**

Opening SPSS Data Files and Variables:

When we select File⇔Open⇔Data, SPSS issues a "GET" command to open an SPSS-formatted file and load it into SPSS. For example, the following opens and loads the file named survey_sample.sav:

 $GET \ FILE = "C: Program \ Files \ IBM \ SPSS \ Statistics \ 26 \ Samples \ English \ survey \ sample. \ sav".$

Example8: Open survey_sample.sav data, find a matrix (X) consists of respondent, father, mother, and spouse education (**educ, paeduc, maeduc, speduc**) using syntax methods. Then find X'X.

Solution:

 $GET\ FILE = "C:\Program\ Files\IBM\SPSS\Statistics\26\Samples\English\survey_sample.sav".$ Matrix.

/* the following creates a matrix with the n rows and p=4 columns.
get x
/variables = educ, paeduc, maeduc, speduc
/missing=accept
/sysmis=omit.
* /sysmis=15.
compute z=transpos(x)*x.
print x / title "Matrix X".
print z / title "Matrix X'X".
End Matrix.

Remark: in case we have missing values, they must be **omitted or accepted**, while when we have system missing values, they must be **omitted** or **changing** them to a number such as 15 or 20 or any other numbers.

Example9: Using survey_sample.sav data, find a matrix (X) consists of father, mother, and spouse education (**paeduc, maeduc, speduc**), and a matrix (Y) consists of respondents' education (**educ**) using syntax methods. Then find $(X'X)^{-1}X'Y$.

Solution:

Matrix. /* the following creates a matrix with the n rows and p=3 columns. get x /variables = paeduc, maeduc, speduc /missing=accept /sysmis=omit. /* the following creates a matrix with the n rows and p=1 columns. get y /variables = educ /missing=accept /sysmis=omit. compute z=transpos(x)*x. compute inv_z=inv(z). compute xtrans_y=transpos(x)*y. compute B=inv_z*xtrans_y. print x / title "Matrix X". print z / title "Matrix X'X".

{ 7 }

print xtrans_y / title "Matrix X'Y". print inv_z / title "Inverse of Matrix (X'X)". print B / title "Matrix (X'X)-1X'Y". End Matrix.

2::

Question: Is there any mistake in the above example?

Homework3: Using car_sales.sav data, find a matrix (X) consists of Engine size, Horsepower, Fuel capacity, and Fuel efficiency (**engine_s, horsepow, fuel_cap, mpg**), and a matrix (Y) consists of Price in thousands (**price**) using syntax methods. Then find $(X'X)^{-1}X'Y$.

Finding Mean and Variance-Covariance matrix

In order to find Mean matrix and Variance-Covariance matrix, the following equations will be used:

$$\overline{X} = \mathbf{11}' X\left(\frac{1}{n}\right) \text{, where } \mathbf{1} \text{ is a matrix of ones } (n \times 1)$$
$$S = \frac{\left(\left(X - \mathbf{11}' X\left(\frac{1}{n}\right)\right)' \left(X - \mathbf{11}' X\left(\frac{1}{n}\right)\right)\right)}{n-1}$$

Example10: Open survey_sample.sav data, find a matrix (X) consists of father, mother, and spouse education (**paeduc, maeduc, speduc**) using syntax methods. Then find mean and varcovar matrix of X.

Solution:

Matrix. get one /variables = one. get x /variables = paeduc, maeduc, speduc /missing=accept /sysmis=omit. get y /variables = educ /missing=accept /sysmis=omit. compute n=nrow (x). compute xbar=transpos(one)*x/n. compute x_xbar=x-one*xbar. compute var_x=(transpos(x_xbar)*x_xbar)/n-1. print n / title "Number of Rows". print xbar / title "X bar". print x_xbar / title "X - X Bar". print var_x/ title "Variance of X Matrix". End Matrix.

Commented [s1]: Yes, in X matrix we did not add a colu or variable with values 1s.

- 8 }

Homework4: Using car_sales.sav data, find a matrix (X) consists of Engine size, Horsepower, Fuel capacity, and Fuel efficiency (**engine_s, horsepow, fuel_cap, mpg**) using syntax methods. Then find mean, var-covar, and correlation matrix of X.

Finding Correlation matrix

In order to find the correlation matrix, the following equations will be used:

$$R = D^{-1/2} S D^{-1/2}$$

Where D is the diagonal matrix of var-covar matrix. In other words, $D^{-1/2}$ is a diagonal matrix with 1/sd for each variable as the diagonal elements.

To use SPSS syntax for finding correlation matrix, the following commands should be used:

diag: Is the diagonal elements of a matrix;

mdiag: Is the diagonal matrix of the diagonal elements.

Example11: Open survey_sample.sav data, find correlation matrix father, mother, and spouse education (**paeduc, maeduc, speduc**) using syntax methods.

Solution:

compute one=1. execute. Matrix. get one /variables = one. get x /variables = paeduc, maeduc, speduc /missing=accept /sysmis=omit. compute n=nrow (x). compute xbar=transpos(one)*x/n. compute x_xbar=x-one*xbar. compute var_x=(transpos(x_xbar)*x_xbar)/n-1. compute diag_var_x=diag(var_x). compute sqrt_diag_var_x=sqrt(diag(var_x)). compute mat_sqrt_diag_var_x=mdiag(sqrt_diag_var_x). compute corr_x=inv(mat_sqrt_diag_var_x)*var_x*inv(mat_sqrt_diag_var_x). print n / title "Number of Rows". print xbar / title "X bar". print x_xbar / title "X - X Bar". print var_x/ title "Variance of X Matrix". print sqrt_diag_var_x/ title "Sqrt Diagonal of Variance X Matrix". print mat_sqrt_diag_var_x/ title "Matrix of Sqrt Diagonal of Variance X Matrix". print corr_x /title="R, the correlation matrix". End Matrix.