

KURDISTAN REGIONAL GOVERNMENT MINISTRY OF HIGHER EDUCATION \& SCIENTIFIC RESEARCH SALAHADDINUNIVERSITY - HAWLER (SUH) COLLEGE OF ADM. \& ECO. STATISTICS \& INFORMATICS DEPARTMENT

Syllabus of
 MULTIVARIATE STATISTICAL ANALYSIS with SPSS

Undergraduate Students (Senior)

by
Dr. Delshad Shaker Ismael Botani \& Mr. Sami Ali Obed E-mail: delshd.botani@su.edu.krd, sami.obed@su.edu.krd

$$
2022 \text { - 2023, Erbil }
$$

Chapter One
 SPSS Syntax

SPSS syntax

It is a programming language that is unique to SPSS. It allows you to write commands that run SPSS procedures, rather than using the graphical user interface (GUI).

Example1: For the following data (survey_sample.sav), find the following using GUI and syntax (paste) methods.
a. Frequency distribution for SEX variable;
b. Frequency distribution for RACE variable;
c. Frequency distribution for SEX and RACE variables;
d. Correlation between SEX and RACE variables.

Solution: Using GUI method

Using syntax (paste) method:

Example2: For the following data (survey_sample.sav), find frequency distribution for SEX variable using syntax method.

Solution:

********Frequency****************.

FREQUENCIES VARIABLES = sex

The * symbol means what?
The . (dot) symbol means what?

Example3: For the following data (survey_sample.sav), find frequency distribution for SEX and RACE variables using GUI and syntax methods.

Solution: Using GUI method

Using syntax method:
frequencies variables=sex race /order=analysis.
Or
frequencies variables=sex race /order=variable.

The command ORDER refers to what?
The / symbol means what?
Remark: When saving a syntax file, its extension and icon are different (see below figure).

Color-Coding

SPSS uses color and bolding to indicate the roles of the words in the syntax. The colors are as follows:

Dark blue/purple	Procedure names; execution statements
Green	Statements associated with the given procedure
Dark red/orange	Option keywords
Gray	Comments
Black	Variable names; other text


```
10 FREQUENCIES VARIABLES=sex race
11
    /ORDER=ANALYSIS.
```


Variable Labels and Value Labels

The labeling of one or more variables will be accomplished as follows:

```
VARIABLE LABELS
```

sex "Gender of Respondent"
age "Age of my family"
race "Race of people in Kurdistan'.

The value labeling of one or more variables will be accomplished as follows:

```
VALUE LABELS
/sex
0 "Female"
1 "Male"
/race
1 "White"
2 "Black"
3 "Brown"
4 "Other"
/Marital
1 "Married"
2 "Widowed"
3'Divorced".
```


Computing Variables using Syntax

The general form of the syntax for computing a new (numeric) variable is:
Compute $\mathrm{y}=(\mathrm{x} 1+\mathrm{x} 2) / 5$.
Execute.

Example4: For the following data (survey_sample.sav), compute new variable from adding the values of the highest year school completed by father, mother,and spouse (paeduc, maeduc, speduc) using GUI and syntax methods.

Solution: Using GUI method

Using Syntax method:
COMPUTE Family_edu=paeduc + maeduc + speduc.
EXECUTE.
Remark: The following table describes the arithmetic operators, arithmetic functions, and logical operations.

Arithmetic operations		Arithmetic functions	Comparisons and logical operations
+	Addition	ABS (expr)	EQ or $=$ Equal to
-	Subtraction	RND (expr)	NE or $\sim=$ Not equal to
$*$	Multiplication	TRUNC (expr)	GE or $>=$ Greater than or equal to
$/$	Division	MOD (expr, divid)	GT or $>\quad$ Greater than
$* *$	Exponentiation	SQRT (expr)	LE or <= Less than or equal to
		LN (expr)	LT or $<\quad$ Less than

Homework1: Find the mean, variance, log, square root, and cubic of the new variable (Family_edu) in example 4.

Chapter Two

Matrices and Linear Algebra.

Matrix Operations:

To start a Matrix session, the first command must be: Matrix.
To end a Matrix session, the final command must be: End Matrix.
At any time, to display a vector or matrix or results of some computation in the output:

Print vector_matrix_name.

To create a vector or matrix, use the compute command. Vectors and matrices are enclosed in braces $\}$. The elements of each row are separated by commas, and rows are separated by semicolons. For example: Compute name $=\{\mathbf{a 1}, \mathbf{a} 2, \mathbf{a 3}, \mathbf{a 4}, \mathbf{a 5}\}$ or

Compute name $=\{a 1 ; a 2 ; a 3 ; a 4 ; a 5\}$
Example5: Write the following Matrices in SPSS syntax

$$
X=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right], Y=\left[\begin{array}{l}
{\left[\begin{array}{l}
7 \\
1 \\
8
\end{array}\right.} \\
1 \\
1 \\
1 \\
10 \\
10 \\
11
\end{array}\right], A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 1
\end{array}\right]
$$

Solution:

***** X is a 1 X 4 matrix********.
Matrix.
compute $\mathrm{x}=\{1,2,3,4\}$.
print x
/ title "Matrix X".
End Matrix.
***** Y is a 5 X 1 matrix********.
Matrix.
compute $\mathrm{y}=\{7 ; 8 ; 9 ; 10 ; 11\}$.
print y
/ title "Matrix Y".
End Matrix.
***** A is a 3 X 3 matrix********.
Matrix.
compute $\mathrm{A}=\{1,2,3 ; 2,4,6 ; 3,6,1\}$.
print A
/ title "Matrix A".
End Matrix.

Example6: Write the following Matrix operations for matrix A and B in SPSS syntax
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
a.) A + B \quad b.) A - B
c.) $\mathrm{A} * \mathrm{~B}$
d.) A^{2}

Solution:

a.)
***** $\mathrm{A}+\mathrm{B}$ ********.
Matrix.
compute $\mathrm{A}=\{1,2,3 ; 2,4,6 ; 3,6,1\}$.
compute $\mathrm{B}=\{1,0,0 ; 0,2,0 ; 0,0,3\}$.
compute $\mathrm{Z}=\mathrm{A}+\mathrm{B}$
print A / title "Matrix A". print B / title "Matrix B". print Z / title "Matrix A + B". End Matrix.
b.) \& c.) \& d.)
***** $\mathrm{A}-\mathrm{B} \& \mathrm{~A}$ * $\mathrm{B} \& \mathrm{~A}^{2 * * * * * * * * . ~}$
Matrix.
compute $\mathrm{A}=\{1,2,3 ; 2,4,6 ; 3,6,1\}$.
compute $\mathrm{B}=\{1,0,0 ; 0,2,0 ; 0,0,3\}$.
compute $\mathrm{Z}=\mathrm{A}-\mathrm{B}$.
compute $\mathrm{M}=\mathrm{A}$ * B .
compute $\mathrm{K}=\mathrm{A} * \mathrm{~A}$.
print A / title "Matrix A".
print B / title "Matrix B".
print Z / title "Matrix A - B".
print M / title "Matrix A * B".
print K / title "Matrix $\mathrm{A}^{2 "}$.
End Matrix.

Example7: Using SPSS syntax, find $A^{\prime},|\mathrm{A}|$, and A^{-1}.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 0 \\
3 & 6 & 1
\end{array}\right]
$$

Solution:

***** Transpose, Determinant, \& Inverse********.
Matrix.
compute $\mathrm{A}=\{1,2,3 ; 0,4,0 ; 3,6,1\}$.
compute Trans_A =transpos (A).
compute $\operatorname{det} _\mathrm{A}=\operatorname{det}(\mathrm{A})$.
compute halg_A = inv (A).
print Trans_A / title "Transpose of Matrix A".
print det_A / title " Determinant of Matrix A".
print halg_A / title "Inverse of Matrix A ".
End Matrix.
Homework2: Find for the following matrix: $A^{\prime}, \operatorname{det}(\mathrm{A}), A^{-1}, \sqrt{A}$

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 1 \\
3 & 6 & 1
\end{array}\right]
$$

Opening SPSS Data Files and Variables:

When we select File \Rightarrow Open \Rightarrow Data, SPSS issues a "GET" command to open an SPSSformatted file and load it into SPSS. For example, the following opens and loads the file named survey_sample.sav:
GET FILE = "C:\Program Files\IBM\SPSS\Statistics\26|Samples\English\survey_sample.sav".
Example8: Open survey_sample.sav data, find a matrix (X) consists of respondent, father, mother, and spouse education (educ, paeduc, maeduc, speduc) using syntax methods. Then find $X^{\prime} X$.

Solution:

GET FILE = "C:\Program Files\IBM\SPSS\Statistics\26\Samples\English\survey_sample.sav". Matrix.
/* the following creates a matrix with the n rows and $\mathrm{p}=4$ columns.
get x
$/$ variables $=$ educ, paeduc, maeduc, speduc
$/$ missing $=$ accept
/sysmis=omit
*/sysmis=15.
compute $\mathrm{z}=$ transpos(x)*x.
print x / title "Matrix X".
print z / title "Matrix X'X".
End Matrix.
Remark: in case we have missing values, they must be omitted or accepted, while when we have system missing values, they must be omitted or changing them to a number such as 15 or 20 or any other numbers.

Example9: Using survey_sample.sav data, find a matrix (X) consists of father, mother, and spouse education (paeduc, maeduc, speduc), and a matrix (Y) consists of respondents' education (educ) using syntax methods. Then find $\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.

Solution:

Matrix.
/* the following creates a matrix with the n rows and $\mathrm{p}=3$ columns.
get x
/variables = paeduc, maeduc, speduc
$/$ missing $=$ accept
/sysmis=omit.
/* the following creates a matrix with the n rows and $\mathrm{p}=1$ columns.
get y
/variables = educ
/missing=accept
/sysmis=omit.
compute $\mathrm{z}=$ transpos $(\mathrm{x}) * \mathrm{x}$.
compute inv_z=inv(z).
compute xtrans_y=transpos(x)*y.
compute $\mathrm{B}=$ inv_z*xtrans_y.
print x / title "Matrix X".
print z / title "Matrix X'X".

print xtrans_y / title "Matrix X'Y".
print inv_z / title "Inverse of Matrix ($\mathrm{X}^{\prime} \mathrm{X}$)".
print B / title "Matrix ($\mathrm{X}^{\prime} \mathrm{X}$)-1 $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ ".
End Matrix.

Homework3: Using car_sales.sav data, find a matrix (X) consists of Engine size, Horsepower, Fuel capacity, and Fuel efficiency (engine_s, horsepow, fuel_cap, mpg), and a matrix (Y) consists of Price in thousands (price) using syntax methods. Then find $\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.

Finding Mean and Variance-Covariance matrix

In order to find Mean matrix and Variance-Covariance matrix, the following equations will be used:

$$
\begin{aligned}
& \bar{X}=\mathbf{1 1}^{\prime} \boldsymbol{X}\left(\frac{\mathbf{1}}{\mathrm{n}}\right), \text { where } \mathbf{1} \text { is a matrix of ones }(\mathrm{n} \times 1) \\
& S=\frac{\left((X - \mathbf { 1 1 } ^ { \prime } \boldsymbol { X } (\frac { 1 } { \mathrm { n } })) ^ { \prime } \left(\boldsymbol{X - 1 \mathbf { 1 1 } ^ { \prime } \boldsymbol { X } (\frac { 1 } { \mathrm { n } })))}\right.\right.}{n-1}
\end{aligned}
$$

Example10: Open survey_sample.sav data, find a matrix (X) consists of father, mother, and spouse education (paeduc, maeduc, speduc) using syntax methods. Then find mean and varcovar matrix of X.

Solution:

Matrix.
get one
$/$ variables $=$ one.
get x
/variables $=$ paeduc, maeduc, speduc
/missing=accept
/sysmis=omit.
get y
/variables = educ
/missing=accept
/sysmis=omit.
compute $\mathrm{n}=$ nrow (x).
compute x bar=transpos(one)*x/n.
compute $x _x b a r=x-o n e * x b a r$.
compute var_x=(transpos $\left.\left(x _x b a r\right) * x _x b a r\right) / n-1$.
print $n /$ title "Number of Rows".
print xbar / title "X bar".
print x_xbar / title "X - X Bar".
print var_x/ title "Variance of X Matrix".
End Matrix.

Commented [s1]: Yes, in X matrix we did not add a colu or variable with values 1 s .

Homework4: Using car_sales.sav data, find a matrix (X) consists of Engine size, Horsepower, Fuel capacity, and Fuel efficiency (engine_s, horsepow, fuel_cap, mpg) using syntax methods. Then find mean, var-covar, and correlation matrix of X.

Finding Correlation matrix

In order to find the correlation matrix, the following equations will be used:

$$
R=D^{-1 / 2} S D^{-1 / 2}
$$

Where D is the diagonal matrix of var-covar matrix. In other words, $D^{\mathbf{- 1 / 2}}$ is a diagonal matrix with $1 /$ sd for each variable as the diagonal elements.

To use SPSS syntax for finding correlation matrix, the following commands should be used:
diag: Is the diagonal elements of a matrix;
mdiag: Is the diagonal matrix of the diagonal elements.
Example11: Open survey_sample.sav data, find correlation matrix father, mother, and spouse education (paeduc, maeduc, speduc) using syntax methods.

Solution:

compute one $=1$.
execute.
Matrix.
get one
$/$ variables $=$ one.
get x
/variables $=$ paeduc, maeduc, speduc
/missing=accept
/sysmis=omit.
compute $\mathrm{n}=$ nrow (x).
compute x bar=transpos(one)*x/n.
compute $x _x b a r=x-o n e * x b a r$.
compute var_x=(transpos(x_xbar)*x_xbar)/n-1.
compute diag_var_x=diag(var_x).
compute sqrt_diag_var_x=sqrt(diag(var_x)).
compute mat_sqrt_diag_var_x=mdiag(sqrt_diag_var_x).
compute corr_x=inv(mat_sqrt_diag_var_x)*var_x*inv(mat_sqrt_diag_var_x).
print n / title "Number of Rows".
print xbar / title "X bar".
print x_xbar / title "X - X Bar".
print var_x/ title "Variance of X Matrix".
print sqrt_diag_var_x/ title "Sqrt Diagonal of Variance X Matrix".
print mat_sqrt_diag_var_x/ title "Matrix of Sqrt Diagonal of Variance X Matrix".
print corr_x /title="R, the correlation matrix".
End Matrix.

